A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada
Abstract
:1. Introduction
2. Geological Setting
3. Methods
3.1. Lithology and Stratigraphy
3.2. Storage Capacity of Salt Cavern
3.3. The Volume of Compressed Gas
4. Subdivision of Salt Unit in Lambton County
4.1. Basic Geological Settings in Lambton County
4.2. The Subunits of the B Unit
4.3. The Distribution of Three Subunits
4.4. The Potential of Salt Rocks for Energy Storage
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kabir, M.; Habiba, U.E.; Khan, W.; Shah, A.; Rahim, S.; Rios-Escalante, P.R.D.L.; Farooqi, Z.-U.-R.; Ali, L.; Shafiq, M. Climate Change Due to Increasing Concentration of Carbon Dioxide and Its Impacts on Environment in 21st Century: A Mini Review. J. King Saud Univ. Sci. 2023, 35, 102693. [Google Scholar] [CrossRef]
- Elberry, A.M.; Thakur, J.; Veysey, J. Seasonal Hydrogen Storage for Sustainable Renewable Energy Integration in the Electricity Sector: A Case Study of Finland. J. Energy Storage 2021, 44, 103474. [Google Scholar] [CrossRef]
- Mitali, J.; Dhinakaran, S.; Mohamad, A.A. Energy Storage Systems: A Review. Energy Storage Sav. 2022, 1, 166–216. [Google Scholar] [CrossRef]
- Cheng, W.; Cheng, Y.F. A Techno-Economic Study of the Strategy for Hydrogen Transport by Pipelines in Canada. J. Pipeline Sci. Eng. 2023, 3, 100112. [Google Scholar] [CrossRef]
- Karaca, A.E.; Dincer, I. An Updated Overview of Canada’s Hydrogen Related Research and Development Activities. Int. J. Hydrogen Energy 2021, 46, 34515–34525. [Google Scholar] [CrossRef]
- Yuan, S.; Zhu, Y.; Zhao, L.; Liang, S.; Huang, M.; Li, Z. Key Role of Plastic Strain Gradient in Hydrogen Transport in Polycrystalline Materials. Int. J. Plast. 2022, 158, 103409. [Google Scholar] [CrossRef]
- Yu, Y.; Chen, Y.; Jiang, J.; Li, Y. Low-Carbon Scheduling of Integrated Hydrogen Transport and Energy System. Int. J. Hydrogen Energy 2024, 52, 655–666. [Google Scholar] [CrossRef]
- Sambo, C. A Review on Worldwide Underground Hydrogen Storage Operating and Potential Fields. Int. J. Hydrogen Energy 2022, 47, 22840–22880. [Google Scholar] [CrossRef]
- Petrillo, A.; Felice, F.D.; Jannelli, E.; Minutillo, M. Chapter 5—Life Cycle Cost Analysis of Hydrogen Energy Technologies. In Hydrogen Economy; Scipioni, A., Manzardo, A., Ren, J., Eds.; Academic Press: New York, NY, USA, 2017; pp. 121–138. [Google Scholar]
- Bünger, U.; Michalski, J.; Crotogino, F.; Kruck, O. 7—Large-Scale Underground Storage of Hydrogen for the Grid Integration of Renewable Energy and Other Applications. In Compendium of Hydrogen Energy; Ball, M., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Oxford, UK, 2016; pp. 133–163. [Google Scholar]
- Panfilov, M. 4—Underground and Pipeline Hydrogen Storage. In Compendium of Hydrogen Energy; Gupta, R.B., Basile, A., Veziroğlu, T.N., Eds.; Woodhead Publishing Series in Energy; Woodhead Publishing: Oxford, UK, 2016; pp. 91–115. [Google Scholar]
- Koholé, Y.W.; Wankouo Ngouleu, C.A.; Fohagui, F.C.V.; Tchuen, G. A Comprehensive Comparison of Battery, Hydrogen, Pumped-Hydro and Thermal Energy Storage Technologies for Hybrid Renewable Energy Systems Integration. J. Energy Storage 2024, 93, 112299. [Google Scholar] [CrossRef]
- Gasanzade, F.; Pfeiffer, W.T.; Witte, F.; Tuschy, I.; Bauer, S. Subsurface Renewable Energy Storage Capacity for Hydrogen, Methane and Compressed Air—A Performance Assessment Study from the North German Basin. Renew. Sustain. Energy Rev. 2021, 149, 111422. [Google Scholar] [CrossRef]
