Re-Evaluating Trust and Privacy Concerns When Purchasing a Mobile App: Re-Calibrating for the Increasing Role of Artificial Intelligence
Abstract
:1. Introduction
2. Theoretical Foundation
Hypotheses Development
3. Research Methodology
3.1. Research Model
3.2. Data Collection
3.3. Data Analysis Method
4. Analysis and Results
4.1. Measurement Model
4.2. Structural Model and Hypotheses Testing
5. Discussion
5.1. Theoretical Implications
5.2. Managerial Implications
6. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
FT | IBT | IU | PF | PI | PT | SA | SN | TA | TB | TG | TH | TI | TS | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
FT | 0.936 | |||||||||||||
IBT | 0.164 | 0.637 | ||||||||||||
IU | 0.743 | 0.002 | 0.972 | |||||||||||
PF | 0.391 | 0.006 | 0.303 | 0.876 | ||||||||||
PI | 0.316 | 0.052 | 0.255 | 0.785 | 0.943 | |||||||||
PT | 0.914 | 0.13 | 0.714 | 0.362 | 0.323 | 0.901 | ||||||||
SA | 0.17 | 0.276 | 0.249 | 0.35 | 0.334 | 0.095 | 0.893 | |||||||
SN | 0.076 | 0.832 | 0.053 | 0.116 | 0.095 | 0.043 | 0.346 | 0.834 | ||||||
TA | 0.172 | 0.45 | 0.139 | 0.19 | 0.174 | 0.211 | 0.258 | 0.36 | 0.713 | |||||
TB | 0.663 | 0.181 | 0.709 | 0.19 | 0.145 | 0.717 | 0.024 | 0.205 | 0.274 | 0.668 | ||||
TG | 0.27 | 0.246 | 0.402 | 0.033 | 0.076 | 0.311 | 0.197 | 0.266 | 0.59 | 0.486 | 0.764 | |||
TH | 0.728 | 0.075 | 0.766 | 0.441 | 0.375 | 0.777 | 0.116 | 0.019 | 0.06 | 0.83 | 0.283 | 0.931 | ||
TI | 0.234 | 0.19 | 0.142 | 0.046 | 0.011 | 0.213 | 0.323 | 0.126 | 0.445 | 0.111 | 0.373 | 0.19 | 0.834 | |
TS | 0.769 | 0.013 | 0.745 | 0.397 | 0.338 | 0.792 | 0.168 | 0.016 | 0.002 | 0.666 | 0.294 | 0.755 | 0.189 | 0.953 |
References
- Trenz, M.; Veit, D.J.; Tan, C.-W. Disentangling the Impact of Omnichannel Integration on Consumer Behavior in Integrated Sales Channels. MIS Q. 2020, 44, 1207–1258. [Google Scholar] [CrossRef]
- Liao, C.; To, P.-L.; Wong, Y.-C.; Palvia, P.; Kakhki, M.D. The Impact of Presentation Mode and Product Type on Online Impulse Buying Decisions. J. Electron. Commer. Res. 2016, 17, 153–168. [Google Scholar]
- Preibusch, S.; Peetz, T.; Acar, G.; Berendt, B. Shopping for Privacy: Purchase Details Leaked to PayPal. Electron. Commer. Res. Appl. 2016, 15, 52–64. [Google Scholar] [CrossRef]
- Teo, T.S.H.; Liu, J. Consumer Trust in E-Commerce in the United States, Singapore and China. Omega 2007, 35, 22–38. [Google Scholar] [CrossRef]
- Venkatesh, V.; Thong, J.Y.L.; Xu, X. Unified Theory of Acceptance and Use of Technology: A Synthesis and the Road Ahead. J. Assoc. Inf. Syst. 2016, 17, 328–376. [Google Scholar] [CrossRef]
- Hengstler, M.; Enkel, E.; Duelli, S. Applied Artificial Intelligence and Trust—The Case of Autonomous Vehicles and Medical Assistance Devices. Technol. Forecast. Soc. Change 2016, 105, 105–120. [Google Scholar] [CrossRef]
- Müller, R.; Andersen, E.S.; Kvalnes, Ø.; Shao, J.; Sankaran, S.; Turner, J.R.; Biesenthal, C.; Walker, D.; Gudergan, S. The Interrelationship of Governance, Trust, and Ethics in Temporary Organizations. Proj. Manag. J. 2013, 44, 26–44. [Google Scholar] [CrossRef]
- Zarifis, A.; Efthymiou, L.; Cheng, X.; Demetriou, S. Consumer Trust in Digital Currency Enabled Transactions. Lect. Notes Bus. Inf. Process. 2014, 183, 307–317. [Google Scholar] [CrossRef]
- Barth, S.; de Jong, M.D.T.; Junger, M.; Hartel, P.H.; Roppelt, J.C. Putting the Privacy Paradox to the Test: Online Privacy and Security Behaviors among Users with Technical Knowledge, Privacy Awareness, and Financial Resources. Telemat. Inform. 2019, 41, 55–69. [Google Scholar] [CrossRef]
