Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review
Abstract
:1. Introduction
2. Methodology
3. OS-Induced GI Diseases and Developed Nanomedicines
3.1. Oral Diseases
3.2. Esophageal Diseases
3.3. Gastric Diseases
3.4. Intestinal and Rectal Diseases
3.5. Stimuli-Responsive Nanomedicines for Treatment of OS-Induced GI Diseases
4. Safety Issues of Nanomedicines
5. Concluding Remarks
Funding
Data Availability Statement
Conflicts of Interest
References
- Medrano-Macías, J.; Flores-Gallegos, A.C.; Nava-Reyna, E.; Morales, I.; Tortella, G.; Solís-Gaona, S.; Benavides-Mendoza, A. Reactive Oxygen, Nitrogen, and Sulfur Species (RONSS) as a Metabolic Cluster for Signaling and Biostimulation of Plants: An Overview. Plants 2022, 11, 3203. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Pan, C.; Feng, C.; Yan, C.; Yu, Y.; Chen, Z.; Guo, C.; Wang, X. Role of mitochondrial reactive oxygen species in homeostasis regulation. Redox Rep. 2022, 27, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.; Manca, M.L.; Caddeo, C.; Escribano-Ferrer, E.; Carbone, C.; Peris, J.E.; Usach, I.; Diez-Sales, O.; Fadda, A.M.; Manconi, M. Co-Loading of Ascorbic Acid and Tocopherol in Eudragit-Nutriosomes to Counteract Intestinal Oxidative Stress. Pharmaceutics 2019, 11, 13. [Google Scholar] [CrossRef] [PubMed]
- Juan, C.A.; de la Lastra, J.M.P.; Plou, F.J.; Pérez-Lebeña, E. The Chemistry of Reactive Oxygen Species (ROS) Revisited: Outlining Their Role in Biological Macromolecules (DNA, Lipids and Proteins) and Induced Pathologies. Int. J. Mol. Sci. 2021, 22, 4642. [Google Scholar] [CrossRef] [PubMed]
- Ali, S.S.; Ahsan, H.; Zia, M.K.; Siddiqui, T.; Khan, F.H. Understanding oxidants and antioxidants: Classical team with new players. J. Food Biochem. 2020, 44, e13145. [Google Scholar] [CrossRef] [PubMed]
- Giles, G.I.; Nasim, M.J.; Ali, W.; Jacob, C. The Reactive Sulfur Species Concept: 15 Years On. Antioxidants 2017, 6, 38. [Google Scholar] [CrossRef] [PubMed]
- Al-Sheikh, Y.A.; Ghneim, H.K.; Alharbi, A.F.; Alshebly, M.M.; Aljaser, F.S.; Aboul-Soud, M.A. Molecular and biochemical investigations of key antioxidant/oxidant molecules in Saudi patients with recurrent miscarriage. Exp. Ther. Med. 2019, 18, 4450–4460. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Zou, L.; Zhang, X.; Branco, V.; Wang, J.; Carvalho, C.; Holmgren, A.; Lu, J. Redox Signaling Mediated by Thioredoxin and Glutathione Systems in the Central Nervous System. Antioxid. Redox Signal. 2017, 27, 989–1010. [Google Scholar] [CrossRef] [PubMed]
- Dobreva, A.; Camacho, E.T.; Miranda, M. Mathematical model for glutathione dynamics in the retina. Sci. Rep. 2023, 13, 10996. [Google Scholar] [CrossRef] [PubMed]
- Hasan, A.A.; Kalinina, E.; Tatarskiy, V.; Shtil, A. The Thioredoxin System of Mammalian Cells and Its Modulators. Biomedicines 2022, 10, 1757. [Google Scholar] [CrossRef]
- Lee, D.; Jo, M.G.; Kim, S.Y.; Chung, C.G.; Lee, S.B. Dietary Antioxidants and the Mitochondrial Quality Control: Their Potential Roles in Parkinson’s Disease Treatment. Antioxidants 2020, 9, 1056. [Google Scholar] [CrossRef] [PubMed]
- Sarmiento-Salinas, F.L.; Perez-Gonzalez, A.; Acosta-Casique, A.; Ix-Ballote, A.; Diaz, A.; Treviño, S.; Rosas-Murrieta, N.H.; Millán-Perez-Peña, L.; Maycotte, P. Reactive oxygen species: Role in carcinogenesis, cancer cell signaling and tumor progression. Life Sci. 2021, 284, 119942. [Google Scholar] [CrossRef] [PubMed]
- Kirtonia, A.; Sethi, G.; Garg, M. The multifaceted role of reactive oxygen species in tumorigenesis. Cell. Mol. Life Sci. 2020, 77, 4459–4483. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, M.P.; Batterham, R.L. The Importance of the Gastrointestinal Tract in Controlling Food Intake and Regulating Energy Balance. Gastroenterology 2017, 152, 1707–1717.e2. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.; Zou, J.; Chen, Z.; He, W.; Wu, W. Current research trends of nanomedicines. Acta Pharm. Sin. B 2023, 13, 4391–4416. [Google Scholar] [CrossRef] [PubMed]
- Ashique, S.; Garg, A.; Hussain, A.; Farid, A.; Kumar, P.; Taghizadeh-Hesary, F. Nanodelivery systems: An efficient and target-specific approach for drug-resistant cancers. Cancer Med. 2023, 12, 18797–18825. [Google Scholar] [CrossRef] [PubMed]
- Peres, M.A.; Macpherson, L.M.; Weyant, R.J.; Daly, B.; Venturelli, R.; Mathur, M.R.; Listl, S.; Celeste, R.K.; Guarnizo-Herreño, C.C.; Kearns, C.; et al. Oral diseases: A global public health challenge. Lancet 2019, 394, 249–260. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.K.; Narayan, V.; Navaneethan, R. Oxidative Stress and Oral Diseases. In Book Role of Oxidative Stress in Pathophysiology of Diseases; Springer: Singapore, 2020; pp. 1–12. [Google Scholar] [CrossRef]
- Sardaro, N.; DELLA Vella, F.; Incalza, M.A.; DI Stasio, D.; Lucchese, A.; Contaldo, M.; Laudadio, C.; Petruzzi, M. Oxidative Stress and Oral Mucosal Diseases: An Overview. In Vivo 2019, 33, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Čižmárová, B.; Tomečková, V.; Hubková, B.; Hurajtová, A.; Ohlasová, J.; Birková, A. Salivary Redox Homeostasis in Human Health and Disease. Int. J. Mol. Sci. 2022, 23, 10076. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wang, Z. Mechanisms of reactive oxygen species in oral lichen planus: A literature review. Eur. J. Inflamm. 2022, 20, 1721727X221104389. [Google Scholar] [CrossRef]
- Dalirsani, Z.; Shirzaiy, M.; Salehian, M. Salivary antioxidants levels in patients with oral lichen planus. Indian J. Dermatol. 2022, 67, 651–656. [Google Scholar] [CrossRef]
- Tvarijonaviciute, A.; Aznar-Cayuela, C.; Rubio, C.P.; Tecles, F.; Ceron, J.J.; López-Jornet, P. Salivary Antioxidant Status in Patients with Oral Lichen Planus: Correlation with Clinical Signs and Evolution during Treatment with Chamaemelum nobile. BioMed Res. Int. 2018, 2018, 5187549. [Google Scholar] [CrossRef] [PubMed]
- Rohani, B.; Sadeghian, R.; Golestannejad, Z.; Sadeghian, S.; Mirzaee, S. Comparison of therapeutic effect of mucoadhesive nano-triamcinolone gel and conventional triamcinolone gel on oral lichen planus. Dent. Res. J. 2019, 16, 277–282. [Google Scholar] [CrossRef]
- Jurczyszyn, K.; Trzeciakowski, W.; Kozakiewicz, M.; Kida, D.; Malec, K.; Karolewicz, B.; Konopka, T.; Zborowski, J. Fractal Dimension and Texture Analysis of Lesion Autofluorescence in the Evaluation of Oral Lichen Planus Treatment Effectiveness. Materials 2021, 14, 5448. [Google Scholar] [CrossRef] [PubMed]
