Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes
Abstract
:1. Introduction
2. Thanatobiology
2.1. DNA
2.2. RNA
2.3. Proteins
3. Thanatomicrobiome
3.1. Analysis of the Thanatomicrobiome
3.2. Postmortem Changes in Microbial Communities
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zapico, S.C.; Menendez, S.T.; Nunez, P. Cell death proteins as markers of early postmortem interval. Cellular and molecular life sciences. CMLS 2014, 71, 2957–2962. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Madea, B. Time since death extrapolated from vitreous potassium. Forensic Sci. Int. 1993, 59, 80–82. [Google Scholar] [CrossRef]
- Madea, B.; Henssge, C.; Honig, W.; Gerbracht, A. References for determining the time of death by potassium in vitreous humor. Forensic Sci. Int. 1989, 40, 231–243. [Google Scholar] [CrossRef]
- Madea, B.; Herrmann, N.; Henbge, C. Precision of estimating the time since death by vitreous potassium—Comparison of two different equations. Forensic Sci. Int. 1990, 46, 277–284. [Google Scholar] [CrossRef]
- Madea, B.; Kaferstein, H.; Hermann, N.; Sticht, G. Hypoxanthine in vitreous humor and cerebrospinal fluid—A marker of postmortem interval and prolonged (vital) hypoxia? Remarks also on hypoxanthine in SIDS. Forensic Sci. Int. 1994, 65, 19–31. [Google Scholar] [CrossRef]
- Madea, B.; Kreuser, C.; Banaschak, S. Postmortem biochemical examination of synovial fluid—A preliminary study. Forensic Sci. Int. 2001, 118, 29–35. [Google Scholar] [CrossRef]
- Benecke, M. A brief history of forensic entomology. Forensic Sci. Int. 2001, 120, 2–14. [Google Scholar] [CrossRef]
- Amendt, J.; Krettek, R.; Zehner, R. Forensic entomology. Die Nat. 2004, 91, 51–65. [Google Scholar] [CrossRef]
- Henssge, C.; Madea, B. Determination of the time since death. I. Body heat loss and classical signs of death. An integrated approach. Acta Med. Leg. Soc. 1988, 38, 71–89. [Google Scholar]
- Wescott, D. Recent Advances in Forensic Anthropology: Decomposition research. Forensic Sci. Res. 2018, 3, 327–342. [Google Scholar] [CrossRef] [Green Version]
- Madea, B.; Henssge, C. Determination of the time since death. III. Potassium in vitreous humour. Rise of precision by use of an “inner standard”. Acta Med. Leg. Soc. 1988, 38, 109–114. [Google Scholar]
- Megyesi, M.S.; Nawrocki, S.P.; Haskell, N.H. Using accumulated degree-days to estimate the postmortem interval from decomposed human remains. J. Forensic Sci. 2005, 50, 618–626. [Google Scholar] [CrossRef] [PubMed]
- Amendt, J.; Richards, C.S.; Campobasso, C.P.; Zehner, R.; Hall, M.J.R. Forensic entomology: Applications and limitations. Forensic Sci. Med. Pathol. 2011, 7, 379–392. [Google Scholar] [CrossRef] [PubMed]
- Madea, B. Is there recent progress in the estimation of the postmortem interval by means of thanatochemistry? Forensic Sci. Int. 2005, 151, 139–149. [Google Scholar] [CrossRef]
- Vass, A.A.; Barshick, S.A.; Sega, G.; Caton, J.; Skeen, J.T.; Love, J.C.; Synstelien, J.A. Decomposition chemistry of human remains: A new methodology for determining the postmortem interval. J. Forensic Sci. 2002, 47, 542–553. [Google Scholar] [CrossRef]
