Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Proteins That Are Biocompatible with Graphene and Its Derivatives
2.2. Optimization of Molecular Structure and Energy of Graphene-Based Dental Adhesives
2.3. Molecular-Docking Simulations
2.4. Pharmacophore Modeling for Evaluating Active Functional Groups in Graphene and Its Derivatives
2.5. Molecular Dynamics (MD) Simulations
2.6. Computational Assessment of Graphene and Its Derivatives for Toxicity
3. Results
3.1. Selection of Proteins Relevant to the Biocompatibility of Graphene and Its Derivatives
3.2. Refinement of the Molecular Structures and Energy Optimization of Graphene-Based Dental Adhesives
3.3. Molecular-Docking Simulations
3.4. Pharmacophore Modeling for Evaluating Active Functional Groups in Graphene and Its Derivatives
3.5. Molecular Dynamics (MD) Simulations
3.6. Computational Assessment of Graphene and Its Derivatives for Toxicity
4. Discussion
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Mbayachi, V.B.; Ndayiragije, E.; Sammani, T.; Taj, S.; Mbuta, E.R.; Khan, A.U. Graphene synthesis, characterization and its applications: A review. Results Chem. 2021, 3, 100163. [Google Scholar] [CrossRef]
- Pereira, R.; Lins, R.B.E.; Lima, E.F.d.S.; Mainardi, M.D.C.A.J.; Stamboroski, S.; Rischka, K.; Aguiar, F.H.B. Properties of a Dental Adhesive Containing Graphene and DOPA-Modified Graphene. Polymers 2024, 16, 2081. [Google Scholar] [CrossRef] [PubMed]
- Sindi, A. Applications of graphene oxide and reduced graphene oxide in advanced dental materials and therapies. J. Taibah Univ. Med. Sci. 2024, 19, 403–421. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Liang, X.; Wang, Y.; Wang, D.; Teng, M.; Xu, H.; Zhao, B.; Han, L. Graphene-Based Nanomaterials for Dental Applications: Principles, Current Advances, and Future Outlook. Front. Bioeng. Biotechnol. 2022, 10, 804201. [Google Scholar] [CrossRef]
- Sofan, E.; Sofan, A.; Palaia, G.; Tenore, G.; Romeo, U.; Migliau, G. Classification review of dental adhesive systems: From the IV generation to the universal type. Ann Stomatol. 2017, 8, 1–17. [Google Scholar]
- Perdigão, J. Current perspectives on dental adhesion: (1) Dentin adhesion—Not there yet. Jpn. Dent. Sci. Rev. 2020, 56, 190–207. [Google Scholar] [CrossRef] [PubMed]
- Mai, S.; Zhang, Q.; Liao, M.; Ma, X.; Zhong, Y. Recent Advances in Direct Adhesive Restoration Resin-Based Dental Materials With Remineralizing Agents. Front. Dent. Med. 2022, 3, 868651. [Google Scholar] [CrossRef]
- Apostu, A.M.; Sufaru, I.-G.; Tanculescu, O.; Stoleriu, S.; Doloca, A.; Pendefunda, A.A.C.; Solomon, S.M. Can Graphene Pave the Way to Successful Periodontal and Dental Prosthetic Treatments? A Narrative Review. Biomedicines 2023, 11, 2354. [Google Scholar] [CrossRef]
- Williams, A.G.; Moore, E.; Thomas, A.; Johnson, J.A. Graphene-Based Materials in Dental Applications: Antibacterial, Biocompatible, and Bone Regenerative Properties. Int. J. Biomater. 2023, 2023, 8803283. [Google Scholar] [CrossRef] [PubMed]