- Canhoto, A.I.; Keegan, B.J.; Ryzhikh, M. Snakes and Ladders: Unpacking the Personalisation-Privacy Paradox in the Context of AI-Enabled Personalisation in the Physical Retail Environment. Inf. Syst. Front. 2023. [Google Scholar] [CrossRef]
- McKnight, H.; Carter, M.; Thatcher, J.B.; Clay, P. Trust in a Specific Technology: An Investigation of Its Components and Measures. ACM Trans. Manag. Inf. Syst. 2011, 2, 1–25. [Google Scholar] [CrossRef]
- Molina-Coronado, B.; Mori, U.; Mendiburu, A.; Miguel-Alonso, J. Towards a fair comparison and realistic evaluation framework of android malware detectors based on static analysis and machine learning. Comput. Secur. 2023, 124, 102996. [Google Scholar] [CrossRef]
- Zhu, H.; Wei, H.; Wang, L.; Xu, Z.; Sheng, V.S. An effective end-to-end android malware detection method. Expert Syst. Appl. 2023, 218, 119593. [Google Scholar] [CrossRef]
- Rodrigues, V.F.; Policarpo, L.M.; da Silveira, D.E.; da Rosa Righi, R.; da Costa, C.A.; Barbosa, J.L.V.; Antunes, R.S.; Scorsatto, R.; Arcot, T. Fraud detection and prevention in e-commerce: A systematic literature review. Electron. Commer. Res. Appl. 2022, 56, 101207. [Google Scholar] [CrossRef]
- Kim, K.K.; Prabhakar, B. Initial Trust and the Adoption of B2C E-Commerce. ACM SIGMIS Database 2004, 35, 50–64. [Google Scholar] [CrossRef]
- Bansal, G.; Zahedi, F.M.; Gefen, D. The Impact of Personal Dispositions on Information Sensitivity, Privacy Concern and Trust in Disclosing Health Information Online. Decis. Support Syst. 2010, 49, 138–150. [Google Scholar] [CrossRef]
- Vance, A.; Elie-Dit-Cosaque, C.; Straub, D.W. Examining Trust in Information Technology Artifacts: The Effects of System Quality and Culture. J. Manag. Inf. Syst. 2008, 24, 73–100. [Google Scholar] [CrossRef]
- Zhang, Z.; Gu, C. Effects of Consumer Social Interaction on Trust in Online Group-Buying Contexts: An Empirical Study in China. J. Electron. Commer. Res. 2015, 16, 1–21. [Google Scholar]
- Lankton, N.; McKnight, H.; Tripp, J. Technology, Humanness, and Trust: Rethinking Trust in Technology. J. Assoc. Inf. Technol. 2015, 16, 880–918. [Google Scholar] [CrossRef]
- Degutis, M.; Urbonavičius, S.; Hollebeek, L.D.; Anselmsson, J. Consumers’ willingness to disclose their personal data in e-commerce: A reciprocity-based social exchange perspective. J. Retail. Consum. Serv. 2023, 74, 103385. [Google Scholar] [CrossRef]
- Pang, H.; Ruan, Y. Can information and communication overload influence smartphone app users’ social network exhaustion, privacy invasion and discontinuance intention? A cognition-affect-conation approach. J. Retail. Consum. Serv. 2023, 73, 103378. [Google Scholar] [CrossRef]
- McKnight, H.; Choudhury, V.; Kacmar, C. Developing and Validating Trust Measures for E-Commerce: An Integrative Typology. Inf. Syst. Res. 2002, 13, 334–359. [Google Scholar] [CrossRef]
- Sha, W. Types of Structural Assurance and Their Relationships with Trusting Intentions in Business-to-Consumer e-Commerce. Electron. Mark. 2009, 19, 43–54. [Google Scholar] [CrossRef]
- Bambauer-Sachse, S.; Mangold, S. Do Consumers Still Believe What Is Said in Online Product Reviews? A Persuasion Knowledge Approach. J. Retail. Consum. Serv. 2013, 20, 373–381. [Google Scholar] [CrossRef]
- Sridhar, S.; Srinivasan, R. Social Influence Effects in Online Product Ratings. J. Mark. 2012, 76, 70–88. [Google Scholar] [CrossRef]