- Vass, A.A.; Smith, R.R.; Thompson, C.V.; Burnett, M.N.; Wolf, D.A.; Synstelien, J.A.; Dulgerian, N.; Eckenrode, B.A. Decompositional odor analysis database. J. Forensic Sci. 2004, 49, 760–769. [Google Scholar] [CrossRef]
- Vass, A.A. Death is in the air: Confirmation of decomposition without a corpse. Forensic Sci. Int. 2019, 301, 149–159. [Google Scholar] [CrossRef]
- Perrault, K.A.; Stefanuto, P.H.; Dubois, L.M.; Varlet, V.; Grabherr, S.; Focant, J.F. A minimally-invasive method for profiling volatile organic compounds within postmortem internal gas reservoirs. Int. J. Leg. Med. 2017, 131, 1271–1281. [Google Scholar] [CrossRef]
- Vass, A.A. The elusive universal post-mortem interval formula. Forensic Sci. Int. 2011, 204, 34–40. [Google Scholar] [CrossRef]
- Vass, A.A.; Smith, R.R.; Thompson, C.V.; Burnett, M.N.; Dulgerian, N.; Eckenrode, B.A. Odor analysis of decomposing buried human remains. J. Forensic Sci. 2008, 53, 384–391. [Google Scholar] [CrossRef]
- Vass, A.A. Odor mortis. Forensic Sci. Int. 2012, 222, 234–241. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vass, A.A.; Bass, W.M.; Wolt, J.D.; Foss, J.E.; Ammons, J.T. Time since death determinations of human cadavers using soil solution. J. Forensic Sci. 1992, 37, 1236–1253. [Google Scholar] [CrossRef] [PubMed]
- Cernosek, T.; Eckert, K.E.; Carter, D.O.; Perrault, K.A. Volatile organic compound profiling from Postmortem Microbes using Gas Chromatography-Mass Spectrometry. J. Forensic Sci. 2020, 65, 134–143. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Javan, G.T.; Can, I.; Finley, S.J.; Soni, S. The apoptotic thanatotranscriptome associated with the liver of cadavers. Forensic Sci. Med. Pathol. 2015, 11, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Javan, G.T.; Kwon, I.; Finley, S.J.; Lee, Y. Progression of thanatophagy in cadaver brain and heart tissues. Biochem. Biophys. Rep. 2016, 5, 152–159. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Procopio, N.; Williams, A.; Chamberlain, A.T.; Buckley, M. Forensic proteomics for the evaluation of the post-mortem decay in bones. J. Proteom. 2018, 177, 21–30. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Human Microbiome Project, C. Structure, function and diversity of the healthy human microbiome. Nature 2012, 486, 207–214. [Google Scholar] [CrossRef] [Green Version]
- Javan, G.T.; Finley, S.J.; Abidin, Z.; Mulle, J.G. The Thanatomicrobiome: A Missing Piece of the Microbial Puzzle of Death. Front. Microbiol. 2016, 7, 225. [Google Scholar] [CrossRef] [Green Version]
- Cina, S.J. Flow cytometric evaluation of DNA degradation: A predictor of postmortem interval? Am. J. Forensic Med. Pathol. 1994, 15, 300–302. [Google Scholar] [CrossRef]
- Di Nunno, N.R.; Costantinides, F.; Bernasconi, P.; Bottin, C.; Melato, M. Is flow cytometric evaluation of DNA degradation a reliable method to investigate the early postmortem period? Am. J. Forensic Med. Pathol. 1998, 19, 50–53. [Google Scholar] [CrossRef]
- Di Nunno, N.; Costantinides, F.; Cina, S.J.; Rizzardi, C.; Di Nunno, C.; Melato, M. What is the best sample for determining the early postmortem period by on-the-spot flow cytometry analysis? Am. J. Forensic Med. Pathol. 2002, 23, 173–180. [Google Scholar] [CrossRef] [PubMed]