- Da Anunciação, T.A.; Garcez, L.S.; Pereira, E.M.; Queiroz, V.A.d.O.; Costa, P.R.d.F.; de Oliveira, L.P.M. Curcumin supplementation in the treatment of patients with cancer: A systematic review. Braz. J. Pharm. Sci. 2021, 57, e18008. [Google Scholar] [CrossRef]
- Kia, S.J.; Basirat, M.; Mortezaie, T.; Moosavi, M.-S. Comparison of oral Nano-Curcumin with oral prednisolone on oral lichen planus: A randomized double-blinded clinical trial. BMC Complement. Med. Ther. 2020, 20, 328. [Google Scholar] [CrossRef]
- Kia, S.J.; Basirat, M.; Estakhr, L. The effect of oral curcumin on pain and clinical appearance of oral lichen planus. J. Dentomaxillofac. 2017, 6, 1–7. [Google Scholar]
- Bakhshi, M.; Gholami, S.; Mahboubi, A.; Jaafari, M.R.; Namdari, M. Combination Therapy with 1% Nanocurcumin Gel and 0.1% Triamcinolone Acetonide Mouth Rinse for Oral Lichen Planus: A Randomized Double-Blind Placebo Controlled Clinical Trial. Dermatol. Res. Pract. 2020, 2020, 4298193. [Google Scholar] [CrossRef] [PubMed]
- Popovska, M.; Fidovski, J.; Mindova, S.; Dirjanska, K.; Ristoska, S.; Stefanovska, E.; Radojkova-Nikolovska, V.; Mitic, K.; Rusevska, B. The Effects of NBF Gingival Gel Application in the Treatment of the Erosive Lichen Planus: Case Report. Open Access Maced. J. Med. Sci. 2016, 4, 158–163. [Google Scholar] [CrossRef] [PubMed]
- Shang, J.; Liu, H.; Zheng, Y.; Zhang, Z. Role of oxidative stress in the relationship between periodontitis and systemic diseases. Front. Physiol. 2023, 14, 1210449. [Google Scholar] [CrossRef] [PubMed]
- Kumar, J.; Teoh, S.L.; Das, S.; Mahakknaukrauh, P. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases. Front. Physiol. 2017, 8, 693. [Google Scholar] [CrossRef] [PubMed]
- Mohideen, K.; Chandrasekar, K.; Ramsridhar, S.; Rajkumar, C.; Ghosh, S.; Dhungel, S. Assessment of Oxidative Stress by the Estimation of Lipid Peroxidation Marker Malondialdehyde (MDA) in Patients with Chronic Periodontitis: A Systematic Review and Meta-Analysis. Int. J. Dent. 2023, 2023, 6014706. [Google Scholar] [CrossRef]
- Liu, C.; Mo, L.; Niu, Y.; Li, X.; Zhou, X.; Xu, X. The Role of Reactive Oxygen Species and Autophagy in Periodontitis and Their Potential Linkage. Front. Physiol. 2017, 8, 439. [Google Scholar] [CrossRef] [PubMed]
- Nasiri, K.; Masoumi, S.M.; Amini, S.; Goudarzi, M.; Tafreshi, S.M.; Bagheri, A.; Yasamineh, S.; Alwan, M.; Arellano, M.T.C.; Gholizadeh, O. Recent advances in metal nanoparticles to treat periodontitis. J. Nanobiotechnol. 2023, 21, 283. [Google Scholar] [CrossRef] [PubMed]
- Steckiewicz, K.P.; Cieciórski, P.; Barcińska, E.; Jaśkiewicz, M.; Narajczyk, M.; Bauer, M.; Kamysz, W.; Megiel, E.; Inkielewicz-Stepniak, I. Silver Nanoparticles as Chlorhexidine and Metronidazole Drug Delivery Platforms: Their Potential Use in Treating Periodontitis. Int. J. Nanomed. 2022, 17, 495–517. [Google Scholar] [CrossRef] [PubMed]
- Castangia, I.; Manconi, M.; Allaw, M.; Perra, M.; Orrù, G.; Fais, S.; Scano, A.; Escribano-Ferrer, E.; Ghavam, M.; Rezvani, M.; et al. Mouthwash Formulation Co-Delivering Quercetin and Mint Oil in Liposomes Improved with Glycol and Ethanol and Tailored for Protecting and Tackling Oral Cavity. Antioxidants 2022, 11, 367. [Google Scholar] [CrossRef] [PubMed]
- Johnson, A.; Kong, F.; Miao, S.; Thomas, S.; Ansar, S.; Kong, Z.-L. In-Vitro Antibacterial and Anti-Inflammatory Effects of Surfactin-Loaded Nanoparticles for Periodontitis Treatment. Nanomaterials 2021, 11, 356. [Google Scholar] [CrossRef] [PubMed]
- Zambrano, L.M.G.; Brandao, D.A.; Rocha, F.R.G.; Marsiglio, R.P.; Longo, I.B.; Primo, F.L.; Tedesco, A.C.; Guimaraes-Stabili, M.R.; Junior, C.R. Local administration of curcumin-loaded nanoparticles effectively inhibits inflammation and bone resorption associated with experimental periodontal disease. Sci. Rep. 2018, 8, 6652. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, M.J.; Kabeer, A.; Abbas, Z.; Siddiqui, H.A.; Calina, D.; Sharifi-Rad, J.; Cho, W.C. Interplay of oxidative stress, cellular communication and signaling pathways in cancer. Cell Commun. Signal. 2024, 22, 7. [Google Scholar] [CrossRef]
- Ionescu, C.; Kamal, F.Z.; Ciobica, A.; Halitchi, G.; Burlui, V.; Petroaie, A.D. Oxidative Stress in the Pathogenesis of Oral Cancer. Biomedicines 2024, 12, 1150. [Google Scholar] [CrossRef]
- Shi, X.-L.; Li, Y.; Zhao, L.-M.; Su, L.-W.; Ding, G. Delivery of MTH1 inhibitor (TH287) and MDR1 siRNA via hyaluronic acid-based mesoporous silica nanoparticles for oral cancers treatment. Colloids Surf. B Biointerfaces 2019, 173, 599–606. [Google Scholar] [CrossRef] [PubMed]
- Gamal-Eldeen, A.M.; Baghdadi, H.M.; Afifi, N.S.; Ismail, E.M.; Alsanie, W.F.; Althobaiti, F.; Raafat, B.M. Gum arabic-encapsulated gold nanoparticles modulate hypoxamiRs expression in tongue squamous cell carcinoma. Mol. Cell. Toxicol. 2021, 17, 111–121. [Google Scholar] [CrossRef]
- Chapelle, N.; Ben Ghezala, I.; Barkun, A.; Bardou, M. The pharmacotherapeutic management of gastroesophageal reflux disease (GERD). Expert Opin. Pharmacother. 2021, 22, 219–227. [Google Scholar] [CrossRef] [PubMed]
- Franceschelli, S.; Gatta, D.M.P.; Pesce, M.; Ferrone, A.; Di Martino, G.; Di Nicola, M.; De Lutiis, M.A.; Vitacolonna, E.; Patruno, A.; Grilli, A.; et al. Modulation of the oxidative plasmatic state in gastroesophageal reflux disease with the addition of rich water molecular hydrogen: A new biological vision. J. Cell. Mol. Med. 2018, 22, 2750–2759. [Google Scholar] [CrossRef] [PubMed]
- Bilski, J.; Pinkas, M.; Wojcik-Grzybek, D.; Magierowski, M.; Korbut, E.; Mazur-Bialy, A.; Krzysiek-Maczka, G.; Kwiecien, S.; Magierowska, K.; Brzozowski, T. Role of Obesity, Physical Exercise, Adipose Tissue-Skeletal Muscle Crosstalk and Molecular Advances in Barrett’s Esophagus and Esophageal Adenocarcinoma. Int. J. Mol. Sci. 2022, 23, 3942. [Google Scholar] [CrossRef] [PubMed]
- Hu, Y.; Ye, X.; Wang, R.; Poon, K. Current research progress in the role of reactive oxygen species in esophageal adenocarcinoma. Transl. Cancer Res. 2021, 10, 1568–1577. [Google Scholar] [CrossRef] [PubMed]
- Maslenkina, K.; Mikhaleva, L.; Naumenko, M.; Vandysheva, R.; Gushchin, M.; Atiakshin, D.; Buchwalow, I.; Tiemann, M. Signaling Pathways in the Pathogenesis of Barrett’s Esophagus and Esophageal Adenocarcinoma. Int. J. Mol. Sci. 2023, 24, 9304. [Google Scholar] [CrossRef] [PubMed]