- Hardan, L.; Bourgi, R.; Cuevas-Suárez, C.E.; Zarow, M.; Kharouf, N.; Mancino, D.; Villares, C.F.; Skaba, D.; Lukomska-Szymanska, M. The Bond Strength and Antibacterial Activity of the Universal Dentin Bonding System: A Systematic Review and Meta-Analysis. Microorganisms 2021, 9, 1230. [Google Scholar] [CrossRef] [PubMed]
- Qi, X.; Jiang, F.; Zhou, M.; Zhang, W.; Jiang, X. Graphene Oxide as a promising material in Dentistry and tissue regeneration: A review. Smart Mater. Med. 2021, 2, 280–291. [Google Scholar] [CrossRef]
- Roma, M.; Hegde, S. Implications of graphene-based materials in dentistry: Present and future. Front. Chem. 2023, 11, 1308948. [Google Scholar] [CrossRef]
- Sanchez, V.C.; Jachak, A.; Hurt, R.H.; Kane, A.B. Biological Interactions of Graphene-Family Nanomaterials: An Interdisciplinary Review. Chem. Res. Toxicol. 2011, 25, 15–34. [Google Scholar] [CrossRef] [PubMed]
- John, K. Biocompatibility of Dental Materials. Dent. Clin. N. Am. 2007, 51, 747–760. [Google Scholar] [CrossRef]
- Wawrzynkiewicz, A.; Rozpedek-Kaminska, W.; Galita, G.; Lukomska-Szymanska, M.; Lapinska, B.; Sokolowski, J.; Majsterek, I. The Toxicity of Universal Dental Adhesives: An In Vitro Study. Polymers 2021, 13, 2653. [Google Scholar] [CrossRef] [PubMed]
- Tadin, A.; Gavic, L.; Galić, N. Biocompatibility of Dental Adhesives; IntechOpen: London, UK, 2016. [Google Scholar]
- Paqué, P.N.; Özcan, M. A Review on Biocompatibility of Dental Restorative and Reconstruction Materials. Curr. Oral Health Rep. 2024, 11, 68–77. [Google Scholar] [CrossRef]
- Pagano, S.; Lombardo, G.; Balloni, S.; Bodo, M.; Cianetti, S.; Barbati, A.; Montaseri, A.; Marinucci, L. Cytotoxicity of universal dental adhesive systems: Assessment in vitro assays on human gingival fibroblasts. Toxicol. Vitr. Int. J. Publ. Assoc. BIBRA 2019, 60, 252–260. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.K.; Saxena, P.; Pant, V.A.; Pant, A.B. Release and toxicity of dental resin composite. Toxicol. Int. 2012, 19, 225–234. [Google Scholar] [PubMed]
- Berman, H.M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.N.; Weissig, H.; Shindyalov, I.N.; Bourne, P.E. The Protein Data Bank. Nucleic Acids Res. 2000, 28, 235–242. [Google Scholar] [CrossRef]
- Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021, 596, 583–589. [Google Scholar] [CrossRef] [PubMed]
- Tian, W.; Chen, C.; Lei, X.; Zhao, J.; Liang, J. CASTp 3.0: Computed atlas of surface topography of proteins. Nucleic Acids Res. 2018, 46, 363–367. [Google Scholar] [CrossRef]
- Laskowski, R.A.; Jabłońska, J.; Pravda, L.; Vařeková, R.S.; Thornton, J. PDBsum: Structural summaries of PDB entries. Protein Sci. 2018, 27, 129–134. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, D.; Prabowo, B.A.; Rakhmadina, C.A. In silico study of medicinal plants with cyclodextrin inclusion complex as the potential inhibitors against SARS-CoV-2 main protease (Mpro) and spike (S) receptor. Inf. Med. Unlocked 2021, 25, 100645. [Google Scholar] [CrossRef] [PubMed]