- Williams, T.; Soni, S.; White, J.; Can, G.; Javan, G.T. Evaluation of DNA degradation using flow cytometry: Promising tool for postmortem interval determination. Am. J. Forensic Med. Pathol. 2015, 36, 104–110. [Google Scholar] [CrossRef] [PubMed]
- Shukla, R.K. Forensic application of comet assay: An emerging technique. Forensic Sci. Res. 2017, 2, 180–184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, L.A.; Ferris, J.A. Analysis of postmortem DNA degradation by single-cell gel electrophoresis. Forensic Sci. Int. 2002, 126, 43–47. [Google Scholar] [CrossRef]
- Lin, L.Q.; Liu, L.; Deng, W.N.; Zhang, L.; Liu, Y.L.; Liu, Y. An experimental study on the relationship between the estimation of early postmortem interval and DNA content of liver cells in rats by image analysis. Fa Yi Xue Za Zhi 2000, 16, 68–69, 127. [Google Scholar]
- Chen, X.; Shen, Y.W.; Gu, Y.J. The research of relationship between DNA degradation and postmortem interval. Fa Yi Xue Za Zhi 2005, 21, 115–117. [Google Scholar]
- Luo, G.H.; Chen, Y.C.; Cheng, J.D.; Wang, J.F.; Gao, C.L. Relationship between DNA degradation and postmortem interval of corrupt corpse. Fa Yi Xue Za Zhi 2006, 22, 7–9. [Google Scholar]
- Hao, L.G.; Deng, S.X.; Zhao, X.C. Recent advancement in relationship between DNA degradation and postmortem interval. Fa Yi Xue Za Zhi 2007, 23, 145–147. [Google Scholar]
- Zheng, J.; Li, X.; Shan, D.; Zhang, H.; Guan, D. DNA degradation within mouse brain and dental pulp cells 72 hours postmortem. Neural Regen. Res. 2012, 7, 290–294. [Google Scholar] [CrossRef]
- Bauer, M. RNA in forensic science. Forensic Sci. Int. Genet. 2007, 1, 69–74. [Google Scholar] [CrossRef]
- Finger, J.M.; Mercer, J.F.; Cotton, R.G.; Danks, D.M. Stability of protein and mRNA in human postmortem liver—Analysis by two-dimensional gel electrophoresis. Clin. Chim. Acta Int. J. Clin. Chem. 1987, 170, 209–218. [Google Scholar] [CrossRef]
- Johnson, S.A.; Morgan, D.G.; Finch, C.E. Extensive postmortem stability of RNA from rat and human brain. J. Neurosci. Res. 1986, 16, 267–280. [Google Scholar] [CrossRef] [PubMed]
- Chung, W.H.; Hung, S.I. Recent advances in the genetics and immunology of Stevens-Johnson syndrome and toxic epidermal necrosis. J. Dermatol. Sci. 2012, 66, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Bauer, M.; Gramlich, I.; Polzin, S.; Patzelt, D. Quantification of mRNA degradation as possible indicator of postmortem interval—A pilot study. Leg. Med. 2003, 5, 220–227. [Google Scholar] [CrossRef]
- Inoue, H.; Kimura, A.; Tuji, T. Degradation profile of mRNA in a dead rat body: Basic semi-quantification study. Forensic Sci. Int. 2002, 130, 127–132. [Google Scholar] [CrossRef]
- Partemi, S.; Berne, P.M.; Batlle, M.; Berruezo, A.; Mont, L.; Riuro, H.; Ortiz, J.T.; Roig, E.; Pascali, V.L.; Brugada, R.; et al. Analysis of mRNA from human heart tissue and putative applications in forensic molecular pathology. Forensic Sci. Int. 2010, 203, 99–105. [Google Scholar] [CrossRef]
- Li, W.C.; Ma, K.J.; Lv, Y.H.; Zhang, P.; Pan, H.; Zhang, H.; Wang, H.J.; Ma, D.; Chen, L. Postmortem interval determination using 18S-rRNA and microRNA. Sci. Justice J. Forensic Sci. Soc. 2014, 54, 307–310. [Google Scholar] [CrossRef]
