Development and Validation of a Single Step GC/MS Method for the Determination of 41 Drugs and Drugs of Abuse in Postmortem Blood
Abstract
:1. Introduction
2. Experimental
2.1. Reagents and Instrumental Conditions
2.2. Preparation of Standard Solutions and QCs
2.3. Biological Samples
2.4. Sample Preparation
2.5. Software
3. Results
3.1. Solvent Extraction Selection
3.2. Sample-to-Solvent Ratio Optimization
3.3. Method Validation
3.3.1. Selectivity
3.3.2. Carryover
3.3.3. Linearity
3.3.4. Limits of Detection and Quantification
3.3.5. Accuracy and Precision
4. Results and Discussion of Real Sample Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulz, M.; Schmoldt, A. Therapeutic and toxic blood concentrations of more than 800 drugs and other xenobiotics. Pharmazie 2003, 58, 447–474. [Google Scholar] [PubMed]
- Janicka, M.; Kot-Wasik, A.; Namieśnik, J. Analytical procedures for determination of cocaine and its metabolites in biological samples. Trends Anal. Chem. 2010, 29, 209–224. [Google Scholar] [CrossRef]
- Persona, K.; Madej, K.; Knihnicki, P.; Piekoszewski, W. Analytical methodologies for the determination of benzodiazepines in biological samples. J. Pharm. Biomed. Anal. 2015, 113, 239–264. [Google Scholar] [CrossRef] [PubMed]
- Cruces-Blanco, C.; García-Campaña, A.M. Capillary electrophoresis for the analysis of drugs of abuse in biological specimens of forensic interest. Trends Anal. Chem. 2012, 31, 85–95. [Google Scholar] [CrossRef]
- Orfanidis, A.; Gika, H.; Mastrogianni, O.; Krokos, A.; Theodoridis, G.; Zaggelidou, E.; Raikos, N. Determination of drugs of abuse and pharmaceuticals in skeletal tissue by UHPLC-MS/MS. Forensic Sci. Int. 2018, 290, 137–145. [Google Scholar] [CrossRef]
- Fernandez-Lopez, L.; Pellegrini, M.; Rotolo, M.C.; Luna Maldonado, A.; Falcon, M.; Mancini, R. Development and validation of a method for analysing of duloxetine, venlafaxine and amitriptyline in human bone. Forensic Sci. Int. 2019, 299, 154–160. [Google Scholar] [CrossRef] [PubMed]
- Wietecha-Posłuszny, R.; Lendor, S.; Garnysz, M.; Zawadzki, M.; Kościelniak, P. Human bone marrow as a tissue in post-mortem identification and determination of psychoactive substances—Screening methodology. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2017, 1061, 459–467. [Google Scholar] [CrossRef]
- Baciu, T.; Botello, I.; Borrull, F.; Calull, M.; Aguilar, C. Capillary electrophoresis and related techniques in the determination of drugs of abuse and their metabolites. Trends Anal. Chem. 2015, 74, 89–108. [Google Scholar] [CrossRef]
- Di Rago, M.; Chu, M.; Rodda, L.N.; Jenkins, E.; Kotsos, A.; Gerostamoulos, D. Ultra-rapid targeted analysis of 40 drugs of abuse in oral fluid by LC-MS/MS using carbon-13 isotopes of methamphetamine and MDMA to reduce detector saturation. Anal. Bioanal. Chem. 2016, 408, 3737–3749. [Google Scholar] [CrossRef]