- Fernández, B.; Ríos, M.A.; Carballeira, L. Molecular mechanics (MM2) and conformational analysis of compounds with N—C—O units. Parametrization of the force field and anomeric effect. J. Comput. Chem. 1991, 12, 78–90. [Google Scholar] [CrossRef]
- Vanommeslaeghe, K.; Guvench, O.; MacKerell, A.D., Jr. Molecular mechanics. Curr. Pharm. Des. 2014, 20, 3281–3292. [Google Scholar] [CrossRef] [PubMed]
- Payandeh, J.; Volgraf, M. Ligand binding at the protein–lipid interface: Strategic considerations for drug design. Nat. Rev. Drug Discov. 2021, 20, 710–722. [Google Scholar] [CrossRef]
- Van Zundert, G.C.P.; Rodrigues, J.P.G.L.M.; Trellet, M.; Schmitz, C.; Kastritis, P.L.; Karaca, E.; Melquiond, A.S.J.; van Dijk, M.; De Vries, S.J.; Bonvin, A.M.J.J. The HADDOCK2.2 Web Server: User-Friendly Integrative Modeling of Biomolecular Complexes. J. Mol. Biol. 2016, 428, 720–725. [Google Scholar] [CrossRef]
- Xue, L.C.; Rodrigues, J.P.; Kastritis, P.L.; Bonvin, A.M.; Vangone, A. PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics 2016, 32, 3676–3678. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, D.; Alsenani, F.; Elwali, N.E.; Alotaiq, N. Therapeutic potential of earthworm-derived proteins: Targeting NEDD4 for cardiovascular disease intervention. J. Appl. Pharm. Sci. 2024, 15, 216–232. [Google Scholar] [CrossRef]
- Rahayu, P.; Dermawan, D.; Nailufar, F.; Sulistyaningrum, E.; Tjandrawinata, R.R. Unlocking the wound-healing potential: An integrative in silico proteomics and in vivo analysis of Tacorin, a bioactive protein fraction from Ananas comosus (L.) Merr. Stem. Biochim. Biophys. Acta (BBA)—Proteins Proteom. 2025, 1873, 141060. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.-Y.; Zhang, H.-X.; Mezei, M.; Cui, M. Molecular docking: A powerful approach for structure-based drug discovery. Curr. Comput. Aided Drug Des. 2011, 7, 146–157. [Google Scholar] [CrossRef] [PubMed]
- Torres, P.H.M.; Sodero, A.C.R.; Jofily, P.; Silva, F.P., Jr. Key Topics in Molecular Docking for Drug Design. Int. J. Mol. Sci. 2019, 20, 4574. [Google Scholar] [CrossRef] [PubMed]
- Wolber, G.; Langer, T. LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. J. Chem. Inf. Model. 2005, 45, 160–169. [Google Scholar] [CrossRef]
- Abraham, M.J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J.C.; Hess, B.; Lindahl, E. GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 2015, 1, 19–25. [Google Scholar] [CrossRef]
- Wang, J.; Wolf, R.M.; Caldwell, J.W.; Kollman, P.A.; Case, D.A. Development and testing of a general amber force field. J. Comput. Chem. 2004, 25, 1157–1174. [Google Scholar] [CrossRef]
- Jakalian, A.; Jack, D.B.; Bayly, C.I. Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterization and validation. J. Comput. Chem. 2002, 23, 1623–1641. [Google Scholar] [CrossRef]
- Showalter, S.A.; Brüschweiler, R. Validation of Molecular Dynamics Simulations of Biomolecules Using NMR Spin Relaxation as Benchmarks: Application to the AMBER99SB Force Field. J. Chem. Theory Comput. 2007, 3, 961–975. [Google Scholar] [CrossRef]