- Lv, Y.H.; Ma, J.L.; Pan, H.; Zhang, H.; Li, W.C.; Xue, A.M.; Wang, H.J.; Ma, K.J.; Chen, L. RNA degradation as described by a mathematical model for postmortem interval determination. J. Forensic Leg. Med. 2016, 44, 43–52. [Google Scholar] [CrossRef]
- Tu, C.; Du, T.; Ye, X.; Shao, C.; Xie, J.; Shen, Y. Using miRNAs and circRNAs to estimate PMI in advanced stage. Leg. Med. 2019, 38, 51–57. [Google Scholar] [CrossRef]
- Tao, L.; Ma, J.; Han, L.; Xu, H.; Zeng, Y.; Yehui, L.; Li, W.; Ma, K.; Xiao, B.; Chen, L. Early postmortem interval estimation based on Cdc25b mRNA in rat cardiac tissue. Leg. Med. 2018, 35, 18–24. [Google Scholar] [CrossRef]
- Tolbert, M.; Finley, S.J.; Visona, S.D.; Soni, S.; Osculati, A.; Javan, G.T. The thanatotranscriptome: Gene expression of male reproductive organs after death. Gene 2018, 675, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Cho, H.W.; Eom, Y.B. Potential Forensic Application of Receptor for Advanced Glycation End Products (RAGE) as a Novel Biomarker for Estimating Postmortem Interval. J. Forensic Sci. 2019, 64, 1878–1883. [Google Scholar] [CrossRef] [PubMed]
- Martinez, P.N.; Menendez, S.T.; Villaronga, M.L.A.; Ubelaker, D.H.; Garcia-Pedrero, J.M.; Zapico, S.C. The big sleep: Elucidating the sequence of events in the first hours of death to determine the postmortem interval. Sci. Justice J. Forensic Sci. Soc. 2019, 59, 418–424. [Google Scholar] [CrossRef] [PubMed]
- Poillet-Perez, L.; Despouy, G.; Delage-Mourroux, R.; Boyer-Guittaut, M. Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol. 2015, 4, 184–192. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hunter, M.C.; Pozhitkov, A.E.; Noble, P.A. Accurate predictions of postmortem interval using linear regression analyses of gene meter expression data. Forensic Sci. Int. 2017, 275, 90–101. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Y.; Wang, L.; Yin, Y.; Yang, E. Systematic analysis of gene expression patterns associated with postmortem interval in human tissues. Sci. Rep. 2017, 7, 5435. [Google Scholar] [CrossRef]
- Ferreira, P.G.; Munoz-Aguirre, M.; Reverter, F.; Sa Godinho, C.P.; Sousa, A.; Amadoz, A.; Sodaei, R.; Hidalgo, M.R.; Pervouchine, D.; Carbonell-Caballero, J.; et al. The effects of death and post-mortem cold ischemia on human tissue transcriptomes. Nat. Commun. 2018, 9, 490. [Google Scholar] [CrossRef]
- Campell, Z.K.; Kwon, I.; Finley, S.J.; Lee, Y.; Javan, G.T. Talin: A potential protein biomarker in postmortem investigations. J. Forensic Leg. Med. 2016, 44, 188–191. [Google Scholar] [CrossRef] [Green Version]
- Mizukami, H.; Hathway, B.; Procopio, N. Aquatic Decomposition of Mammalian Corpses: A Forensic Proteomic Approach. J. Proteome Res. 2020, 19, 2122–2135. [Google Scholar] [CrossRef]
- Nolan, A.N.; Mead, R.J.; Maker, G.; Bringans, S.; Speers, S.J. The impact of environmental factors on the production of peptides in mammalian decomposition fluid in relation to the estimation of post-mortem interval: A summer/winter comparison in Western Australia. Forensic Sci. Int. 2019, 303, 109957. [Google Scholar] [CrossRef]