- Odoardi, S.; Valentini, V.; de Giovanni, N.; Pascali, V.L.; Strano-Rossi, S. High-throughput screening for drugs of abuse and pharmaceutical drugs in hair by liquid-chromatography-high resolution mass spectrometry (LC-HRMS). Microchem. J. 2017, 133, 302–310. [Google Scholar] [CrossRef]
- Holler, J.; Levine, B. Confirmation methods for SAMHSA drugs and other commonly abused drugs. In Critical Issues in Alcohol and Drugs of Abuse Testing; Academic Press: Cambridge, MA, USA, 2019; pp. 189–206. [Google Scholar]
- Moeller, M.R.; Steinmeyer, S.; Kraemer, T. Determination of drugs of abuse in blood. J. Chromatogr. B Biomed. Sci. Appl. 1998, 713, 91–109. [Google Scholar] [CrossRef]
- Nielsen, M.K.K.; Johansen, S.S. Simultaneous determination of 25 common pharmaceuticals in whole blood using ultra-performance liquid chromatography-tandem mass spectrometry. J. Anal. Toxicol. 2012, 36, 497–506. [Google Scholar] [CrossRef] [Green Version]
- Pouliopoulos, A.; Tsakelidou, E.; Krokos, A.; Gika, H.G.; Theodoridis, G.; Raikos, N. Quantification of 15 psychotropic drugs in serum and postmortem blood samples after a modified mini-QuEChERS by UHPLC-MS-MS. J. Anal. Toxicol. 2018, 42, 337–345. [Google Scholar] [CrossRef] [PubMed]
- Fisichella, M.; Odoardi, S.; Strano-Rossi, S. High-throughput dispersive liquid/liquid microextraction (DLLME) method for the rapid determination of drugs of abuse, benzodiazepines and other psychotropic medications in blood samples by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and application to forensic cases. Microchem. J. 2015, 123, 33–41. [Google Scholar]
- Dulaurent, S.; El Balkhi, S.; Poncelet, L.; Gaulier, J.M.; Marquet, P.; Saint-Marcoux, F. QuEChERS sample preparation prior to LC-MS/MS determination of opiates, amphetamines, and cocaine metabolites in whole blood. Anal. Bioanal. Chem. 2016, 408, 1467–1474. [Google Scholar] [CrossRef] [PubMed]
- Teng, X.; Liang, C.; Wang, R.; Sun, T.; Rao, Y.; Ni, C.; Zeng, L.; Xiong, L.; Li, Y.; Zhang, Y. Screening of drugs of abuse and toxic compounds in human whole blood using online solid-phase extraction and high-performance liquid chromatography with time-of-flight mass spectrometry. J. Sep. Sci. 2015, 38, 50–59. [Google Scholar] [CrossRef]
- Robin, T.; Barnes, A.; Dulaurent, A.; Loftus, N.; Baumgarten, S.; Moreau, S.; Marquet, P.; El Balkhi, S.; Saint-Marcoux, F. Fully automated sample preparation procedure to measure drugs of abuse in plasma by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2018, 410, 5071–5083. [Google Scholar] [CrossRef]