- Kohnke, B.; Kutzner, C.; Grubmüller, H. A GPU-Accelerated Fast Multipole Method for GROMACS: Performance and Accuracy. J. Chem. Theory Comput. 2020, 16, 6938–6949. [Google Scholar] [CrossRef] [PubMed]
- Alotaiq, N.; Dermawan, D.; Elwali, N.E. Leveraging Therapeutic Proteins and Peptides from Lumbricus Earthworms: Targeting SOCS2 E3 Ligase for Cardiovascular Therapy through Molecular Dynamics Simulations. Int. J. Mol. Sci. 2024, 25, 10818. [Google Scholar] [CrossRef]
- Musliha, A.; Dermawan, D.; Rahayu, P.; Tjandrawinata, R.R. Unraveling modulation effects on albumin synthesis and inflammation by Striatin, a bioactive protein fraction isolated from Channa striata: In silico proteomics and in vitro approaches. Heliyon 2024, 10, e38386. [Google Scholar] [CrossRef] [PubMed]
- Saini, R.S.; Binduhayyim, R.I.H.; Gurumurthy, V.; Alshadidi, A.A.F.; Bavabeedu, S.S.; Vyas, R.; Dermawan, D.; Naseef, P.P.; Mosaddad, S.A.; Heboyan, A. In silico assessment of biocompatibility and toxicity: Molecular docking and dynamics simulation of PMMA-based dental materials for interim prosthetic restorations. J. Mater. Sci. Mater. Med. 2024, 35, 28. [Google Scholar] [CrossRef]
- Saini, R.S.; Binduhayyim, R.I.H.; Gurumurthy, V.; Alshadidi, A.A.F.; Aldosari, L.I.N.; Okshah, A.; Kuruniyan, M.S.; Dermawan, D.; Avetisyan, A.; Mosaddad, S.A.; et al. Dental biomaterials redefined: Molecular docking and dynamics-driven dental resin composite optimization. BMC Oral Health 2024, 24, 557. [Google Scholar] [CrossRef]
- Sander, T.; Freyss, J.; Von Korff, M.; Rufener, C. DataWarrior: An open-source program for chemistry aware data visualization and analysis. J. Chem. Inf. Model 2015, 55, 460–473. [Google Scholar] [CrossRef]
- Ioakimidis, L.; Thoukydidis, L.; Mirza, A.; Naeem, S.; Reynisson, J. Benchmarking the Reliability of QikProp. Correlation between Experimental and Predicted Values. QSAR Comb. Sci. 2008, 27, 445–456. [Google Scholar] [CrossRef]
- Llinas, P.; Masella, M.; Stigbrand, T.; Ménez, A.; Stura, E.A.; Le Du, M.H. Structural studies of human alkaline phosphatase in complex with strontium: Implication for its secondary effect in bones. Protein Sci. 2006, 15, 1691–1700. [Google Scholar] [CrossRef] [PubMed]
- Healey, E.G.; Bishop, B.; Elegheert, J.; Bell, C.H.; Padilla-Parra, S.; Siebold, C. Repulsive guidance molecule is a structural bridge between neogenin and bone morphogenetic protein. Nat. Struct. Mol. Biol. 2015, 22, 458–465. [Google Scholar] [CrossRef] [PubMed]
- Boudko, S.P.; Bächinger, H.P. Structural insight for chain selection and stagger control in collagen. Sci. Rep. 2016, 6, 37831. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Askari, J.A.; Humphries, M.J.; Jones, E.Y.; Stuart, D.I. Crystal structure of a heparin- and integrin-binding segment of human fibronectin. EMBO J. 1999, 18, 1468–1479. [Google Scholar] [CrossRef] [PubMed]
- Hoang, Q.Q.; Sicheri, F.; Howard, A.J.; Yang, D.S.C. Bone recognition mechanism of porcine osteocalcin from crystal structure. Nature 2003, 425, 977–980. [Google Scholar] [CrossRef] [PubMed]