- Prieto-Bonete, G.; Perez-Carceles, M.D.; Maurandi-Lopez, A.; Perez-Martinez, C.; Luna, A. Association between protein profile and postmortem interval in human bone remains. J. Proteom. 2019, 192, 54–63. [Google Scholar] [CrossRef] [PubMed]
- Choi, K.M.; Zissler, A.; Kim, E.; Ehrenfellner, B.; Cho, E.; Lee, S.I.; Steinbacher, P.; Yun, K.N.; Shin, J.H.; Kim, J.Y.; et al. Postmortem proteomics to discover biomarkers for forensic PMI estimation. Int. J. Leg. Med. 2019, 133, 899–908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mickleburgh, H.L.; Schwalbe, E.C.; Bonicelli, A.; Mizukami, H.; Sellitto, F.; Starace, S.; Wescott, D.J.; Carter, D.O.; Procopio, N. Human Bone Proteomes before and after Decomposition: Investigating the Effects of Biological Variation and Taphonomic Alteration on Bone Protein Profiles and the Implications for Forensic Proteomics. J. Proteome Res. 2021, 20, 2533–2546. [Google Scholar] [CrossRef] [PubMed]
- Peyron, P.A.; Lehmann, S.; Delaby, C.; Baccino, E.; Hirtz, C. Biochemical markers of time since death in cerebrospinal fluid: A first step towards “Forensomics”. Crit. Rev. Clin. Lab. Sci. 2019, 56, 274–286. [Google Scholar] [CrossRef]
- Wu, Z.; Lu, X.; Chen, F.; Dai, X.; Ye, Y.; Yan, Y.; Liao, L. Estimation of early postmortem interval in rats by GC-MS-based metabolomics. Leg. Med. 2018, 31, 42–48. [Google Scholar] [CrossRef]
- Du, T.; Lin, Z.; Xie, Y.; Ye, X.; Tu, C.; Jin, K.; Xie, J.; Shen, Y. Metabolic profiling of femoral muscle from rats at different periods of time after death. PLoS ONE 2018, 13, e0203920. [Google Scholar] [CrossRef]
- Lloyd-Price, J.; Abu-Ali, G.; Huttenhower, C. The healthy human microbiome. Genome Med. 2016, 8, 51. [Google Scholar] [CrossRef] [Green Version]
- Dent, B.F.S.; Stuart, B. Review of human decomposition processes in soil. Environ. Geol. 2004, 45, 576–585. [Google Scholar] [CrossRef]
- Adserias-Garriga, J.; Quijada, N.M.; Hernandez, M.; Rodriguez Lazaro, D.; Steadman, D.; Garcia-Gil, L.J. Dynamics of the oral microbiota as a tool to estimate time since death. Mol. Oral Microbiol. 2017, 32, 511–516. [Google Scholar] [CrossRef]
- Can, I.; Javan, G.T.; Pozhitkov, A.E.; Noble, P.A. Distinctive thanatomicrobiome signatures found in the blood and internal organs of humans. J. Microbiol. Methods 2014, 106, 1–7. [Google Scholar] [CrossRef]
- Hyde, E.R.; Haarmann, D.P.; Lynne, A.M.; Bucheli, S.R.; Petrosino, J.F. The living dead: Bacterial community structure of a cadaver at the onset and end of the bloat stage of decomposition. PLoS ONE 2013, 8, e77733. [Google Scholar] [CrossRef] [PubMed]
- Pechal, J.L.; Schmidt, C.J.; Jordan, H.R.; Benbow, M.E. A large-scale survey of the postmortem human microbiome, and its potential to provide insight into the living health condition. Sci. Rep. 2018, 8, 5724. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Wang, M.; Qi, X.; Shi, L.; Zhang, J.; Zhang, X.; Yang, T.; Ren, J.; Liu, F.; Zhang, G.; et al. Predicting the postmortem interval of burial cadavers based on microbial community succession. Forensic Sci. Int. Genet. 2021, 52, 102488. [Google Scholar] [CrossRef] [PubMed]