- Imro’Ati, T.A.; Sugihartono, T.; Widodo, B.; Nefertiti, E.P.; Rovian, I.; Wibawa, I.G.N. The Relationship between Serum Total Oxidant Status, Total Antioxidant Status, and Oxidative Stress Index with Severity Levels of Gastroesophageal Reflux Disease: A Literature Review. Open Access Maced. J. Med. Sci. 2021, 9, 584–589. [Google Scholar] [CrossRef]
- Herdiana, Y. Chitosan Nanoparticles for Gastroesophageal Reflux Disease Treatment. Polymers 2023, 15, 3485. [Google Scholar] [CrossRef] [PubMed]
- Bai, X.; Ihara, E.; Hirano, K.; Tanaka, Y.; Nakano, K.; Kita, S.; Iwamoto, T.; Ogino, H.; Hirano, M.; Oda, Y.; et al. Endogenous Hydrogen Sulfide Contributes to Tone Generation in Porcine Lower Esophageal Sphincter Via Na+/Ca2+ Exchanger. Cell. Mol. Gastroenterol. Hepatol. 2018, 5, 209–221. [Google Scholar] [CrossRef] [PubMed]
- Krause, J.; Brokmann, F.; Rosenbaum, C.; Weitschies, W. The challenges of drug delivery to the esophagus and how to overcome them. Expert Opin. Drug Deliv. 2022, 19, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Hammad, R.W.; Sanad, R.A.B.; Abdelmalk, N.S.; Aziz, R.L.; Torad, F.A. Intranasal Surface-Modified Mosapride Citrate-Loaded Nanostructured Lipid Carriers (MOS-SMNLCs) for Treatment of Reflux Diseases: In vitro Optimization, Pharmacodynamics, and Pharmacokinetic Studies. AAPS PharmSciTech 2018, 19, 3791–3808. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Wu, F.; Pandey, N.K.; Chudal, L.; Xing, M.; Zhang, X.; Nguyen, L.; Liu, X.; Liu, J.P.; Chen, W.; et al. Combination of Disulfiram and Copper–Cysteamine Nanoparticles for an Enhanced Antitumor Effect on Esophageal Cancer. ACS Appl. Bio Mater. 2020, 3, 7147–7157. [Google Scholar] [CrossRef]
- Zhuang, X.; Kang, Y.; Zhao, L.; Guo, S. Design and synthesis of copper nanoparticles for the treatment of human esophageal cancer: Introducing a novel chemotherapeutic supplement. J. Exp. Nanosci. 2022, 17, 274–284. [Google Scholar] [CrossRef]
- Wang, X.-S.; Ding, X.-Z.; Li, X.-C.; He, Y.; Kong, D.-J.; Zhang, L.; Hu, X.-C.; Yang, J.-Q.; Zhao, M.-Q.; Gao, S.-G.; et al. A highly integrated precision nanomedicine strategy to target esophageal squamous cell cancer molecularly and physically. Nanomed. Nanotechnol. Biol. Med. 2018, 14, 2103–2114. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, M.-H.; Kim, H. Anti-Oxidant and Anti-Inflammatory Effects of Astaxanthin on Gastrointestinal Diseases. Int. J. Mol. Sci. 2022, 23, 15471. [Google Scholar] [CrossRef] [PubMed]
- Reyes, V.E. Helicobacter pylori and Its Role in Gastric Cancer. Microorganisms 2023, 11, 1312. [Google Scholar] [CrossRef] [PubMed]
- Salvatori, S.; Marafini, I.; Laudisi, F.; Monteleone, G.; Stolfi, C. Helicobacter pylori and Gastric Cancer: Pathogenetic Mechanisms. Int. J. Mol. Sci. 2023, 24, 2895. [Google Scholar] [CrossRef] [PubMed]
- Gobert, A.P.; Wilson, K.T. Polyamine- and NADPH-dependent generation of ROS during Helicobacter pylori infection: A blessing in disguise. Free Radic. Biol. Med. 2017, 105, 16–27. [Google Scholar] [CrossRef] [PubMed]
- Sah, D.K.; Arjunan, A.; Lee, B.; Jung, Y.D. Reactive Oxygen Species and H. pylori Infection: A Comprehensive Review of Their Roles in Gastric Cancer Development. Antioxidants 2023, 12, 1712. [Google Scholar] [CrossRef] [PubMed]
- Franco, D.; Calabrese, G.; Guglielmino, S.P.P.; Conoci, S. Metal-Based Nanoparticles: Antibacterial Mechanisms and Biomedical Application. Microorganisms 2022, 10, 1778. [Google Scholar] [CrossRef] [PubMed]
- Attia, H.G.; Albarqi, H.A.; Said, I.G.; Alqahtani, O.; Raey, M.A.E. Synergistic Effect between Amoxicillin and Zinc Oxide Nanoparticles Reduced by Oak Gall Extract against Helicobacter pylori. Molecules 2022, 27, 4559. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Zou, Y.; Zhang, S.; Fang, P.; Li, S.; Li, P.; Sun, Y.; Yuan, G.; Hu, H. Multi-functional vesicles improve Helicobacter pylori eradication by a comprehensive strategy based on complex pathological microenvironment. Acta Pharm. Sin. B 2022, 12, 3498–3512. [Google Scholar] [CrossRef] [PubMed]
- Shen, M.-F.; Wang, Z.; Shen, F.; Zhao, C.-S.; Chen, G. The role of hydrogen sulfide in gastric mucosal damage. Med. Gas Res. 2019, 9, 88–92. [Google Scholar] [CrossRef] [PubMed]
- Manivannan, S.; Sivaraman, H.; Murugesan, R.; Narayan, S. Omeprazole and H2S releasing agents encapsulated in chitosan nanoparticles to enhance healing process against indomethacin-induced gastric ulcer model. J. Mater. Res. 2023, 38, 3089–3109. [Google Scholar] [CrossRef]
- Elsisi, A.E.; Mekky, E.F.; Abu-Risha, S.E. Potential effects of carbon monoxide donor and its nanoparticles on experimentally induced gastric ulcer in rats. Inflammopharmacology 2023, 31, 1495–1510. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Shi, Y.; Wang, H.; Chun, C.; Chen, L.; Wang, K.; Lu, Z.; Zhao, Y.; Li, X. Protective Effects of Chitosan-Bilirubin Nanoparticles Against Ethanol-Induced Gastric Ulcers. Int. J. Nanomed. 2021, 16, 8235–8250. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, I.A.A.; Hussein, A.I.; Muter, M.S.; Mohammed, A.T.; Al-Medhtiy, M.H.; Shareef, S.H.; Aziz, P.Y.; Agha, N.F.S.; Abdulla, M.A. Effect of nano silver on gastroprotective activity against ethanol-induced stomach ulcer in rats. Biomed. Pharmacother. 2022, 154, 113550. [Google Scholar] [CrossRef]
- Butcher, L.D.; Hartog, G.D.; Ernst, P.B.; Crowe, S.E. Oxidative Stress Resulting from Helicobacter pylori Infection Contributes to Gastric Carcinogenesis. Cell. Mol. Gastroenterol. Hepatol. 2017, 3, 316–322. [Google Scholar] [CrossRef] [PubMed]
- Ding, N.; Xu, S.; Zheng, S.; Ye, Q.; Xu, L.; Ling, S.; Xie, S.; Chen, W.; Zhang, Z.; Xue, M.; et al. “Sweet tooth”-oriented SN38 prodrug delivery nanoplatform for targeted gastric cancer therapy. J. Mater. Chem. B 2021, 9, 2816–2830. [Google Scholar] [CrossRef] [PubMed]
- Alam, J.; Dilnawaz, F.; Sahoo, S.K.; Singh, D.V.; Mukhopadhyay, A.K.; Hussain, T.; Pati, S. Curcumin Encapsulated into Biocompatible Co-Polymer PLGA Nanoparticle Enhanced Anti-Gastric Cancer and Anti-Helicobacter Pylori Effect. Asian Pac. J. Cancer Prev. 2022, 23, 61–70. [Google Scholar] [CrossRef] [PubMed]