- Hohenester, E.; Maurer, P.; Timpl, R. Crystal structure of a pair of follistatin-like and EF-hand calcium-binding domains in BM-40. EMBO J. 1997, 16, 3778–3786. [Google Scholar] [CrossRef] [PubMed]
- Le Trong, I.; McDevitt, T.C.; Nelson, K.E.; Stayton, P.S.; Stenkamp, R.E. Structural characterization and comparison of RGD cell-adhesion recognition sites engineered into streptavidin. Acta Crystallogr. D Biol. Crystallogr. 2003, 59 Pt 5, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Luan, X.; Lu, Q.; Jiang, Y.; Zhang, S.; Wang, Q.; Yuan, H.; Zhao, W.; Wang, J.; Wang, X. Crystal structure of human RANKL complexed with its decoy receptor osteoprotegerin. J. Immunol. 2012, 189, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ipsaro, J.J.; O’brien, P.A.; Bhattacharya, S.; Palmer, A.G.; Joshua-Tor, L. Asterix/Gtsf1 links tRNAs and piRNA silencing of retrotransposons. Cell Rep. 2021, 34, 108914. [Google Scholar] [CrossRef]
- Hou, C.; Mandal, A.; Rohr, J.; Tsodikov, O.V. Allosteric interference in oncogenic FLI1 and ERG transactions by mithramycins. Structure 2021, 29, 404–412.e4. [Google Scholar] [CrossRef] [PubMed]
- Golub, E.; Boesze-Battaglia, K. The role of alkaline phosphatase in mineralization. Curr. Opin. Orthop. 2007, 18, 444–448. [Google Scholar] [CrossRef]
- Thorey, F.; Menzel, H.; Lorenz, C.; Gross, G.; Hoffmann, A.; Windhagen, H. Osseointegration by bone morphogenetic protein-2 and transforming growth factor beta2 coated titanium implants in femora of New Zealand white rabbits. Indian J. Orthop. 2011, 45, 57–62. [Google Scholar] [CrossRef] [PubMed]
- Kim, B.-S.; La, W.-G.; Jin, M.; Park, S.; Yoon, H.-H.; Jeong, G.-J.; Bhang, S.H.; Park, H.; Char, K. Delivery of bone morphogenetic protein-2 and substance P using graphene oxide for bone regeneration. Int. J. Nanomed. 2014, 9 (Suppl. 1), 107–116. [Google Scholar] [CrossRef] [PubMed]
- McGuire, J.D.; Walker, M.P.; Dusevich, V.; Wang, Y.; Gorski, J.P. Enamel Organic Matrix: Its Potential Structural Role in Enamel and Relationship to Residual Basement Membrane Constituents at the Dentin Enamel Junction. Connect. Tissue Res. 2014, 55, 33–37. [Google Scholar] [CrossRef] [PubMed]
- Jakhu, H.; Gill, G.; Singh, A. Role of integrins in wound repair and its periodontal implications. J. Oral Biol. Craniofac. Res. 2018, 8, 122–125. [Google Scholar] [CrossRef] [PubMed]
- Singh, A.; Gill, G.; Kaur, H.; Amhmed, M.; Jakhu, H. Role of osteopontin in bone remodeling and orthodontic tooth movement: A review. Prog. Orthod. 2018, 19, 18. [Google Scholar] [CrossRef]
- Hienz, S.A.; Paliwal, S.; Ivanovski, S. Mechanisms of Bone Resorption in Periodontitis. J. Immunol. Res. 2015, 2015, 615486. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.; Gluhak-Heinrich, J.; Wang, Y.H.; Wu, Y.M.; Chuang, H.H.; Chen, L.; Yuan, G.H.; Dong, J.; Gay, I.; MacDougall, M. Runx2, osx, and dspp in tooth development. J. Dent. Res. 2009, 88, 904–909. [Google Scholar] [CrossRef] [PubMed]