- Ferrari Júnior, E.; Caldas, E.D. Simultaneous determination of drugs and pesticides in postmortem blood using dispersive solid-phase extraction and large volume injection-programmed temperature vaporization-gas chromatography–mass spectrometry. Forensic Sci. Int. 2018, 290, 318–326. [Google Scholar] [CrossRef]
- Smith, M.P.; Bluth, M.H. Common interferences in drug testing. Clin. Lab. Med. 2016, 36, 663–671. [Google Scholar] [CrossRef]
- Brahm, N.C.; Yeager, L.L.; Fox, M.D.; Farmer, K.C.; Palmer, T.A. Commonly prescribed medications and potential false-positive urine drug screens. Am. J. Health Syst. Pharm. 2010, 67, 1344–1350. [Google Scholar] [CrossRef] [Green Version]
- Maurer, H.H. Multi-analyte procedures for screening for and quantification of drugs in blood, plasma, or serum by liquid chromatography-single stage or tandem mass spectrometry (LC-MS or LC-MS/MS) relevant to clinical and forensic toxicology. Clin. Biochem. 2005, 38, 310–318. [Google Scholar] [CrossRef] [PubMed]
- Bjørk, M.K.; Nielsen, M.K.K.; Markussen, L.; Klinke, H.B.; Linnet, K. Determination of 19 drugs of abuse and metabolites in whole blood by high-performance liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2010, 396, 2393–2401. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, A.; Gika, H.G.; Theodoridis, G.; Mastrogianni, O.; Raikos, N. An UHPLC-MS-MS method for the determination of 84 drugs of abuse and pharmaceuticals in blood. J. Anal. Toxicol. 2020, 45, 28–43. [Google Scholar] [CrossRef] [PubMed]
- Langel, K.; Gunnar, T.; Ariniemi, K.; Rajamäki, O.; Lillsunde, P. A validated method for the detection and quantitation of 50 drugs of abuse and medicinal drugs in oral fluid by gas chromatography-mass spectrometry. J. Chromatogr. B 2011, 879, 859–870. [Google Scholar] [CrossRef] [PubMed]
- Adamowicz, P.; Kała, M. Simultaneous screening for and determination of 128 date-rape drugs in urine by gas chromatography-electron ionization-mass spectrometry. Forensic Sci. Int. 2010, 198, 39–45. [Google Scholar] [CrossRef] [PubMed]
- Truta, L.; Castro, A.L.; Tarelho, S.; Costa, P.; Sales, M.G.F.; Teixeira, H.M. Antidepressants detection and quantification in whole blood samples by GC-MS/MS, for forensic purposes. J. Pharm. Biomed. Anal. 2016, 128, 496–503. [Google Scholar] [CrossRef]
- Hara, K.; Waters, B.; Ikematsu, N.; Tokuyasu, T.; Fujii, H.; Takayama, M.; Matsusue, A.; Kashiwagi, M.; Kubo, S.I. Development of a preparation method to produce a single sample that can be applied to both LC-MS/MS and GC-MS for the screening of postmortem specimens. Leg. Med. 2016, 21, 85–92. [Google Scholar] [CrossRef]