- Thomas, T.B.; Finley, S.J.; Wilkinson, J.E.; Wescott, D.J.; Gorski, A.; Javan, G.T. Postmortem microbial communities in burial soil layers of skeletonized humans. J. Forensic Leg. Med. 2017, 49, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Benninger, L.A.; Carter, D.O.; Forbes, S.L. The biochemical alteration of soil beneath a decomposing carcass. Forensic Sci. Int. 2008, 180, 70–75. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Temperature affects microbial decomposition of cadavers (Rattus rattus) in contrasting soils. Appl. Soil Ecol. 2008, 40, 129–137. [Google Scholar] [CrossRef] [Green Version]
- Carter, D.O.; Metcalf, J.L.; Bibat, A.; Knight, R. Seasonal variation of postmortem microbial communities. Forensic Sci. Med. Pathol. 2015, 11, 202–207. [Google Scholar] [CrossRef]
- Carter, D.O.; Yellowlees, D.; Tibbett, M. Moisture can be the dominant environmental parameter governing cadaver decomposition in soil. Forensic Sci. Int. 2010, 200, 60–66. [Google Scholar] [CrossRef]
- Howard, G.T.; Duos, B.; Watson-Horzelski, E.J. Characterization of the soil microbial community associated with the decomposition of a swine carcass. Int. Biodeterior. Biodegrad. 2010, 64, 300–304. [Google Scholar] [CrossRef]
- Benbow, M.E.; Pechal, J.L.; Lang, J.M.; Erb, R.; Wallace, J.R. The Potential of High-throughput Metagenomic Sequencing of Aquatic Bacterial Communities to Estimate the Postmortem Submersion Interval. J. Forensic Sci. 2015, 60, 1500–1510. [Google Scholar] [CrossRef]
- Campobasso, C.P.; Di Vella, G.; Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 2001, 120, 18–27. [Google Scholar] [CrossRef]
- Adserias-Garriga, J.; Hernandez, M.; Quijada, N.M.; Rodriguez Lazaro, D.; Steadman, D.; Garcia-Gil, J. Daily thanatomicrobiome changes in soil as an approach of postmortem interval estimation: An ecological perspective. Forensic Sci. Int. 2017, 278, 388–395. [Google Scholar] [CrossRef] [PubMed]
- Hyde, E.R.; Haarmann, D.P.; Petrosino, J.F.; Lynne, A.M.; Bucheli, S.R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 2015, 129, 661–671. [Google Scholar] [CrossRef] [PubMed]
- Damann, F.E.; Williams, D.E.; Layton, A.C. Potential Use of Bacterial Community Succession in Decaying Human Bone for Estimating Postmortem Interval. J. Forensic Sci. 2015, 60, 844–850. [Google Scholar] [CrossRef]
- Hauther, K.A.; Cobaugh, K.L.; Jantz, L.M.; Sparer, T.E.; DeBruyn, J.M. Estimating Time Since Death from Postmortem Human Gut Microbial Communities. J. Forensic Sci. 2015, 60, 1234–1240. [Google Scholar] [CrossRef]
- Metcalf, J.L.; Xu, Z.Z.; Weiss, S.; Lax, S.; Van Treuren, W.; Hyde, E.R.; Song, S.J.; Amir, A.; Larsen, P.; Sangwan, N.; et al. Microbial community assembly and metabolic function during mammalian corpse decomposition. Science 2016, 351, 158–162. [Google Scholar] [CrossRef] [Green Version]
- Tuomisto, S.; Karhunen, P.J.; Vuento, R.; Aittoniemi, J.; Pessi, T. Evaluation of postmortem bacterial migration using culturing and real-time quantitative PCR. J. Forensic Sci. 2013, 58, 910–916. [Google Scholar] [CrossRef]
- Javan, G.T.; Finley, S.J.; Can, I.; Wilkinson, J.E.; Hanson, J.D.; Tarone, A.M. Human Thanatomicrobiome Succession and Time Since Death. Sci. Rep. 2016, 6, 29598. [Google Scholar] [CrossRef] [Green Version]