- Kim, T.H.; Bae, C.H.; Lee, J.C.; Kim, J.E.; Yang, X.; De Crombrugghe, B.; Cho, E.S. Osterix regulates tooth root formation in a site-specific manner. J. Dent. Res. 2015, 94, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Nan, H.Y.; Ni, Z.H.; Wang, J.; Zafar, Z.; Shi, Z.X.; Wang, Y.Y. The thermal stability of graphene in air investigated by Raman spectroscopy. J. Raman Spectrosc. 2013, 44, 1018–1021. [Google Scholar] [CrossRef]
- Park, S.; Lee, K.-S.; Bozoklu, G.; Cai, W.; Nguyen, S.T.; Ruoff, R.S. Graphene oxide papers modified by divalent ions-enhancing mechanical properties via chemical cross-linking. ACS Nano 2008, 2, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Usachov, D.; Vilkov, O.; Grüneis, A.; Haberer, D.; Fedorov, A.; Adamchuk, V.K.; Preobrajenski, A.B.; Dudin, P.; Barinov, A.; Oehzelt, M.; et al. Nitrogen-Doped Graphene: Efficient Growth, Structure, and Electronic Properties. Nano Lett. 2011, 11, 5401–5407. [Google Scholar] [CrossRef]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Nesakumar, N.; Srinivasan, S.; Alwarappan, S. Graphene quantum dots: Synthesis, properties, and applications to the development of optical and electrochemical sensors for chemical sensing. Mikrochim. Acta 2022, 189, 258. [Google Scholar] [CrossRef] [PubMed]
- Dermawan, D.; Sumirtanurdin, R.; Dewantisari, D. Simulasi dinamika molekular reseptor estrogen alfa dengan andrografolid sebagai anti kanker payudara. Indones. J. Pharm. Sci. Technol. 2019, 6, 65–76. [Google Scholar] [CrossRef]
- Lazniewski, M.; Dermawan, D.; Hidayat, S.; Muchtaridi, M.; Dawson, W.K.; Plewczynski, D. Drug repurposing for identification of potential spike inhibitors for SARS-CoV-2 using molecular docking and molecular dynamics simulations. Methods 2022, 203, 498–510. [Google Scholar] [CrossRef] [PubMed]
- Spassov, D.S.; Atanasova, M.; Doytchinova, I. A role of salt bridges in mediating drug potency: A lesson from the N-myristoyltransferase inhibitors. Front. Mol. Biosci. 2022, 9, 1066029. [Google Scholar] [CrossRef] [PubMed]
- Bosshard, H.; Marti, D.; Jelezarov, I. Protein stabilization by salt bridges: Concepts, experimental approaches and clarification of some misunderstandings. J. Mol. Recognit. JMR 2004, 17, 1–16. [Google Scholar] [CrossRef] [PubMed]
- Spinola, M.; Piva, A.M.O.D.; Barbosa, P.U.; Torres, C.R.G.; Bresciani, E. Mechanical Assessment of Glass Ionomer Cements Incorporated with Multi-Walled Carbon Nanotubes for Dental Applications. Oral 2021, 1, 190–198. [Google Scholar] [CrossRef]
Name | PDB/UniProt ID | Resolution (Å) | Chain | Weight (kDa) | Sequence Length | Active Site (Residue Number) |
---|---|---|---|---|---|---|
AP | 2GLQ [46] | 1.60 | A | 53.57 | 484 | 15, 18, 19, 22, 68, 72, 73 |
BMP2 | 4UI1 [47] | 2.35 | A | 51.34 | 114 | 293, 295, 296, 328, 329, 330, 331, 332, 333, 334, 335, 336, 338, 339, 344, 347, 348, 350, 351, 358, 393, 394, 395 |
COL1A1 | 5CTD [48] | 1.60 | C | 21.06 | 72 | 50, 53, 54, 57, 70, 71 |
Fibronectin | 1FNH [49] | 2.80 | A | 29.63 | 271 | 101, 102, 131, 156, 158, 159, 160, 177, 178, 179, 180, 257, 259, 260 |
Osteocalcin | 1Q8H [50] | 2.00 | A | 5.85 | 49 | 16, 19, 38, 39, 42, 43 |