- Hu, N.; Koh, N.S.; Reddy, S.K. Ratings Lead You to the Product, Reviews Help You Clinch It? The Mediating Role of Online Review Sentiments on Product Sales. Decis. Support Syst. 2014, 57, 42–53. [Google Scholar] [CrossRef]
- Metzger, M.J. Effects of Site, Vendor, and Consumer Characteristics on Web Site Trust and Disclosure. Commun. Res. 2006, 33, 155–179. [Google Scholar] [CrossRef]
- Einwiller, S. When Reputation Engenders Trust: An Empirical Investigation in Business-to-Consumer Electronic Commerce. Electron. Mark. 2003, 13, 196–209. [Google Scholar] [CrossRef]
- Yoo, J.; Kim, M. The Effects of Online Product Presentation on Consumer Responses: A Mental Imagery Perspective. J. Bus. Res. 2014, 67, 2464–2472. [Google Scholar] [CrossRef]
- Li, M.; Wei, K.-K.; Tayi, G.K.; Tan, C.-H. The Moderating Role of Information Load on Online Product Presentation. Inf. Manag. 2016, 53, 467–480. [Google Scholar] [CrossRef]
- Wang, T.; Oh, L.-B.; Wang, K.; Yuan, Y. User Adoption and Purchasing Intention after Free Trial: An Empirical Study of Mobile Newspapers. Inf. Syst. E-Bus. Manag. 2013, 11, 189–210. [Google Scholar] [CrossRef]
- Tang, Q.C. Free Trial or No Free Trial: Optimal Software Product Design with Network Externalities. Am. Conf. Inf. Syst. 2003, 459, 3417–3419. [Google Scholar] [CrossRef]
- Wagner, T.M.; Benlian, A.; Hess, T. Converting Freemium Customers from Free to Premium: The Role of the Perceived Premium Fit in the Case of Music as a Service. Electron. Mark. 2014, 24, 259–268. [Google Scholar] [CrossRef]
- Cheng, H.K.; Liu, Y. Optimal Software Free Trial Strategy: The Impact of Network Externalities and Consumer Uncertainty. Inf. Syst. Res. 2012, 23, 488–504. [Google Scholar] [CrossRef]
- Bocereg, A.; Gosa, R.; Endre-Laszlo, A.; Baciu, A.; Stahie, S. Real-Time Behavior-Based Detection on Android Reveals Dozens of Malicious Apps on Google Play Store. Available online: https://www.bitdefender.com/blog/labs/real-time-behavior-based-detection-on-android-reveal-dozens-of-malicious-apps-on-google-play-store/ (accessed on 13 September 2023).
- Pavlou, P.A. Integrating Trust in Electronic Commerce with the Technology Acceptance Model: Model Development and Validation. AMCIS 2001, 159, 816–822. [Google Scholar]
- Bardhan, I.; Chen, H.; Karahanna, E. Connecting Systems, Data, and People: A Multidisciplinary Research Roadmap for Chronic Disease Management. MIS Q. 2020, 44, 185–200. [Google Scholar]
- Kreuter, F.; Haas, G.C.; Keusch, F.; Bähr, S.; Trappmann, M. Collecting Survey and Smartphone Sensor Data with an App: Opportunities and Challenges Around Privacy and Informed Consent. Soc. Sci. Comput. Rev. 2020, 38, 533–549. [Google Scholar] [CrossRef]
- Bähr, S.; Haas, G.C.; Keusch, F.; Kreuter, F.; Trappmann, M. Missing Data and Other Measurement Quality Issues in Mobile Geolocation Sensor Data. Soc. Sci. Comput. Rev. 2020, 40, 212–235. [Google Scholar] [CrossRef]
- Fishbein, M.; Ajzen, I. Predicting and Changing Behavior: The Reasoned Action Approach; Psychology Press: New York, NY, USA, 2010. [Google Scholar]
- Venkatesh, V.; Davis, F.D. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Manag. Sci. 2000, 46, 186–204. [Google Scholar] [CrossRef]
- Dinev, T.; Xu, H.; Smith, J.H.; Hart, P. Information privacy and correlates: An empirical attempt to bridge and distinguish privacy-related concepts. Eur. J. Inf. Syst. 2013, 22, 295–316. [Google Scholar] [CrossRef]