- Veres-Székely, A.; Bernáth, M.; Pap, D.; Rokonay, R.; Szebeni, B.; Takács, I.M.; Lippai, R.; Cseh, Á.; Szabó, A.J.; Vannay, Á. PARK7 diminishes oxidative stress-induced mucosal damage in celiac disease. Oxid. Med. Cell. Longev. 2020, 2020, 4787202. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, Y.; Zhang, X.; Lu, Y.; Chen, H. New insights in intestinal oxidative stress damage and the health intervention effects of nutrients: A review. J. Funct. Foods 2020, 75, 104248. [Google Scholar] [CrossRef]
- Yu, T.; Xie, Y.; Yuan, J.; Gao, J.; Xiao, Z.; Wu, Y.; Chen, H. The Nutritional Intervention of Resveratrol Can Effectively Alleviate the Intestinal Inflammation Associated with Celiac Disease Induced by Wheat Gluten. Front. Immunol. 2022, 13, 878186. [Google Scholar] [CrossRef] [PubMed]
- Freitag, T.L.; Podojil, J.R.; Pearson, R.M.; Fokta, F.J.; Sahl, C.; Messing, M.; Andersson, L.C.; Leskinen, K.; Saavalainen, P.; Hoover, L.I.; et al. Gliadin Nanoparticles Induce Immune Tolerance to Gliadin in Mouse Models of Celiac Disease. Gastroenterology 2020, 158, 1667–1681.e12. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.P.; Murray, J.A.; Leffler, D.A.; Getts, D.R.; Bledsoe, A.C.; Smithson, G.; First, M.R.; Morris, A.; Boyne, M.; Elhofy, A.; et al. TAK-101 Nanoparticles Induce Gluten-Specific Tolerance in Celiac Disease: A Randomized, Double-Blind, Placebo-Controlled Study. Gastroenterology 2021, 161, 66–80.e8. [Google Scholar] [CrossRef] [PubMed]
- Attarwala, H.Z.; Suri, K.; Amiji, M.M. Co-Silencing of Tissue Transglutaminase-2 and Interleukin-15 Genes in a Celiac Disease Mimetic Mouse Model Using a Nanoparticle-in-Microsphere Oral System. Mol. Pharm. 2021, 18, 3099–3107. [Google Scholar] [CrossRef]
- Elhag, D.A.; Kumar, M.; Saadaoui, M.; Akobeng, A.K.; Al-Mudahka, F.; Elawad, M.; Al Khodor, S. Inflammatory Bowel Disease Treatments and Predictive Biomarkers of Therapeutic Response. Int. J. Mol. Sci. 2022, 23, 6966. [Google Scholar] [CrossRef] [PubMed]
- Alemany-Cosme, E.; Sáez-González, E.; Moret, I.; Mateos, B.; Iborra, M.; Nos, P.; Sandoval, J.; Beltrán, B. Oxidative Stress in the Pathogenesis of Crohn’s Disease and the Interconnection with Immunological Response, Microbiota, External Environmental Factors, and Epigenetics. Antioxidants 2021, 10, 64. [Google Scholar] [CrossRef] [PubMed]
- Tian, T.; Wang, Z.; Zhang, J. Pathomechanisms of Oxidative Stress in Inflammatory Bowel Disease and Potential Antioxidant Therapies. Oxidative Med. Cell. Longev. 2017, 2017, 4535194. [Google Scholar] [CrossRef] [PubMed]
- Sahoo, D.K.; Heilmann, R.M.; Paital, B.; Patel, A.; Yadav, V.K.; Wong, D.; Jergens, A.E. Oxidative stress, hormones, and effects of natural antioxidants on intestinal inflammation in inflammatory bowel disease. Front. Endocrinol. 2023, 14, 1217165. [Google Scholar] [CrossRef] [PubMed]
- Kellermann, L.; Riis, L.B. A close view on histopathological changes in inflammatory bowel disease, a narrative review. Dig. Med. Res. 2021, 4, 3. [Google Scholar] [CrossRef]
- Ashique, S.; Mishra, N.; Garg, A.; Sibuh, B.Z.; Taneja, P.; Rai, G.; Djearamane, S.; Wong, L.S.; Al-Dayan, N.; Roychoudhury, S.; et al. Recent updates on correlation between reactive oxygen species and synbiotics for effective management of ulcerative colitis. Front. Nutr. 2023, 10, 1126579. [Google Scholar] [CrossRef] [PubMed]
- Guan, G.; Lan, S. Implications of Antioxidant Systems in Inflammatory Bowel Disease. BioMed Res. Int. 2018, 2018, 1290179. [Google Scholar] [CrossRef] [PubMed]
- Miranda, M.R.; Vestuto, V.; Moltedo, O.; Manfra, M.; Campiglia, P.; Pepe, G. The ion channels involved in oxidative stress-related gastrointestinal diseases. Oxygen 2023, 3, 336–365. [Google Scholar] [CrossRef]
- Pérez, S.; Taléns-Visconti, R.; Rius-Pérez, S.; Finamor, I.; Sastre, J. Redox signaling in the gastrointestinal tract. Free. Radic. Biol. Med. 2017, 104, 75–103. [Google Scholar] [CrossRef] [PubMed]
- Rauf, A.; Khalil, A.A.; Awadallah, S.; Khan, S.A.; Abu-Izneid, T.; Kamran, M.; Hemeg, H.A.; Mubarak, M.S.; Khalid, A.; Wilairatana, P. Reactive oxygen species in biological systems: Pathways, associated diseases, and potential inhibitors—A review. Food Sci. Nutr. 2024, 12, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.; Li, Y.; Zamyatnin, A.A., Jr.; Werner, J.; Bazhin, A.V. Reactive oxygen species and colorectal cancer. J. Cell. Physiol. 2018, 233, 5119–5132. [Google Scholar] [CrossRef] [PubMed]
- Pabari, R.M.; Mattu, C.; Partheeban, S.; Almarhoon, A.; Boffito, M.; Ciardelli, G.; Ramtoola, Z. Novel polyurethane-based nanoparticles of infliximab to reduce inflammation in an in-vitro intestinal epithelial barrier model. Int. J. Pharm. 2019, 565, 533–542. [Google Scholar] [CrossRef] [PubMed]
- Rezvani, M.; Manca, M.L.; Muntoni, A.; De Gioannis, G.; Pedraz, J.L.; Gutierrez, G.; Matos, M.; Fadda, A.M.; Manconi, M. From process effluents to intestinal health promotion: Developing biopolymer-whey liposomes loaded with gingerol to heal intestinal wounds and neutralize oxidative stress. Int. J. Pharm. 2022, 613, 121389. [Google Scholar] [CrossRef] [PubMed]
- Manconi, M.; Rezvani, M.; Manca, M.L.; Escribano-Ferrer, E.; Fais, S.; Orrù, G.; Lammers, T.; Asunis, F.; Muntoni, A.; Spiga, D.; et al. Bridging biotechnology and nanomedicine to produce biogreen whey-nanovesicles for intestinal health promotion. Int. J. Pharm. 2023, 633, 122631. [Google Scholar] [CrossRef]
- Vafaei, S.Y.; Abdolghaffari, A.H.; Mahjub, R.; Eslami, S.M.; Esmaeili, M.; Abdollahi, M.; Atyabi, F.; Dinarvand, R. Budesonide-Loaded Hyaluronic Acid Nanoparticles for Targeted Delivery to the Inflamed Intestinal Mucosa in a Rodent Model of Colitis. BioMed Res. Int. 2022, 2022, 7776092. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.-L.; Gan, Y.-J.; Iqbal, S.; Jiang, W.; Yuan, Y.-Y.; Wang, J. Delivery of tacrolimus with cationic lipid-assisted nanoparticles for ulcerative colitis therapy. Biomater. Sci. 2018, 6, 1916–1922. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Dai, M.; He, M.; Bu, W.; Cao, L.; Jing, J.; Cao, R.; Zhang, H.; Men, K. Treatment of Ulcerative Colitis by Cationic Liposome Delivered NLRP3 siRNA. Int. J. Nanomed. 2023, 18, 4647–4662. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Liu, C.; Peng, Q.; Wu, Y.; Wen, Y.; Zheng, R.; Yan, Q.; Ma, J. Macrophage-Biomimetic Nanoparticles Ameliorate Ulcerative Colitis through Reducing Inflammatory Factors Expression. J. Innate Immun. 2022, 14, 380–392. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Fu, J.; Dogan, B.; Scherl, E.J.; Simpson, K.W. 5-Aminosalicylic acid downregulates the growth and virulence of Escherichia coli associated with IBD and colorectal cancer, and upregulates host anti-inflammatory activity. J. Antibiot. 2018, 71, 950–961. [Google Scholar] [CrossRef] [PubMed]