Osteonectin | 1BMO [51] | 3.10 | A | 55.23 | 233 | 65, 67, 77, 78, 79, 80, 81, 82, 83, 103, 107, 110, 111, 114, 115, 120 |
Osteopontin | 1MOY [52] | 1.55 | A | 13.80 | 130 | 64, 65, 67, 68, 69 |
Osteoprotegerin | 3URF [53] | 2.70 | B | 38.38 | 171 | 9, 10, 22, 29, 32, 48, 49, 50, 51, 52, 53, 54, 57, 58, 60, 64, 67, 70, 81, 82, 83, 85, 92, 116 |
Osterix | 6X46 [54] | N/A | A | 14.35 | 121 | 17, 23, 33, 37, 51, 57, 67, 71, 76 |
RUNX2 | 6VGD [55] | 4.20 | D | 59.70 | 177 | 117, 164, 165, 200, 210, 212 |
Component | Chemical Structure | Molecular Weight (g/mol) |
---|---|---|
Graphene-based dental adhesive | ||
High-purity graphene | 838.9 | |
Graphene oxide (GO) | 1042.9 | |
Reduced graphene oxide (rGO) | 946.9 | |
Nitrogen-doped graphene | 839.9 | |
Fluorine-doped graphene | 817.5 | |
Sulfur-doped graphene | 966.3 | |
Graphene Quantum Dot | 886.8 | |
NH2-functionalized graphene | 929.0 | |
COH-functionalized graphene | 934.9 | |
CCOOH-functionalized graphene | 1103.0 |
Compound | Stretch | Bend | Stretch–Bend | Torsion | Non-1,4 VDW | 1,4 VDW | Total Energy (kcal/mol) |
---|---|---|---|---|---|---|---|
High-purity graphene | 5.098 | 3.173 | 0.123 | −165.458 | −11.667 | 110.020 | −58.710 |
Graphene oxide (GO) | 566.126 | 420.514 | −20.856 | 323.780 | 602.940 | 317.374 | 2209.879 |
Reduced graphene oxide (rGO) | 631.345 | 775.620 | −39.638 | 433.057 | 509.372 | 412.552 | 2722.309 |
Nitrogen-doped graphene | 9.341 | 21.029 | 0.236 | −74.801 | −2.903 | 106.955 | 66.953 |
Fluorine-doped graphene | 324.172 | 983.567 | −5.558 | 280.435 | 419.107 | 132.248 | 2133.973 |
Sulfur-doped graphene | 86.922 | 1503.161 | −37.279 | 103.188 | −6.753 | 135.782 | 1787.181 |
Graphene Quantum Dot | 159.045 | 272.033 | −0.403 | 70.054 | 82.269 | 188.230 | 771.229 |
NH2-functionalized graphene | 8.879 | 22.195 | 0.197 | −129.026 | −2.733 | 109.129 | 8.704 |
COH-functionalized graphene | 7.851 | 14.181 | 0.054 | −154.853 | −11.379 | 103.407 | −40.558 |
CCOOH-functionalized graphene | 15.578 | 33.394 | 0.579 | −51.459 | 15.810 | 116.980 | 164.901 |
Complex | HADDOCK Score | Binding Affinity ΔG (kcal/mol) | ΔG Score | Cluster Size | RMSD | Van der Waals Energy | Electrostatic Energy | Desolvation Energy | Restraints Violation Energy | Buried Surface Area | Z-Score |
---|---|---|---|---|---|---|---|---|---|---|---|
AP/Graphene Quantum Dot | −38.7 +/− 2.0 | −9.65 | 86.41 | 4 | 1.0 +/− 0.0 | −28.6 +/− 1.7 | −61.0 +/− 8.3 | −4.2 +/− 0.5 | 1.7 +/− 0.2 | 718.2 +/− 13.4 | −1.8 |
BMP2/sulfur-doped graphene | −38.0 +/− 2.9 | −11.05 | 33.78 | 4 | 0.1 +/− 0.1 | −31.9 +/− 1.3 | −111.8 +/− 7.0 | −7.2 +/− 0.6 | 122.5 +/− 20.1 | 560.5 +/− 11.1 | −1.7 |
COL1A1/Graphene Quantum Dot | −39.2 +/− 0.4 | −8.27 | 124.33 | 45 | 1.4 +/− 0.1 | −34.7 +/− 0.4 | −27.8 +/− 2.0 | −1.9 +/− 0.2 | 1.4 +/− 0.3 | 758.0 +/− 15.4 | −1.4 |
Fibronectin/Graphene Quantum Dot | −31.0 +/− 2.4 | −9.09 | 110.62 | 5 | 1.3 +/− 0.0 | −31.3 +/− 2.2 | −44.8 +/− 9.3 | 2.4 +/− 0.2 | 24.0 +/− 11.6 | 761.6 +/− 18.4 | −1.5 |
Osteocalcin/sulfur-doped graphene | −28.8 +/− 2.1 | −9.82 | 60.94 | 5 | 0.9 +/− 0.0 | −17.9 +/− 1.2 | −141.6 +/− 11.5 | −1.5 +/− 0.1 | 47.5 +/− 1.1 | 419.6 +/− 13.4 | −1.9 |