- Papoutsis, I.; Athanaselis, S.A.; Nikolaou, P.D.; Pistos, C.M.; Spiliopoulou, C.A.; Maravelias, C.P. Development and validation of an EI-GC-MS method for the determination of benzodiazepine drugs and their metabolites in blood: Applications in clinical and forensic toxicology. J. Pharm. Biomed. Anal. 2010, 52, 609–614. [Google Scholar] [CrossRef]
- Huang, Z.; Yu, T.; Guo, L.; Lin, Z.; Zhao, Z.; Shen, Y.; Jiang, Y.; Ye, Y.; Rao, Y. Effects of triglycerides levels in human whole blood on the extraction of 19 commonly used drugs using liquid-liquid extraction and gas chromatography-mass spectrometry. Toxicol. Rep. 2015, 2, 785–791. [Google Scholar] [CrossRef] [Green Version]
- Versace, F.; Sporkert, F.; Mangin, P.; Staub, C. Rapid sample pre-treatment prior to GC-MS and GC-MS/MS urinary toxicological screening. Talanta 2012, 101, 299–306. [Google Scholar] [CrossRef]
- Feng, Y.; Zheng, M.; Zhang, X.; Kang, K.; Kang, W.; Lian, K.; Yang, J. Analysis of four antidepressants in plasma and urine by gas chromatography-mass spectrometry combined with sensitive and selective derivatization. J. Chromatogr. A 2019, 1600, 33–40. [Google Scholar] [CrossRef] [PubMed]
- Orfanidis, A.; Mastrogianni, O.; Koukou, A.; Psarros, G.; Gika, H.; Theodoridis, G.; Raikos, N. A GC-MS method for the detection and quantitation of ten major drugs of abuse in human hair samples. J. Chromatogr. B 2017, 1047, 141–150. [Google Scholar] [CrossRef] [PubMed]
- Meatherall, R. GC-MS confirmation of codeine, morphine, 6-acetylmorphine, hydrocodone, hydromorphone, oxycodone, and oxymorphone in urine. J. Anal. Toxicol. 1999, 23, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, M.K.; Banaszkiewicz, L.; Wiergowski, M.; Tomczak, E.; Kata, M.; Szpiech, B.; Namieśnik, J.; Biziuk, M. Development and validation of a GC–MS/MS method for the determination of 11 amphetamines and 34 synthetic cathinones in whole blood. Forensic Toxicol. 2020, 38, 42–50. [Google Scholar] [CrossRef] [Green Version]
- Pizarro, N.; Ortuño, J.; Farré, M.; Hernández-López, C.; Pujadas, M.; Llebaria, A.; Joglar, J.; Roset, P.N.; Mas, M.; Segura, J.; et al. Determination of MDMA and its metabolites in blood and urine by gas chromatography-mass spectrometry and analysis of enantiomers by capillary electrophoresis. J. Anal. Toxicol. 2002, 26, 157–165. [Google Scholar] [CrossRef] [Green Version]
- Álvarez-Freire, I.; Brunetti, P.; Cabarcos-Fernández, P.; Fernández-Liste, A.; Tabernero-Duque, M.J.; Bermejo-Barrera, A.M. Determination of benzodiazepines in pericardial fluid by gas chromatography–mass spectrometry. J. Pharm. Biomed. Anal. 2018, 159, 45–52. [Google Scholar] [CrossRef] [PubMed]
- Matsuta, S.; Nakanishi, K.; Miki, A.; Zaitsu, K.; Shima, N.; Kamata, T.; Nishioka, H.; Katagi, M.; Tatsuno, M.; Tsuboi, K.; et al. Development of a simple one-pot extraction method for various drugs and metabolites of forensic interest in blood by modifying the QuEChERS method. Forensic Sci. Int. 2013, 232, 40–45. [Google Scholar] [CrossRef]