- Thomas, K.M. Hydrogen Adsorption and Storage on Porous Materials. Catal. Today 2007, 120, 389–398. [Google Scholar] [CrossRef]
- Hirscher, M.; Yartys, V.A.; Baricco, M.; Bellosta von Colbe, J.; Blanchard, D.; Bowman, R.C.; Broom, D.P.; Buckley, C.E.; Chang, F.; Chen, P.; et al. Materials for Hydrogen-Based Energy Storage—Past, Recent Progress and Future Outlook. J. Alloys Compd. 2020, 827, 153548. [Google Scholar] [CrossRef]
- Wallace, R.L. Utility-Scale Subsurface Hydrogen Storage: UK Perspectives and Technology. Int. J. Hydrogen Energy 2021, 46, 25137–25159. [Google Scholar] [CrossRef]
- Michalski, J.; Bünger, U.; Crotogino, F.; Donadei, S.; Schneider, G.-S.; Pregger, T.; Cao, K.-K.; Heide, D. Hydrogen Generation by Electrolysis and Storage in Salt Caverns: Potentials, Economics and Systems Aspects with Regard to the German Energy Transition. Int. J. Hydrogen Energy 2017, 42, 13427–13443. [Google Scholar] [CrossRef]
- Kabuth, A.; Dahmke, A.; Beyer, C.; Bilke, L.; Dethlefsen, F.; Dietrich, P.; Duttmann, R.; Ebert, M.; Feeser, V.; Görke, U.-J.; et al. Energy Storage in the Geological Subsurface: Dimensioning, Risk Analysis and Spatial Planning: The ANGUS+ Project. Environ. Earth Sci. 2017, 76, 23. [Google Scholar] [CrossRef]
- Bartel, S.; Janssen, G. Underground Spatial Planning—Perspectives and Current Research in Germany. Tunn. Undergr. Space Technol. 2016, 55, 112–117. [Google Scholar] [CrossRef]
- Bennion, D.B.; Thomas, F.B.; Ma, T.; Imer, D. Detailed Protocol for the Screening and Selection of Gas Storage Reservoirs. In All Days; SPE: Calgary, AB, Canada, 2000; p. SPE-59738-MS. [Google Scholar]
- Lankof, L.; Urbańczyk, K.; Tarkowski, R. Assessment of the Potential for Underground Hydrogen Storage in Salt Domes. Renew. Sustain. Energy Rev. 2022, 160, 112309. [Google Scholar] [CrossRef]
- Lankof, L. Assessment of the Potential for Underground Hydrogen Storage in Bedded Salt Formation. Int. J. Hydrogen Energy 2020, 45, 19479–19492. [Google Scholar] [CrossRef]
- Lemieux, A.; Shkarupin, A.; Sharp, K. Geologic Feasibility of Underground Hydrogen Storage in Canada. Int. J. Hydrogen Energy 2020, 45, 32243–32259. [Google Scholar] [CrossRef]
- IESO. Imports and Exports. Available online: https://www.ieso.ca/Power-Data/Supply-Overview/Imports-and-Exports (accessed on 9 July 2024).
- Ohta, S. Molecular Hydrogen as a Preventive and Therapeutic Medical Gas: Initiation, Development and Potential of Hydrogen Medicine. Pharmacol. Ther. 2014, 144, 1–11. [Google Scholar] [CrossRef]
- Habib, M.A.; Abdulrahman, G.A.Q.; Alquaity, A.B.S.; Qasem, N.A.A. Hydrogen Combustion, Production, and Applications: A Review. Alex. Eng. J. 2024, 100, 182–207. [Google Scholar] [CrossRef]
- Liu, H.; Almansoori, A.; Fowler, M.; Elkamel, A. Analysis of Ontario’s Hydrogen Economy Demands from Hydrogen Fuel Cell Vehicles. Int. J. Hydrogen Energy 2012, 37, 8905–8916. [Google Scholar] [CrossRef]
- Lemieux, A.; Sharp, K.; Shkarupin, A. Preliminary Assessment of Underground Hydrogen Storage Sites in Ontario, Canada. Int. J. Hydrogen Energy 2019, 44, 15193–15204. [Google Scholar] [CrossRef]
- Armstrong, D.K.; Carter, T.R. An Updated Guide to the Subsurface Paleozoic Stratigraphy of Southern Ontario; Open File Report 6191; Ontario Geological Survey: Toronto, ON, Canada, 2006. [Google Scholar]
- Hui, S.; Yin, S.; Pang, X.; Chen, Z.; Shi, K. Potential of Salt Caverns for Hydrogen Storage in Southern Ontario, Canada. Mining 2023, 3, 399–408. [Google Scholar] [CrossRef]