Osteonectin/Graphene Quantum Dot | −32.3 +/− 1.0 | −9.88 | 81.82 | 8 | 0.1 +/− 0.1 | −23.9 +/− 0.7 | −100.8 +/− 7.4 | −3.4 +/− 0.4 | 50.5 +/− 6.1 | 737.4 +/− 22.6 | −1.9 |
Osteopontin/Graphene Quantum Dot | −36.1 +/− 2.2 | −9.25 | 91.64 | 5 | 0.2 +/− 0.1 | −25.6 +/− 1.6 | −103.7 +/− 5.4 | −0.2 +/− 0.2 | 0.4 +/− 0.3 | 640.1 +/− 9.6 | −1.4 |
Osteoprotegerin/sulfur-doped graphene | −11.6 +/− 1.0 | −9.65 | 68.85 | 8 | 0.4 +/− 0.1 | −13.6 +/− 2.4 | −89.9 +/− 0.5 | −3.8 +/− 0.3 | 148.5 +/− 16.4 | 430.4 +/− 5.8 | −1.7 |
Osterix/Graphene Quantum Dot | −43.6 +/− 0.8 | −9.38 | 87.95 | 7 | 0.6 +/− 0.1 | −29.7 +/− 0.9 | −91.5 +/− 8.7 | −4.8 +/− 0.3 | 0.0 +/− 0.0 | 650.6 +/− 16.8 | −1.6 |
RUNX2/Graphene Quantum Dot | −42.0 +/− 0.1 | −8.24 | 120.10 | 20 | 0.1 +/− 0.1 | −29.6 +/− 0.2 | −41.5 +/− 3.1 | −8.2 +/− 0.1 | 0.1 +/− 0.0 | 566.0 +/− 3.7 | −1.3 |
Compound | 2D Pharmacophore | 3D Pharmacophore |
---|---|---|
High-purity graphene | ||
Graphene oxide (GO) | ||
Reduced graphene oxide (rGO) | ||
Nitrogen-doped graphene | ||
Fluorine-doped graphene | ||
Sulfur-doped graphene | ||
Graphene Quantum Dot | ||
NH2-functionalized graphene | ||
COH-functionalized graphene | ||
CCOOH-functionalized graphene |
Compound | Mutagenic | Tumorigenic | Reproductive Effective | Irritant | Total Surface Area | Solvent Accessible Surface Area (SASA) | Hydrophobic Component of SASA (FOSA) | Hydrophilic Component of SASA (FISA) |
---|---|---|---|---|---|---|---|---|
High-purity graphene | None | None | None | None | 284.64 | 372.83 | 372.83 | 0 |
Graphene oxide (GO) | High | High | None | High | 306.37 | 427.47 | 301.06 | 126.41 |
Reduced graphene oxide (rGO) | None | None | None | None | 267.87 | 385.25 | 339.79 | 45.46 |
Nitrogen-doped graphene | None | None | None | None | 277.94 | 396.83 | 389.20 | 7.62 |
Fluorine-doped graphene | None | None | None | None | 298.68 | 411.12 | 382.17 | 8.11 |
Sulfur-doped graphene | None | None | None | None | 276.87 | 439.51 | 394.42 | 0 |
Graphene Quantum Dot | None | None | None | None | 445.87 | 618.91 | 290.09 | 328.82 |
NH2-functionalized graphene | None | None | None | None | 299.16 | 372.40 | 288.45 | 83.95 |
COH-functionalized graphene | None | None | None | None | 294.82 | 365.13 | 287.01 | 78.11 |
CCOOH-functionalized Graphene | None | None | None | None | 332.52 | 442.53 | 290.86 | 151.66 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saini, R. Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives. Oral 2025, 5, 4. https://doi.org/10.3390/oral5010004
Saini R. Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives. Oral. 2025; 5(1):4. https://doi.org/10.3390/oral5010004
Chicago/Turabian StyleSaini, Ravinder. 2025. "Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives" Oral 5, no. 1: 4. https://doi.org/10.3390/oral5010004
APA StyleSaini, R. (2025). Computational Assessment of Biocompatibility and Toxicity of Graphene and Its Derivatives for Dental Adhesives. Oral, 5(1), 4. https://doi.org/10.3390/oral5010004