- Amorim Alves, E.; Sofia Agonia, A.; Manuela Cravo, S.; Manuel Afonso, C.; Duarte Pereira Netto, A.; Lourdes Bastos, M.; Carvalho, F.; Jorge Dinis-Oliveira, R. GC-MS method for the analysis of thirteen opioids, cocaine and cocaethylene in whole blood based on a modified quechers extraction. Curr. Pharm. Anal. 2017, 13, 215–223. [Google Scholar] [CrossRef]
- Schulz, M.; Schmoldt, A.; Andresen-Streichert, H.; Iwersen-Bergmann, S. Therapeutic and toxic blood concentrations of more than 1100 drugs and other xenobiotics. Crit. Care 2020, 24, 195. [Google Scholar] [CrossRef]
No | Compound | RT (min) | Target Ion | Qualifier Ions | |
---|---|---|---|---|---|
1 | Methamphetamine | 3.18 | 58 | 91 | 65 |
2 | Amantadine | 3.69 | 94 | 151 | 108 |
3 | Propofol | 4.45 | 163 | 178 | 117 |
4 | MDA | 5.51 | 44 | 135 | 136 |
5 | MDMA | 5.96 | 58 | 135 | 77 |
6 | MDEA | 6.22 | 72 | 44 | 135 |
7 | Bupropion | 6.46 | 44 | 100 | 57 |
8 | MBDB | 6.65 | 72 | 135 | 89 |
9 | Fluoxetine | 8.42 | 44 | 104 | 162 |
10 | Ketamine | 8.49 | 209 | 180 | 182 |
11 | Lidocaine | 8.53 | 58 | 86 | 120 |
12 | Tramadol | 9.10 | 58 | 263 | 135 |
13 | Phenobarbital | 9.25 | 204 | 232 | 115 |
14 | Venlafaxine | 9.99 | 58 | 134 | 179 |
15 | Methadone | 10.33 | 72 | 294 | 309 |
16 | Ropivacaine | 10.71 | 126 | 84 | 127 |
17 | Amitriptyline | 10.73 | 58 | 275 | 30 |
18 | Cocaine | 10.77 | 82 | 182 | 303 |
19 | Atropine | 10.81 | 124 | 289 | 140 |
20 | Nortriptyline | 10.87 | 44 | 202 | 189 |
21 | Moclobemide | 11.13 | 100 | 139 | 113 |
22 | Mirtazapine | 11.14 | 195 | 208 | 180 |
23 | Biperiden | 11.29 | 98 | 218 | 55 |
24 | Phenytoin | 11.63 | 180 | 104 | 77 |
25 | Sertaline | 11.80 | 274 | 262 | 304 |
26 | Citalopram | 11.96 | 58 | 324 | 238 |
27 | Codeine | 11.97 | 299 | 162 | 115 |
28 | Clomipramine | 12.02 | 58 | 85 | 268 |
29 | Diazepam | 12.21 | 283 | 256 | 221 |
30 | Chlorpromazine | 12.56 | 58 | 318 | 86 |
31 | Nordazepam | 12.61 | 270 | 242 | 269 |
32 | Midazolam | 13.04 | 310 | 325 | 163 |
33 | Flunitrazepam | 13.14 | 312 | 285 | 266 |
34 | 7-AF | 13.33 | 283 | 255 | 254 |
35 | Fentanyl | 13.72 | 245 | 146 | 189 |
36 | Olanzapine | 13.88 | 242 | 229 | 213 |
37 | Zolpidem | 14.26 | 235 | 307 | 219 |
38 | Clozapine | 14.88 | 243 | 256 | 192 |
39 | Haloperidol | 15.56 | 224 | 237 | 42 |
40 | Alprazolam | 15.47 | 204 | 279 | 308 |
41 | Quetiapine | 18.45 | 210 | 239 | 321 |
IS | Nordazepam-D5 | 12.61 | 275 | 247 | 274 |
Analyte | Linear Range (μg/mL) | Linear Equation | R2 | LOD (μg/mL) | LOQ (μg/mL) |
---|---|---|---|---|---|