- Al-Yaseri, A.; Al-Mukainah, H.; Yekeen, N.; Al-Qasim, A.S. Experimental Investigation of Hydrogen-Carbonate Reactions via Computerized Tomography: Implications for Underground Hydrogen Storage. Int. J. Hydrogen Energy 2023, 48, 3583–3592. [Google Scholar] [CrossRef]
- Minougou, J.D.; Gholami, R.; Andersen, P. Underground Hydrogen Storage in Caverns: Challenges of Impure Salt Structures. Earth-Sci. Rev. 2023, 247, 104599. [Google Scholar] [CrossRef]
- Mansour, A.; Adeyilola, A.; Gentzis, T.; Carvajal-Ortiz, H.; Zakharova, N. Depositional Setting and Organic Matter Characterization of the Upper Devonian Antrim Shale, Michigan Basin: Implications for Hydrocarbon Potential. Mar. Pet. Geol. 2022, 140, 105683. [Google Scholar] [CrossRef]
- Rine, M.J.; McLaughlin, P.I.; Bancroft, A.M.; Harrison, W.B.; Kuglitsch, J.; Caruthers, A.H.; Ramezani, J.; Kaczmarek, S.E.; Emsbo, P. Linked Silurian Carbon Cycle Perturbations, Bursts of Pinnacle Reef Growth, Extreme Sea-Level Oscillations, and Evaporite Deposition (Michigan Basin, USA). Palaeogeogr. Palaeoclimatol. Palaeoecol. 2020, 554, 109806. [Google Scholar] [CrossRef]
- Al-Aasm, I.S.; Crowe, R. Fluid Compartmentalization and Dolomitization in the Cambrian and Ordovician Successions of the Huron Domain, Michigan Basin. Mar. Pet. Geol. 2018, 92, 160–178. [Google Scholar] [CrossRef]
- Beauheim, R.L.; Roberts, R.M.; Avis, J.D. Hydraulic Testing of Low-Permeability Silurian and Ordovician Strata, Michigan Basin, Southwestern Ontario. J. Hydrol. 2014, 509, 163–178. [Google Scholar] [CrossRef]
- Mesolella, K.J.; Robinson, J.D.; McCormick, L.M.; Ormiston, A.R. Cyclic Deposition of Silurian Carbonates and Evaporites in Michigan Basin. AAPG Bull. 1974, 58, 34–62. [Google Scholar]
- Sonnenfeld, P.; Al-Aasm, I. The Salina Evaporites in the Michigan Basin. In Early Sedimentary Evolution of the Michigan Basin; Catacosinos, P.A., Daniels, P.A., Jr., Eds.; Geological Society of America: Boulder, CO, USA, 1991; Volume 256. [Google Scholar]
- Hemenway, M.A.; Kaczmarek, S.E. High-Resolution Chemostratigraphy in Carbonate Mudstones: Salina A-1 Carbonate (Silurian), Michigan Basin, U.S.A. Mar. Pet. Geol. 2021, 126, 104918. [Google Scholar] [CrossRef]
- Kansas Geological Survey. Geological Log Analysia. Available online: https://www.kgs.ku.edu/Publications/Bulletins/LA/07_evaporites.html (accessed on 9 July 2024).
- Coianiz, L.; Bialik, O.M.; Ben-Avraham, Z.; Lazar, M. Late Quaternary Lacustrine Deposits of the Dead Sea Basin: High Resolution Sequence Stratigraphy from Downhole Logging Data. Quat. Sci. Rev. 2019, 210, 175–189. [Google Scholar] [CrossRef]
- Williams, J.D.O.; Williamson, J.P.; Parkes, D.; Evans, D.J.; Kirk, K.L.; Sunny, N.; Hough, E.; Vosper, H.; Akhurst, M.C. Does the United Kingdom Have Sufficient Geological Storage Capacity to Support a Hydrogen Economy? Estimating the Salt Cavern Storage Potential of Bedded Halite Formations. J. Energy Storage 2022, 53, 105109. [Google Scholar] [CrossRef]
- Parkes, D.; Evans, D.J.; Williamson, P.; Williams, J.D.O. Estimating Available Salt Volume for Potential CAES Development: A Case Study Using the Northwich Halite of the Cheshire Basin. J. Energy Storage 2018, 18, 50–61. [Google Scholar] [CrossRef]
- Evans, D.; Parkes, D.; Dooner, M.; Williamson, P.; Williams, J.; Busby, J.; He, W.; Wang, J.; Garvey, S. Salt Cavern Exergy Storage Capacity Potential of UK Massively Bedded Halites, Using Compressed Air Energy Storage (CAES). Appl. Sci. 2021, 11, 4728. [Google Scholar] [CrossRef]