- Yuri, T.; Kono, Y.; Fujita, T. Transport characteristics of 5-aminosalicylic acid into colonic epithelium: Involvement of sodium-coupled monocarboxylate transporter SMCT1-mediated transport system. Biochem. Biophys. Res. Commun. 2020, 524, 561–566. [Google Scholar] [CrossRef] [PubMed]
- Tang, H.; Xiang, D.; Wang, F.; Mao, J.; Tan, X.; Wang, Y. 5-ASA-loaded SiO2 nanoparticles-a novel drug delivery system targeting therapy on ulcerative colitis in mice. Mol. Med. Rep. 2017, 15, 1117–1122. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, H.; Wang, B.; Cai, C.; Yang, X.; Chai, Z.; Feng, W. ZnO nanoparticles act as supportive therapy in DSS-induced ulcerative colitis in mice by maintaining gut homeostasis and activating Nrf2 signaling. Sci. Rep. 2017, 7, 43126. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-H.; Liu, J.-M.; Li, C.-Y.; Wang, D.; Lv, H.; Lv, S.-W.; Zhao, N.; Ma, H.; Wang, S. Bacterial Biofilm Bioinspired Persistent Luminescence Nanoparticles with Gut-Oriented Drug Delivery for Colorectal Cancer Imaging and Chemotherapy. ACS Appl. Mater. Interfaces 2019, 11, 36409–36419. [Google Scholar] [CrossRef] [PubMed]
- Smith, T.; Affram, K.; Nottingham, E.L.; Han, B.; Amissah, F.; Krishnan, S.; Trevino, J.; Agyare, E. Application of smart solid lipid nanoparticles to enhance the efficacy of 5-fluorouracil in the treatment of colorectal cancer. Sci. Rep. 2020, 10, 16989. [Google Scholar] [CrossRef] [PubMed]
- Cho, S.; Yoon, Y.-R. Understanding the pharmacokinetics of prodrug and metabolite. Transl. Clin. Pharmacol. 2018, 26, 1–5. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Xie, A.; Li, H.; Zou, X.; Zhang, Q. A self-assembled, ROS-responsive Janus-prodrug for targeted therapy of inflammatory bowel disease. J. Control. Release 2019, 316, 66–78. [Google Scholar] [CrossRef]
- Tan, C.; Fan, H.; Ding, J.; Han, C.; Guan, Y.; Zhu, F.; Wu, H.; Liu, Y.; Zhang, W.; Hou, X.; et al. ROS-responsive nanoparticles for oral delivery of luteolin and targeted therapy of ulcerative colitis by regulating pathological microenvironment. Mater. Today Bio 2022, 14, 100246. [Google Scholar] [CrossRef]
- Ostadhossein, F.; Moitra, P.; Altun, E.; Dutta, D.; Sar, D.; Tripathi, I.; Hsiao, S.-H.; Kravchuk, V.; Nie, S.; Pan, D. Function-adaptive clustered nanoparticles reverse Streptococcus mutans dental biofilm and maintain microbiota balance. Commun. Biol. 2021, 4, 846. [Google Scholar] [CrossRef] [PubMed]
- Enwereuzo, O.O.; Akakuru, O.C.; Uwaoma, R.C.; Elemike, E.E.; Akakuru, O.U. Self-assembled membrane-polymer nanoparticles of top-notch tissue tolerance for the treatment of gastroesophageal reflux disease. J. Nanostruct. Chem. 2021, 11, 707–719. [Google Scholar] [CrossRef]
- Deng, L.; Zhu, X.; Yu, Z.; Li, Y.; Qin, L.; Liu, Z.; Feng, L.; Guo, R.; Zheng, Y. Novel T7-Modified pH-Responsive Targeted Nanosystem for Co-Delivery of Docetaxel and Curcumin in the Treatment of Esophageal Cancer. Int. J. Nanomed. 2020, 15, 7745–7762. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Song, Z.; Deng, G.; Jiang, K.; Wang, H.; Zhang, X.; Han, H. Gastric Acid Powered Nanomotors Release Antibiotics for In Vivo Treatment of Helicobacter pylori Infection. Small 2021, 17, 2006877. [Google Scholar] [CrossRef]
- Zhang, W.; Zhou, Y.; Fan, Y.; Cao, R.; Xu, Y.; Weng, Z.; Ye, J.; He, C.; Zhu, Y.; Wang, X. Metal–Organic-Framework-Based Hydrogen-Release Platform for Multieffective Helicobacter Pylori Targeting Therapy and Intestinal Flora Protective Capabilities. Adv. Mater. 2022, 34, 2105738. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Yao, M.; Zou, J.; Ding, W.; Sun, M.; Zhuge, Y.; Gao, F. pH-Sensitive Nanoparticles for Colonic Delivery Anti-miR-301a in Mouse Models of Inflammatory Bowel Diseases. Nanomaterials 2023, 13, 2797. [Google Scholar] [CrossRef] [PubMed]
- Mahami, S.; Salehi, M.; Mehrabi, M.; Vahedi, H.; Hassani, M.S.; Bitaraf, F.S.; Omri, A. pH-sensitive HPMCP-chitosan nanoparticles containing 5-aminosalicylic acid and berberine for oral colon delivery in a rat model of ulcerative colitis. Int. J. Biol. Macromol. 2023, 244, 125332. [Google Scholar] [CrossRef] [PubMed]
- Tian, B.; Liu, S.; Wu, S.; Lu, W.; Wang, D.; Jin, L.; Hu, B.; Li, K.; Wang, Z.; Quan, Z.A. pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids Surf. B Biointerfaces. 2017, 154, 287–296. [Google Scholar] [CrossRef] [PubMed]
- Medina, T.P.; Gerle, M.; Humbert, J.; Chu, H.; Köpnick, A.-L.; Barkmann, R.; Garamus, V.M.; Sanz, B.; Purcz, N.; Will, O.; et al. Lipid-Iron Nanoparticle with a Cell Stress Release Mechanism Combined with a Local Alternating Magnetic Field Enables Site-Activated Drug Release. Cancers 2020, 12, 3767. [Google Scholar] [CrossRef] [PubMed]
- Choi, H.S.; Jo, Y.K.; Ahn, G.; Joo, K.I.; Kim, D.; Cha, H.J. Magnetically Guidable Proteinaceous Adhesive Microbots for Targeted Locoregional Therapeutics Delivery in the Highly Dynamic Environment of the Esophagus. Adv. Funct. Mater. 2021, 31, 2104602. [Google Scholar] [CrossRef]
- Jiang, Z.; Xiao, W.; Fu, Q. Stimuli responsive nanosonosensitizers for sonodynamic therapy. J. Control. Release 2023, 361, 547–567. [Google Scholar] [CrossRef] [PubMed]
- Liu, T.; Chai, S.; Li, M.; Chen, X.; Xie, Y.; Zhao, Z.; Xie, J.; Yu, Y.; Gao, F.; Zhu, F.; et al. A nanoparticle-based sonodynamic therapy reduces Helicobacter pylori infection in mouse without disrupting gut microbiota. Nat. Commun. 2024, 15, 844. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.-Y.; Cheng, K.; Xuan, Y.; Yang, X.-Q.; An, J.; Hu, Y.-G.; Liu, B.; Zhao, Y.-D. A pH/ultrasonic dual-response step-targeting enterosoluble granule for combined sonodynamic-chemotherapy guided via gastrointestinal tract imaging in orthotopic colorectal cancer. Nanoscale 2021, 13, 4278–4294. [Google Scholar] [CrossRef] [PubMed]
- Ren, Y.; Yan, Y.; Qi, H. Photothermal conversion and transfer in photothermal therapy: From macroscale to nanoscale. Adv. Colloid Interface Sci. 2022, 308, 102753. [Google Scholar] [CrossRef]