Methampetamine | 0.4–10.0 | y = 10.101x + 1.4706 | 0.9978 | 0.020 | 0.066 |
Amantadine | 0.8–20.0 | y = 4.3684x + 1.559 | 0.9994 | 0.010 | 0.032 |
Propofol | 0.1–5.0 | y = 24.617x − 2.6623 | 0.9983 | 0.005 | 0.017 |
MDA | 0.8–20.0 | y = 1.6608x − 0.0176 | 0.9990 | 0.033 | 0.109 |
MDMA | 0.4–10.0 | y = 11.137x + 0.7223 | 1.000 | 0.009 | 0.031 |
MDEA | 0.4–10.0 | y = 20.563x + 1.4997 | 0.9999 | 0.002 | 0.008 |
Bupropion | 0.05–1.00 | y = 17.6133 + 0.2203 | 0.9991 | 0.013 | 0.044 |
MBDB | 0.4–10.0 | y = 24.32x + 0.8195 | 0.9997 | 0.002 | 0.007 |
Fluoxetine | 0.5–10.0 | y = 26.587x − 16.212 | 0.9968 | 0.055 | 0.184 |
Ketamine | 0.1–5.0 | y = 2.9372x + 0.3221 | 0.9957 | 0.011 | 0.038 |
Lidocaine | 0.1–5.0 | y = 5.7228x + 0.7541 | 0.9955 | 0.009 | 0.029 |
Tramadol | 0.2–5.0 | y = 33.57x − 1.1145 | 0.9995 | 0.001 | 0.004 |
Phenobarbital | 0.4–20.0 | y = 12.865x + 5.734 | 0.9987 | 0.008 | 0.027 |
Venlafaxine | 0.02–1.00 | y = 44.847x − 0.4172 | 0.9995 | 0.003 | 0.011 |
Methadone | 0.1–5.0 | y = 37.989x + 0.4546 | 0.9997 | 0.003 | 0.011 |
Ropivacaine | 0.08–2.00 | y = 32.713x − 0.4533 | 0.9998 | 0.003 | 0.009 |
Amitriptyline | 0.1–5.0 | y = 35.265x − 0.4943 | 0.9978 | 0.012 | 0.040 |
Cocaine | 0.1–5.0 | y = 11.402x − 0.6845 | 0.9976 | 0.006 | 0.019 |
Atropine | 0.2–5.0 | y = 3.1589x + 0.2277 | 0.9934 | 0.011 | 0.037 |
Nortriptyline | 0.75–10.00 | y = 12.427x − 8.7535 | 0.9996 | 0.113 | 0.375 |
Moclobemide | 0.2–5.0 | y = 25.376x + 1.6707 | 0.9996 | 0.003 | 0.009 |
Mirtazapine | 0.02–1.00 | y = 28.645x − 0.0298 | 0.9988 | 0.006 | 0.020 |
Biperiden | 0.02–1.00 | y = 34.649x − 0.5564 | 0.9995 | 0.003 | 0.009 |
Phenytoin | 0.4–20.0 | y = 9.9039x − 4.2309 | 0.9979 | 0.012 | 0.041 |
Sertraline | 0.5–10.0 | y = 4.3317x − 1.7901 | 0.9989 | 0.075 | 0.251 |
Citalopram | 0.05–1.00 | y = 24.7065 − 0.5613 | 0.9989 | 0.003 | 0.010 |
Codeine | 0.4–10.0 | y = 4.5406x + 0.8487 | 0.9997 | 0.002 | 0.007 |
Clomipramine | 0.1–5.0 | y = 12.546x + 1.8696 | 0.9981 | 0.007 | 0.024 |
Diazepam | 0.1–5.0 | y = 8.8033x − 0.5545 | 0.9987 | 0.014 | 0.045 |
Chlorpomazine | 0.4–10.0 | y = 16.567x + 1.9159 | 0.9998 | 0.003 | 0.011 |
Nordazepam | 0.1–5.0 | y = 10.1663x + 0.6575 | 0.9986 | 0.012 | 0.040 |
Midazolam | 0.02–1.00 | y = 30.607x − 0.3161 | 0.9975 | 0.002 | 0.007 |
Flunitrazepam | 0.025–1.000 | y = 2.9896x − 0.0529 | 0.9999 | 0.003 | 0.011 |
7-AF | 0.35–5.00 | y = 1.5609x − 0.0223 | 0.9993 | 0.037 | 0.128 |
Fentanyl | 0.01–0.50 | y = 14.9604x − 0.1360 | 0.9977 | 0.003 | 0.010 |
Olanzapine | 0.02–1.00 | y = 6.4316x − 0.2464 | 0.9974 | 0.004 | 0.011 |
Zolpidem | 0.02–1.00 | y = 20.3231x + 0.3246 | 0.9975 | 0.003 | 0.011 |
Clozapine | 0.1–10.0 | y = 6.9347x − 0.4942 | 0.9992 | 0.011 | 0.037 |
Haloperidol | 0.1–5.0 | y = 3.1195x − 0.6406 | 0.9961 | 0.028 | 0.093 |