- Sweet, D.; Lorente, M.; Lorente, J.A.; Valenzuela, A.; Villanueva, E. An improved method to recover saliva from human skin: The double swab technique. J. Forensic Sci. 1997, 42, 320–322. [Google Scholar] [CrossRef]
- Dailey, J.C.; Golden, G.S.; Senn, D.R.; Wright, F.D. Bitemarks. In Manual of Forensic Odontology; Senn, D.R., Weems, R.A., Eds.; CRC Press: Boca Raton, FL, USA, 2013; pp. 270–274. [Google Scholar]
- Requena, T.; Velasco, M. The human microbiome in sickness and in health. Rev. Clin. Esp. 2021, 221, 233–240. [Google Scholar] [CrossRef]
- Zhou, W.; Bian, Y. Thanatomicrobiome composition profiling as a tool for forensic investigation. Forensic Sci. Res. 2018, 3, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Stewart, E.J. Growing unculturable bacteria. J. Bacteriol. 2012, 194, 4151–4160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wade, W. Unculturable bacteria—The uncharacterized organisms that cause oral infections. J. R. Soc. Med. 2002, 95, 81–83. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Tomo, S.; Purohit, P.; Setia, P. Microbiome in Death and Beyond: Current Vistas and Future Trends. Front. Ecol. Evol. 2021, 9, 75. [Google Scholar] [CrossRef]
- Bansal, V.; Boucher, C. Sequencing Technologies and Analyses: Where Have We Been and Where Are We Going? iScience 2019, 18, 37–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yohe, S.; Thyagarajan, B. Review of Clinical Next-Generation Sequencing. Arch. Pathol. Lab. Med. 2017, 141, 1544–1557. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Payne, J.A. A summer carrion study of the baby pig Sus scrofa linnaeus. Ecology 1996, 46, 592–602. [Google Scholar] [CrossRef]
Approach | Technique | Tissues |
---|---|---|
DNA Degradation | Flow Cytometry | Blood, Spleen, Brain, Liver |
Comet Assay | Liver, Heart, Kidney, Brain, Dental Pulp | |
RNA Degradation | Q-PCR: NOS3, 18S rRNA, miRNA, circRNAs | Heart, Liver, Skeletal Muscle |
Q-PCR-mRNA microarray | Cardiac Tissue | |
Q-PCR RAGE/Western Blot/Immunostaining | Lung Tissue in drowning cases | |
Thanatotranscriptome (Signaling pathways) | Q-PCR Autophagy/Apoptosis signaling pathways | Gastrocnemius Muscle |
Apoptosis microarray | Liver, Prostate | |
Microarrays | Brain, Liver | |
Transcriptomic analysis | Several Tissues | |
Proteins | Western Blot | Brain |
HPLC-TOF | Decomposition Fluid | |
LC-MS/MS | Bones, Skeletal Muscle | |
Metabolomics | GC-MS | Cardiac Blood |
LC-MS | Femoral Muscle |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zapico, S.C.; Adserias-Garriga, J. Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes. Forensic Sci. 2022, 2, 163-174. https://doi.org/10.3390/forensicsci2010013
Zapico SC, Adserias-Garriga J. Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes. Forensic Sciences. 2022; 2(1):163-174. https://doi.org/10.3390/forensicsci2010013
Chicago/Turabian StyleZapico, Sara C., and Joe Adserias-Garriga. 2022. "Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes" Forensic Sciences 2, no. 1: 163-174. https://doi.org/10.3390/forensicsci2010013
APA StyleZapico, S. C., & Adserias-Garriga, J. (2022). Postmortem Interval Estimation: New Approaches by the Analysis of Human Tissues and Microbial Communities’ Changes. Forensic Sciences, 2(1), 163-174. https://doi.org/10.3390/forensicsci2010013