- Yun, H.; Lee, G.; Kim, D.J. A chronological review of empirical research on personal information privacy concerns: An analysis of contexts and research constructs. Inf. Manag. 2019, 56, 570–601. [Google Scholar] [CrossRef]
- Venkatesh, V.; Morris, M.G.; Davis, G.B.; Davis, F.D. User Acceptance of Information Technology: Toward a unified view. MIS Q. 2003, 27, 425–478. [Google Scholar] [CrossRef]
- Hair, J.; Hult, T.; Ringle, C.; Sarstedt, M. A Primer on Partial Least Squares Structural Equation Modeling (PLS-SEM), 3rd ed.; Sage Publishing: Thousand Oaks, CA, USA, 2021. [Google Scholar]
- Johnson, R.B.; Onwuegbuzie, A. Mixed Methods Research: A Research Paradigm Whose Time Has Come. Educ. Res. 2004, 33, 14–26. [Google Scholar] [CrossRef]
- Gefen, D.; Rigdon, E.E.; Straub, D. An Update and Extension to SEM Guidelines for Administrative and Social Science Research. MIS Q. 2011, 35, iii-A7. [Google Scholar] [CrossRef]
- Chin, W.W. The Partial Least Squares Approach to Structural Equation Modelling. In Modern Methods for Business Research; Marcoulides, G.A., Ed.; Lawrence Erlbaum Associates: Mahwah, NJ, USA, 1998; pp. 295–336. [Google Scholar]
- Hamid, S.; Azhar, M. Behavioral Intention to Order Food and Beverage Items Using E-Commerce during COVID-19: An Integration of Theory of Planned Behavior (TPB) with Trust. Br. Food J. 2023, 125, 112–131. [Google Scholar] [CrossRef]
- Wu, Y.; Huang, H. Influence of Perceived Value on Consumers’ Continuous Purchase Intention in Live-Streaming E-Commerce—Mediated by Consumer Trust. Sustainability 2023, 15, 4432. [Google Scholar] [CrossRef]
- Sun, Y.; Huang, Y.; Fang, X.; Yan, F. The Purchase Intention for Agricultural Products of Regional Public Brands: Examining the Influences of Awareness, Perceived Quality, and Brand Trust. Math. Probl. Eng. 2022, 2022, 4991059. [Google Scholar] [CrossRef]
- Patnasingham, P.; Gefen, D.; Pavlou, P.A. The Role of Facilitating Conditions and Institutional Trust in Electronic Markets. J. Electron. Commer. Organ. 2005, 14, 69–82. [Google Scholar] [CrossRef]
- Oliveira, T.; Alhinho, M.; Rita, P.; Dhillon, G. Modelling and Testing Consumer Trust Dimensions in E-Commerce. Comput. Hum. Behav. 2017, 71, 153–164. [Google Scholar] [CrossRef]
- Saeed, S. A Customer-Centric View of E-Commerce Security and Privacy. Appl. Sci. 2023, 13, 1020. [Google Scholar] [CrossRef]
- Saffarizadeh, K.; Boodraj, M.; Alashoor, T.M. Conversational Assistants: Investigating Privacy Concerns, Trust, and Self-Disclosure. In Proceedings of the International Conference on Information Systems (ICIS), Seoul, Republic of Korea, 10–13 December 2017. [Google Scholar]
- Zhu, P.; Hu, J.; Li, X.; Zhu, Q. Using Blockchain Technology to Enhance the Traceability of Original Achievements. IEEE Trans. Eng. Manag. 2021, 70, 1693–1707. [Google Scholar] [CrossRef]
Dimensions of Trust | Related Literature |
---|---|
Each person’s psychology | McKnight et al. 2011 [11], Kim & Prabhakar, 2004 [15], Bansal et al. 2010 [16] |
Institutions that reduce the risks in using a technology | Vance et al. 2008 [17], Zhang et al. 2015 [18] |
The dimensions of the technology that influence trust | Lankton et al. 2015 [19], McKnight et al. 2011 [11] |
Personal information privacy concern when using a specific technology | Degutis et al. 2023 [20]; Pang & Ruan, 2023 [21] |
Demographic Profile | Frequency | Percentage |
---|---|---|
Gender | ||
Male | 176 | 55.5 |
Female | 141 | 44.5 |
Age | ||
<18 | 0 | 0 |
18–30 | 144 | 45.4 |
31–40 | 115 | 36.3 |
41–50 | 33 | 10.4 |
51–60 | 14 | 4.4 |
>60 | 11 | 3.5 |
Scale/Item | Loadings | CR | AVE |