- Caglayan, D.G.; Weber, N.; Heinrichs, H.U.; Linßen, J.; Robinius, M.; Kukla, P.A.; Stolten, D. Technical Potential of Salt Caverns for Hydrogen Storage in Europe. Int. J. Hydrogen Energy 2020, 45, 6793–6805. [Google Scholar] [CrossRef]
- Ruiz Maraggi, L.M.; Moscardelli, L.G. Modeling Hydrogen Storage Capacities, Injection and Withdrawal Cycles in Salt Caverns: Introducing the GeoH2 Salt Storage and Cycling App. Int. J. Hydrogen Energy 2023, 48, 26921–26936. [Google Scholar] [CrossRef]
- Liu, W.; Duan, X.; Li, Q.; Wan, J.; Zhang, X.; Fang, J.; Jiang, D.; Chen, J. Analysis of Pressure Interval/Injection and Production Frequency on Stability of Large-Scale Supercritical CO2 Storage in Salt Caverns. J. Clean. Prod. 2023, 433, 139731. [Google Scholar] [CrossRef]
- Liu, W.; Dong, Y.; Zhang, Z.; Li, L.; Jiang, D.; Fan, J.; Chen, J.; Zhang, X.; Wan, J.; Li, Z. Optimization of Operating Pressure of Hydrogen Storage Salt Cavern in Bedded Salt Rock with Multi-Interlayers. Int. J. Hydrogen Energy 2024, 58, 974–986. [Google Scholar] [CrossRef]
- Cyran, K.; Kowalski, M. Shape Modelling and Volume Optimisation of Salt Caverns for Energy Storage. Appl. Sci. 2021, 11, 423. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, X.; Fan, J.; Zuo, J.; Zhang, Z.; Chen, J. Study on the Mechanical Properties of Man-Made Salt Rock Samples with Impurities. J. Nat. Gas Sci. Eng. 2020, 84, 103683. [Google Scholar] [CrossRef]
- Liang, W.; Yang, C.; Zhao, Y.; Dusseault, M.B.; Liu, J. Experimental Investigation of Mechanical Properties of Bedded Salt Rock. Int. J. Rock Mech. Min. Sci. 2007, 44, 400–411. [Google Scholar] [CrossRef]
- Li, Y.; Liu, W.; Yang, C.; Daemen, J.J.K. Experimental Investigation of Mechanical Behavior of Bedded Rock Salt Containing Inclined Interlayer. Int. J. Rock Mech. Min. Sci. 2014, 69, 39–49. [Google Scholar] [CrossRef]
- Fatah, A.; Al-Yaseri, A.; Theravalappil, R.; Radwan, O.A.; Amao, A.; Al-Qasim, A.S. Geochemical Reactions and Pore Structure Analysis of Anhydrite/Gypsum/Halite Bearing Reservoirs Relevant to Subsurface Hydrogen Storage in Salt Caverns. Fuel 2024, 371, 131857. [Google Scholar] [CrossRef]
- Lyu, C.; Liu, J.; Ren, Y.; Liang, C.; Zeng, Y. Mechanical Characteristics and Permeability Evolution of Salt Rock under Thermal-Hydro-Mechanical (THM) Coupling Condition. Eng. Geol. 2022, 302, 106633. [Google Scholar] [CrossRef]
- Han, Y.; Ma, H.; Yang, C.; Li, H.; Yang, J. The Mechanical Behavior of Rock Salt under Different Confining Pressure Unloading Rates during Compressed Air Energy Storage (CAES). J. Pet. Sci. Eng. 2021, 196, 107676. [Google Scholar] [CrossRef]
- Howell, P.D.; Van Der Pluijm, B.A. Structural Sequences and Styles of Subsidence in the Michigan Basin. Geol. Soc. Am. Bull. 1999, 111, 974–991. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, L.; Yin, S.; Wang, Z. A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada. Mining 2024, 4, 530-545. https://doi.org/10.3390/mining4030030
Li L, Yin S, Wang Z. A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada. Mining. 2024; 4(3):530-545. https://doi.org/10.3390/mining4030030
Chicago/Turabian StyleLi, Ling, Shunde Yin, and Zhizhang Wang. 2024. "A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada" Mining 4, no. 3: 530-545. https://doi.org/10.3390/mining4030030
APA StyleLi, L., Yin, S., & Wang, Z. (2024). A Preliminary Assessment of Underground Space Resources for Hydrogen Storage in Salt Caverns in Lambton County, Southern Ontario, Canada. Mining, 4(3), 530-545. https://doi.org/10.3390/mining4030030