- Correia, J.H.; Rodrigues, J.A.; Pimenta, S.; Dong, T.; Yang, Z. Photodynamic Therapy Review: Principles, Photosensitizers, Applications, and Future Directions. Pharmaceutics 2021, 13, 1332. [Google Scholar] [CrossRef]
- Wang, H.; Wang, D.; Huangfu, H.; Lv, H.; Qin, Q.; Ren, S.; Zhang, Y.; Wang, L.; Zhou, Y. Branched AuAg nanoparticles coated by metal–phenolic networks for treating bacteria-induced periodontitis via photothermal antibacterial and immunotherapy. Mater. Des. 2022, 224, 111401. [Google Scholar] [CrossRef]
- Moawad, M.; Youssef, A.M.; Elsherbeni, S.A.E.; Fahmy, A.M.; El-Ghannam, G. Silver Nanoparticles Enhanced Doxorubicin treatment for Improving their Efficacy against Esophageal Cancer Cells. Egypt. J. Chem. 2024, 67, 505–512. [Google Scholar] [CrossRef]
- Zhi, X.; Liu, Y.; Lin, L.; Yang, M.; Zhang, L.; Zhang, L.; Liu, Y.; Alfranca, G.; Ma, L.; Zhang, Q.; et al. Oral pH sensitive GNS@ab nanoprobes for targeted therapy of Helicobacter pylori without disturbance gut microbiome. Nanomed. Nanotechnol. Biol. Med. 2019, 20, 102019. [Google Scholar] [CrossRef] [PubMed]
- Xiao, J.; Cheng, L.; Fang, T.; Zhang, Y.; Zhou, J.; Cheng, R.; Tang, W.; Zhong, X.; Lu, Y.; Deng, L.; et al. Nanoparticle-Embedded Electrospun Fiber–Covered Stent to Assist Intraluminal Photodynamic Treatment of Oesophageal Cancer. Small 2019, 15, e1904979. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Xue, X.; Luo, Y.; Lin, T.-Y.; Zhang, H.; Lac, D.; Xiao, K.; He, Y.; Jia, B.; Lam, K.S.; et al. Sub-100 nm, long tumor retention SN-38-loaded photonic micelles for tri-modal cancer therapy. J. Control. Release 2017, 261, 297–306. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.; Chen, Y.; He, X.; Yu, Y.; Han, R.; Li, Y.; Yang, C.; Hu, D.; Qian, Z. Polymeric Nanoparticles with ROS-Responsive Prodrug and Platinum Nanozyme for Enhanced Chemophotodynamic Therapy of Colon Cancer. Adv. Sci. 2020, 7, 2001853. [Google Scholar] [CrossRef] [PubMed]
- Shi, S.; Zhang, L.; Zhu, M.; Wan, G.; Li, C.; Zhang, J.; Wang, Y.; Wang, Y. Reactive Oxygen Species-Responsive Nanoparticles Based on PEGlated Prodrug for Targeted Treatment of Oral Tongue Squamous Cell Carcinoma by Combining Photodynamic Therapy and Chemotherapy. ACS Appl. Mater. Interfaces 2018, 10, 29260–29272. [Google Scholar] [CrossRef] [PubMed]
- Alipour, M.; Habibivand, E.; Sekhavati, S.; Aghazadeh, Z.; Ranjkesh, M.; Ramezani, S.; Aghazadeh, M.; Ghorbani, M. Evaluation of therapeutic effects of nanofibrous mat containing mycophenolate mofetil on oral lichen planus: In vitro and clinical trial study. Biomater. Investig. Dent. 2023, 10, 2283177. [Google Scholar] [CrossRef] [PubMed]
- Azizi, A.; Dadras, O.G.; Jafari, M.; Ghadim, N.M.; Lawaf, S.; Sadri, D. Efficacy of 0.1% triamcinolone with nanoliposomal carrier formulation in orabase for oral lichen planus patients: A clinical trial. Eur. J. Integr. Med. 2016, 8, 275–280. [Google Scholar] [CrossRef]
- Kadam, P.; Mahale, S.; Sonar, P.; Chaudhari, D.; Shimpi, S.; Kathurwar, A. Efficacy of silver nanoparticles in chronic periodontitis patients: A clinico-microbiological study. Iberoam. J. Med. 2020, 2, 142–147. [Google Scholar] [CrossRef]
- Dong, Z.; Lin, Y.; Xu, S.; Chang, L.; Zhao, X.; Mei, X.; Gao, X. NIR-triggered tea polyphenol-modified gold nanoparticles-loaded hydrogel treats periodontitis by inhibiting bacteria and inducing bone regeneration. Mater. Des. 2023, 225, 111487. [Google Scholar] [CrossRef]
- De Freitas, L.M.; Calixto, G.M.F.; Chorilli, M.; Giusti, J.S.M.; Bagnato, V.S.; Soukos, N.S.; Amiji, M.M.; Fontana, C.R. Polymeric Nanoparticle-Based Photodynamic Therapy for Chronic Periodontitis In Vivo. Int. J. Mol. Sci. 2016, 17, 769. [Google Scholar] [CrossRef] [PubMed]
- Zorraquín-Peña, I.; Cueva, C.; de Llano, D.G.; Bartolomé, B.; Moreno-Arribas, M.V. Glutathione-Stabilized Silver Nanoparticles: Antibacterial Activity against Periodontal Bacteria, and Cytotoxicity and Inflammatory Response in Oral Cells. Biomedicines 2020, 8, 375. [Google Scholar] [CrossRef] [PubMed]
- Zuo, J.; Huo, M.; Wang, L.; Li, J.; Chen, Y.; Xiong, P. Photonic hyperthermal and sonodynamic nanotherapy targeting oral squamous cell carcinoma. J. Mater. Chem. B 2020, 8, 9084–9093. [Google Scholar] [CrossRef] [PubMed]
- Farhadnejad, H.; Mortazavi, S.A.; Jamshidfar, S.; Rakhshani, A.; Motasadizadeh, H.; Fatahi, Y.; Mahdieh, A.; Darbasizadeh, B. Montmorillonite-Famotidine/Chitosan Bio-nanocomposite Hydrogels as a Mucoadhesive/Gastroretentive Drug Delivery System. Iran. J. Pharm. Res. 2022, 21, e127035. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Hwang, G.; Kim, T.H.; Kwon, S.J.; Kim, J.U.; Koh, K.; Park, B.; Hong, H.; Yu, K.J.; Chae, H.; et al. On-Demand Drug Release from Gold Nanoturf for a Thermo- and Chemotherapeutic Esophageal Stent. ACS Nano 2018, 12, 6756–6766. [Google Scholar] [CrossRef] [PubMed]
- Fu, Q.; Wang, J.; Liu, H. Chemo-immune synergetic therapy of esophageal carcinoma: Trastuzumab modified, cisplatin and fluorouracil co-delivered lipid–polymer hybrid nanoparticles. Drug Deliv. 2020, 27, 1535–1543. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.-J.; Huang, C.-H.; Yang, J.-C.; Wang, C.-H.; Shieh, M.-J. Residence Time-Extended Nanoparticles by Magnetic Field Improve the Eradication Efficiency of Helicobacter pylori. ACS Appl. Mater. Interfaces 2020, 12, 54316–54327. [Google Scholar] [CrossRef] [PubMed]
- Jian, Y.; Zhao, M.; Cao, J.; Fan, T.; Bu, W.; Yang, Y.; Li, W.; Zhang, W.; Qiao, Y.; Wang, J.; et al. A Gastric Cancer Peptide GXI-Modified Nano-Lipid Carriers Encapsulating Paclitaxel: Design and Evaluation of Anti-Tumor Activity. Drug Des. Dev. Ther. 2020, 14, 2355–2370. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Tan, J.; Zhou, L.; Shan, X.; Liu, J.; Ma, Y. Synthesis and Application of AS1411-Functionalized Gold Nanoparticles for Targeted Therapy of Gastric Cancer. ACS Omega 2020, 5, 31227–31233. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wang, X.; Han, M.K.; Collins, J.F.; Merlin, D. Oral administration of ginger-derived nanolipids loaded with siRNA as a novel approach for efficient siRNA drug delivery to treat ulcerative colitis. Nanomedicine 2017, 12, 1927–1943. [Google Scholar] [CrossRef]