---|---|---|---|
Trusting stance | 0.899 | 0.908 | |
TS01 | 0.953 | ||
TS02 | 0.948 | ||
Faith in general technology | 0.955 | 0.876 | |
FT01 | 0.946 | ||
FT02 | 0.932 | ||
FT03 | 0.929 | ||
Perceived sensitivity of personal info. | 0.942 | 0.890 | |
PI01 | 0.951 | ||
PI02 | 0.935 | ||
Structural assurance | 0.887 | 0.798 | |
SA01 | 0.926 | ||
SA02 | 0.877 | ||
Situational normality | 0.873 | 0.696 | |
SN01 | 0.842 | ||
SN02 | 0.822 | ||
SN03 | 0.838 | ||
Trust in vendor | 0.872 | 0.696 | |
TI01 | 0.930 | ||
TI02 | 0.784 | ||
TI03 | 0.780 | ||
Trust in app functionality | 0.753 | 0.508 | |
Video information, VI01 | 0.619 | ||
Video information, VI02 | 0.664 | ||
Free trial version, FTV01 | 0.836 | ||
Trust in genuineness of app. | 0.807 | 0.584 | |
App platform prom., AP03 | 0.793 | ||
App platform prom., AP04 | 0.823 | ||
Clear and acc. descr., CA01 | 0.668 | ||
Technology humanness | 0.951 | 0.866 | |
TH01 | 0.948 | ||
TH02 | 0.911 | ||
TH03 | 0.933 | ||
Trust in personal data use | 0.942 | 0.768 | |
PH01 | 0.931 | ||
PH02 | 0.817 | ||
PF03 | 0.877 |
Path | Effect Size |
---|---|
H1: Trusting stance positively affects propensity to trust, (TS-PT) | 0.222 |
H2: Faith in general technology positively affects propensity to trust, (FT-PT) | 0.741 |
H3: Propensity to trust positively affects institution-based trust, (PT-IBT) | 0.096 |
H4: Structural assurance in the internet positively affects institution-based trust, (SA-IBT) | 0.016 |
H5: Situational normality positively affects trusting beliefs on institution-based trust, (SN-IBT) | 0.822 |
H6: Institution-based trust positively affects trusting beliefs in a mob. app, (IBT-TB) | 0.044 |
H7: Trust in the vendor positively affects trusting belief in a mob. app, (TI-TB) | 0.098 |
H8: Trust in the reliability of the mob. app functionality positively affects trusting belief in a mob. app, (TIF-TB) | 0.073 |
H9: Trust in the genuineness of the app positively affects trusting belief in a mob. app, (TG-TB) | 0.246 |
H10: A technology that is perceived to have a higher humanness positively affects trusting belief in a mob. app, (TH-TB) | 0.807 |
H11: A high perceived sensitivity of personal information negatively affects trust in personal data use, (PI-PH) | 0.832 |
H12: Trust in the responsible use of personal data positively affects trusting belief in a mob. app, (PH-TBMA) | 0.162 |
H13: Trusting belief in a mob. app. positively affects intention to use a mob. app, (TBMA-IU) | 0.709 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zarifis, A.; Fu, S. Re-Evaluating Trust and Privacy Concerns When Purchasing a Mobile App: Re-Calibrating for the Increasing Role of Artificial Intelligence. Digital 2023, 3, 286-299. https://doi.org/10.3390/digital3040018
Zarifis A, Fu S. Re-Evaluating Trust and Privacy Concerns When Purchasing a Mobile App: Re-Calibrating for the Increasing Role of Artificial Intelligence. Digital. 2023; 3(4):286-299. https://doi.org/10.3390/digital3040018
Chicago/Turabian StyleZarifis, Alex, and Shixuan Fu. 2023. "Re-Evaluating Trust and Privacy Concerns When Purchasing a Mobile App: Re-Calibrating for the Increasing Role of Artificial Intelligence" Digital 3, no. 4: 286-299. https://doi.org/10.3390/digital3040018
APA StyleZarifis, A., & Fu, S. (2023). Re-Evaluating Trust and Privacy Concerns When Purchasing a Mobile App: Re-Calibrating for the Increasing Role of Artificial Intelligence. Digital, 3(4), 286-299. https://doi.org/10.3390/digital3040018