Alprazolam | 0.05–1.00 | y = 4.1498x − 0.1051 | 0.9986 | 0.009 | 0.026 |
Quetiapine | 0.5–10.0 | y = 1.4263x − 0.5078 | 0.9989 | 0.054 | 0.174 |
Compound | Added (μg/mL) | Intra-Assay | Inter-Assay | ||||||
---|---|---|---|---|---|---|---|---|---|
Mean Found (μg/mL) | SD | CV % | Accuracy % | Overall Mean Found (μg/mL) | SD | CV % | Accuracy % | ||
Methamphetamine | 0.50 | 0.51 | 0.03 | 8.03 | 103 | 0.51 | 0.02 | 5.84 | 103 |
2.50 | 2.47 | 0.03 | 1.21 | 99 | 2.50 | 0.04 | 1.76 | 100 | |
8.00 | 8.02 | 0.21 | 2.09 | 100 | 7.84 | 0.32 | 3.28 | 98 | |
Amantadine | 0.90 | 0.90 | 0.06 | 7.36 | 100 | 0.89 | 0.05 | 6.32 | 99 |
5.00 | 4.94 | 0.20 | 4.13 | 99 | 4.94 | 0.17 | 3.44 | 99 | |
18.0 | 18.0 | 0.63 | 3.17 | 100 | 17.4 | 1.06 | 5.47 | 97 | |
Propofol | 0.40 | 0.44 | 0.01 | 5.10 | 110 | 0.45 | 0.01 | 5.02 | 112 |
1.25 | 1.17 | 0.08 | 6.84 | 94 | 1.19 | 0.12 | 10.4 | 95 | |
4.00 | 4.16 | 0.40 | 7.60 | 104 | 4.20 | 0.49 | 9.31 | 105 | |
MDA | 0.90 | 0.94 | 0.07 | 8.12 | 105 | 0.91 | 0.06 | 6.90 | 102 |
5.00 | 5.25 | 0.13 | 2.40 | 105 | 5.00 | 0.35 | 6.94 | 100 | |
18.0 | 18.1 | 0.52 | 2.57 | 100 | 18.0 | 0.45 | 2.27 | 100 | |
MDMA | 0.50 | 0.50 | 0.03 | 6.50 | 100 | 0.50 | 0.02 | 4.71 | 101 |
2.50 | 2.53 | 0.05 | 1.78 | 101 | 2.52 | 0.05 | 1.90 | 101 | |
8.00 | 8.01 | 0.22 | 2.20 | 100 | 7.98 | 0.38 | 3.85 | 100 | |
MDEA | 0.50 | 0.52 | 0.03 | 6.69 | 105 | 0.52 | 0.02 | 5.04 | 104 |
2.50 | 2.57 | 0.10 | 3.89 | 103 | 2.57 | 0.08 | 2.96 | 103 | |
8.00 | 7.96 | 0.29 | 2.92 | 100 | 7.92 | 0.31 | 3.10 | 99 | |
Bupropion | 0.06 | 0.07 | 0.01 | 9.09 | 110 | 0.06 | 0.01 | 14.8 | 100 |
0.25 | 0.26 | 0.04 | 14.5 | 105 | 0.25 | 0.03 | 11.4 | 98 | |
0.80 | 0.75 | 0.08 | 7.95 | 94 | 0.77 | 0.10 | 10.4 | 96 | |
MBDB | 0.50 | 0.52 | 0.02 | 4.61 | 103 | 0.52 | 0.02 | 3.86 | 104 |
2.50 | 2.58 | 0.06 | 2.28 | 103 | 2.56 | 0.05 | 1.99 | 102 | |
8.00 | 7.92 | 0.24 | 2.42 | 99 | 7.96 | 0.21 | 2.06 | 99 | |
Fluoxetine | 1.30 | 1.33 | 0.09 | 7.19 | 102 | 1.31 | 0.10 | 7.70 | 101 |
5.00 | 5.09 | 0.51 | 9.98 | 102 | 4.89 | 0.43 | 8.81 | 98 | |
8.00 | 8.65 | 1.05 | 9.69 | 108 | 8.26 | 0.96 | 9.26 | 103 | |
Ketamine | 0.30 | 0.28 | 0.02 | 9.13 | 92 | 0.27 | 0.03 | 12.5 | 90 |
1.25 | 0.21 | 0.09 | 7.86 | 90 | 1.07 | 0.08 | 7.68 | 85 | |
4.00 | 4.08 | 0.31 | 6.00 | 102 | 3.93 | 0.42 | 8.62 | 98 | |
Lidocaine | 0.30 | 0.30 | 0.03 | 9.92 | 101 | 0.28 | 0.03 | 11.8 | 95 |
1.25 | 1.31 | 0.09 | 7.02 | 105 | 1.35 | 0.12 | 8.70 | 108 | |
4.00 | 3.97 | 0.27 | 5.40 | 99 | 4.06 | 0.51 | 9.98 | 101 | |
Tramadol | 0.30 | 0.33 | 0.01 | 5.07 | 109 | 0.33 | 0.01 | 5.43 | 111 |
1.25 | 1.29 | 0.02 | 1.78 | 104 | 1.28 | 0.03 | 2.34 | 103 | |
4.00 | 3.95 | 0.07 | 1.40 | 99 | 3.96 | 0.10 | 2.10 | 99 | |