- Zeeshan, M.; Ali, H.; Khan, S.; Mukhtar, M.; Khan, M.I.; Arshad, M. Glycyrrhizic acid-loaded pH-sensitive Poly-(Lactic-Co-Glycolic Acid) Nanoparticles for the Amelioration of Inflammatory Bowel Disease. Nanomedicine 2019, 14, 1945–1969. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhao, M.; Cao, N.; Qin, W.; Zhao, M.; Wu, J.; Lin, D. Construction of a tumor microenvironment pH-responsive cleavable PEGylated hyaluronic acid nano-drug delivery system for colorectal cancer treatment. Biomater. Sci. 2020, 8, 1885–1896. [Google Scholar] [CrossRef] [PubMed]
- Iranpour, S.; Bahrami, A.R.; Nekooei, S.; Saljooghi, A.S.; Matin, M.M. Improving anti-cancer drug delivery performance of magnetic mesoporous silica nanocarriers for more efficient colorectal cancer therapy. J. Nanobiotechnol. 2021, 19, 314. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Lu, H.; Liang, S.; Xu, S. Dual Stable Nanomedicines Prepared by Cisplatin-Crosslinked Camptothecin Prodrug Micelles for Effective Drug Delivery. ACS Appl. Mater. Interfaces 2019, 11, 20649–20659. [Google Scholar] [CrossRef] [PubMed]
- Krasteva, N.; Georgieva, M. Promising Therapeutic Strategies for Colorectal Cancer Treatment Based on Nanomaterials. Pharmaceutics 2022, 14, 1213. [Google Scholar] [CrossRef] [PubMed]
- Lama, S.; Merlin-Zhang, O.; Yang, C. In Vitro and In Vivo Models for Evaluating the Oral Toxicity of Nanomedicines. Nanomaterials 2020, 10, 2177. [Google Scholar] [CrossRef] [PubMed]
- Ghebretatios, M.; Schaly, S.; Prakash, S. Nanoparticles in the Food Industry and Their Impact on Human Gut Microbiome and Diseases. Int. J. Mol. Sci. 2021, 22, 1942. [Google Scholar] [CrossRef] [PubMed]
- Hashem, M.M.; Abo-El-Sooud, K.; Abd-Elhakim, Y.M.; Badr, Y.A.-H.; El-Metwally, A.E.; Bahy-El-Dien, A. The long-term oral exposure to titanium dioxide impaired immune functions and triggered cytotoxic and genotoxic impacts in rats. J. Trace Elements Med. Biol. 2020, 60, 126473. [Google Scholar] [CrossRef]
- Yao, Y.; Zhang, T.; Tang, M. The DNA damage potential of quantum dots: Toxicity, mechanism and challenge. Environ. Pollut. 2023, 317, 120676. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.; Jeong, M.; Park, J.; Jung, H.; Lee, H. Immunogenicity of lipid nanoparticles and its impact on the efficacy of mRNA vaccines and therapeutics. Exp. Mol. Med. 2023, 55, 2085–2096. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Tang, M. Toxic effects and involved molecular pathways of nanoparticles on cells and subcellular organelles. J. Appl. Toxicol. 2020, 40, 16–36. [Google Scholar] [CrossRef] [PubMed]
- Nasnodkar, S.; Cinar, B.; Ness, S. Artificial Intelligence in Toxicology and Pharmacology. J. Eng. Res. Rep. 2023, 25, 192–206. [Google Scholar] [CrossRef]
GI Diseases | Nanomedicines | Stimulus | Study Design/Experimental Cells/Animal Model | Results | Ref. |
---|---|---|---|---|---|
Oral lichen planus | Gliadin/Ethylcellulose-based nanofibrous mats loaded with mycophenolate mofetil, ZnO NPs and aloe vera | - | In vitro study: Inflamed human gingival fibroblasts, S. aureus and E. coli Clinical study: RCT on patients suffering from OLP lesions | Nanofibrous mats showed antimicrobial activity and anti-inflammatory effects with a decrease in TNF-α, IL-6 and ROS of stimulated human gingival fibroblasts. The symptoms of patients were significantly improved with the mats compared to the treatment with commercial ointment. | [128] |
0.1% triamcinolone acetonide with nanoliposomal carriers in Orabase | - | Clinical study: RCT on patients suffering from OLP lesions with treatment duration of 1 month (3 times a day) | Nanoformulation effectively reduced the lesion size and pain intensity with 33.3% fully resolved lesions after 4 weeks. | [129] | |
Periodontitis | 0.02% Ag NPs gel | - | Clinical study: RCT study on patients with chronic periodontitis for 3 months | The effectiveness of silver NPs gel with SRP was the same as sub-gingival delivery of tetracycline gel in chronic periodontitis patients, proposing a non-toxic therapeutic strategy with no increase in bacterial resistance, no side effects and no need for complicated armamentarium with good acceptance by the patients. Differences in microbiological (colony forming units) and clinical parameters (Plaque Index, Gingival Index, Probing Pocket Depth and Clinical Attachment Level were statistically significant from baseline (just before gel placement) to 3 months of gel application. | [130] |
Epigallocatechin gallate-modified Au NPs-loaded hydrogel | NIR (PTT) | In vitro study: S. aureus, E. coli, human umbilical vein endothelial cells and bone marrow mesenchymal stem cells In vivo study: Periodontitis rat model | Application of the NIR light spectrum effectively regulated the release of epigallocatechin gallate, increased the antibacterial effect, stimulated angiogenesis and boosted bone and periodontal tissue regeneration. This strategy caused a preventive effect on E. coli and S. aureus and its biofilm. The combination of NIR light irradiation and these nanomedicines inhibited the dental plaque biofilm and repaired the alveolar bone in the rat periodontitis model. | [131] | |
Methylene blue-loaded PLGA NPs | NIR (PDT) | In vitro study: Human dental plaque microorganisms (in planktonic and biofilm phase) In vivo study: Clinical pilot study on patients with chronic periodontitis | NP-mediated PDT showed a killing effect on the dental plaque bacteria and biofilms. The gingival bleeding index was more improved in the patients treated by NPs and ultrasonic scaling + SRP + PDT than in the cases just treated by ultrasonic scaling + SRP. | [132] | |
Glutathione-stabilized Ag NPs | - | In vitro study: Human gingival fibroblast cells (HGF-1) and oral pathogens (Porphyromonas gingivalis, Fusobacterium nucleatum, and Streptococcus mutans | NPs showed an inhibitory effect on the growth of periodontal pathogens, increased the generation of cytokines and activated the inflammatory response in the oral epithelial model. | [133] | |
Oral squamous cell carcinoma | AE105-decorated dendritic mesoporous silica NPs encapsulating Rose Bengal and ultrasmall Cu2xS NPs | NIR(PTT)/US(SDT)/pH | In vitro study: OSC-19 cells In vivo study: OSCC xenografts mouse model | NPs targeted urokinase plasminogen activator receptors overexpressed in the tumor cell membrane and accumulated in the tumor site, and payloads were released by slowly biodegrading dendritic mesoporous silica NPs in the tumor acidic microenvironment and providing synergistic PTT/SDT nanotherapeutics and eradicated tumor cells/xenografts. | [134] |
GERD and peptic ulcer | Montmorillonite famotidine/chitosan bio-nanocomposite hydrogels | pH | In vitro study: Sheep gastric mucosal tissue | The optimized bio-nanocomposite hydrogel formulation exerted proper mucoadhesion, long-lasting gastric retention time and sustainable release of the famotidine with potential therapeutic effect on GERD and peptic ulcers. | [135] |
Esophageal cancer | DOX/Au-coated nanoturf esophageal stent | NIR (PTT) | In vitro study: Human Caucasian esophageal carcinoma cell In vivo study: Esophageal cancer mouse model | Nanoturfs provided a long-lasting DOX reservoir, sustained release and reproducible hyperthermia induced by localized surface plasmon resonances under NIR irradiation, promoting on-demand drug release (chemo-PTT). An in vivo application of thermo- and chemo-stents induced significant esophageal tumor apoptosis by the synergistic effect of the released drug and hyperthermia in response to NIR irradiation. | [136] |
Trastuzumab-decorated cisplatin and fluoropyrimidine co-encapsulated lipid–polymer hybrid NPs | - | In vitro study: Human esophageal cancer cell line In vivo study: Esophageal adenocarcinoma-bearing xenograft mouse model | Trastuzumab-decorated NPs showed higher uptake by the esophageal cancer cell lines and more cytotoxicity than the non-decorated NPs. Cisplatin and fluoropyrimidine dual-loaded NPs prevented the growth of tumor cells more effectively than the single drug-loaded NPs in vivo. The cisplatin to fluoropyrimidine ratio (w/w) of 1/1 in the preparation of NPs led to the best synergistic effect. This nanosystem caused a sustained drug release with no systemic toxicity or side effects. | [137] | |
Gastric H. pylori infection | Superparamagnetic iron oxide NPs and amoxicillin co-loaded chitosan–poly (acrylic acid) particles | Magnetic field | In vitro study: Human gastric adenocarcinoma cell line, mammalian mouse fibroblast cell line, H. pylori strains (127–4, 125–54 and 125–57) In vivo study: Pathogen-free BALB/c mice, H. pylori-infected mouse model | The combination of these nanomedicines with the magnetic field caused an increase in mucopenetration and the residence time of the drug in the stomach for more effective H. pylori eradication therapy. Mucoadhesive properties, antibacterial and anti-biofilm activities and the sustained release of amoxicillin from the NPs were reported in this study. | [138] |
Gastric cancer | GX1-modified nanostructured lipid carriers loaded with paclitaxel | - | In vitro study: Human umbilical vein endothelial cells (HUVEC cells), human gastric carcinoma cells (MKN45 cells), immortalized fetal gastric mucosal cells (GES-1) In vivo study: Tumor-bearing nude mouse model | GX1-modified nanocarriers exhibited higher uptake rates in CoHUVEC cells and a greater inhibitory effect on these cells compared to the unmodified nanocarriers and free paclitaxel. The minimum cytotoxicity effect of GX1-modified nanocarriers was observed in GES-1 cells. A potent antitumor effect with lower side effects in the mouse model was achieved by using GX1-modified nanocarriers. | [139] |
AuNPs modified with the AS1411 aptamer and hairpin DNA loaded with DOX | pH/NIR | In vitro study: AGS cells, L929 cells | The nanosystem targeted AGS cells through the interaction of AS1411 with nucleolin on the AGS cytomembrane and more selectively entered the AGS cells than the L929 cells. These NPs showed dual responsiveness for laser irradiation and pH (pH 5), indicating more drug release after the internalization of NPs into the lysosomes or tumor intracellular environment. NIR laser irradiation enhanced the anticancer activity of the NPs on AGS cells. | [140] | |
IBD | Ginger-derived lipid NPs loaded with siRNA-CD98 | - | In vitro study: Caco-2BBE cells, RAW 264.7 cells, colon-26 cells In vivo study: FVB mice | NPs possessed good biocompatibility and highly efficient cellular uptake, specifically targeting the colon and decreasing the expression of the colonic CD98 gene to treat ulcerative colitis. | [141] |
Glycyrrhizic acid-loaded Eudragit S100/PLGA NPs | pH | In vivo study: Dextran sodium sulfate-induced colitis mouse model | These NPs possessed anti-inflammatory and antioxidant activity, diminished the colitis progression, improved the retention time of the drug and its accumulation in the inflamed area and alleviated the symptoms of the disease. | [142] | |
Colorectal cancer | PEGylated hyaluronic acid–DOX NPs | pH | In vitro study: CT26 cells In vivo study: CT26 tumor-bearing mouse model | NPs increased the circulation time of DOX by 12.5 times and showed strong antitumor activity in the tumor-bearing mice model. They targeted CD44-positive cancer cells and accumulated in the tumor. The PEG shell of the NPs was dissolved in the acidic environment of the tumor and promoted the cellular endocytosis of NPs. The interaction of released DOX with the nucleus inhibited the growth and proliferation of CT26 cells. | [143] |
DOX-loaded magnetic mesoporous silica core-shell nanocarrier modified with gold gatekeepers, PEG and EpCAM aptamer | pH | In vitro study: Human colon cancer cell line (HT-29), Chinese hamster ovary (CHO) cell line In vivo study: C57BL/6 mice bearing HT-29 tumors | NPs specifically targeted cancer cells and released the drug at the acidic pH as a result of the functionality of aptamer and gold gatekeepers on their surfaces. EpCAM-positive HT-29 cells showed greater uptake of the NPs than EpCAM-negative CHO cells. These nanomedicines prevented tumor growth with a decrease in off-target toxicity in mouse models. | [144] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezvani, M. Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review. BioChem 2024, 4, 189-216. https://doi.org/10.3390/biochem4030010
Rezvani M. Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review. BioChem. 2024; 4(3):189-216. https://doi.org/10.3390/biochem4030010
Chicago/Turabian StyleRezvani, Maryam. 2024. "Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review" BioChem 4, no. 3: 189-216. https://doi.org/10.3390/biochem4030010
APA StyleRezvani, M. (2024). Oxidative Stress-Induced Gastrointestinal Diseases: Biology and Nanomedicines—A Review. BioChem, 4(3), 189-216. https://doi.org/10.3390/biochem4030010