Phenobarbital | 1.25 | 1.14 | 0.12 | 12.7 | 91 | 1.19 | 0.12 | 13.1 | 95 |
5.00 | 5.48 | 0.31 | 5.59 | 110 | 5.28 | 0.35 | 6.55 | 106 | |
19.0 | 19.9 | 1.67 | 8.00 | 105 | 19.7 | 1.78 | 8.60 | 104 | |
Venlafaxine | 0.06 | 0.07 | 0.01 | 12.7 | 110 | 0.06 | 0.01 | 13.2 | 106 |
0.25 | 0.24 | 0.02 | 9.92 | 97 | 0.24 | 0.02 | 8.33 | 96 | |
0.80 | 0.77 | 0.07 | 7.00 | 96 | 0.81 | 0.10 | 10.3 | 101 | |
Methadone | 0.30 | 0.28 | 0.02 | 8.16 | 93 | 0.27 | 0.02 | 10.2 | 90 |
1.25 | 1.28 | 0.08 | 6.18 | 102 | 1.28 | 0.07 | 5.15 | 103 | |
4.00 | 4.14 | 0.40 | 7.75 | 103 | 4.08 | 0.42 | 8.23 | 102 | |
Ropivacaine | 0.09 | 0.10 | 0.003 | 3.33 | 113 | 0.10 | 0.003 | 3.37 | 111 |
0.50 | 0.50 | 0.02 | 4.04 | 99 | 0.50 | 0.01 | 2.63 | 99 | |
1.90 | 1.89 | 0.04 | 2.11 | 99 | 1.88 | 0.04 | 1.87 | 99 | |
Amitriptyline | 0.30 | 0.33 | 0.02 | 5.90 | 108 | 0.31 | 0.03 | 10.3 | 105 |
1.25 | 1.29 | 0.14 | 10.9 | 103 | 1.25 | 0.16 | 12.4 | 100 | |
4.00 | 4.07 | 0.73 | 14.3 | 102 | 3.97 | 0.51 | 10.2 | 99 | |
Cocaine | 0.30 | 0.33 | 0.01 | 2.18 | 110 | 0.33 | 0.03 | 9.49 | 110 |
1.25 | 1.13 | 0.07 | 6.31 | 90 | 1.12 | 0.09 | 7.86 | 90 | |
4.00 | 4.25 | 0.65 | 12.2 | 106 | 4.17 | 0.57 | 10.9 | 104 | |
Atropine | 0.30 | 0.30 | 0.01 | 5.45 | 101 | 0.30 | 0.01 | 3.96 | 101 |
1.25 | 1.42 | 0.02 | 1.20 | 114 | 1.37 | 0.07 | 5.25 | 110 | |
4.00 | 3.94 | 0.14 | 2.87 | 98 | 3.95 | 0.11 | 2.31 | 99 | |
Nortriptyline | 0.80 | 0.81 | 0.01 | 0.66 | 101 | 0.80 | 0.01 | 0.80 | 100 |
2.50 | 2.42 | 0.08 | 3.30 | 97 | 2.40 | 0.09 | 3.71 | 96 | |
9.00 | 9.85 | 0.75 | 6.85 | 109 | 9.98 | 0.63 | 5.67 | 111 | |
Moclobemide | 0.30 | 0.30 | 0.01 | 4.46 | 101 | 0.30 | 0.01 | 3.96 | 101 |
1.25 | 1.29 | 0.09 | 6.69 | 103 | 1.29 | 0.07 | 5.34 | 103 | |
4.00 | 3.97 | 0.08 | 1.69 | 99 | 4.00 | 0.10 | 2.00 | 100 | |
Mirtazapine | 0.06 | 0.07 | 0.007 | 12.07 | 116 | 0.06 | 0.007 | 14.0 | 100 |
0.25 | 0.26 | 0.025 | 9.80 | 102 | 0.26 | 0.034 | 13.2 | 103 | |
0.80 | 0.73 | 0.096 | 10.51 | 91 | 0.79 | 0.105 | 10.6 | 99 | |
Biperiden | 0.06 | 0.06 | 0.003 | 6.25 | 96 | 0.06 | 0.004 | 8.00 | 100 |
0.25 | 0.25 | 0.008 | 3.20 | 100 | 0.25 | 0.007 | 2.83 | 99 | |
0.80 | 0.75 | 0.065 | 6.94 | 94 | 0.77 | 0.053 | 5.51 | 96 | |
Phenytoin | 1.25 | 1.21 | 0.117 | 12.10 | 97 | 1.19 | 0.115 | 12.0 | 96 |
5.00 | 5.44 | 0.222 | 4.08 | 109 | 5.49 | 0.437 | 7.97 | 110 | |
19.0 | 19.2 | 2.114 | 10.45 | 101 | 19.5 | 2.113 | 10.3 | 103 | |
Sertraline | 1.30 | 1.01 | 0.073 | 6.92 | 84 | 1.13 | 0.093 | 8.56 | 87 |
5.00 | 5.51 | 0.490 | 8.90 | 110 | 5.12 | 0.544 | 10.6 | 102 | |
8.00 | 8.61 | 1.119 | 10.40 | 108 | 8.27 | 0.955 | 9.24 | 103 | |
Citalopram | 0.06 | 0.06 | 0.005 | 10.47 | 96 | 0.07 | 0.007 | 13.0 | 108 |
0.25 | 0.26 | 0.036 | 13.85 | 104 | 0.23 | 0.037 | 14.5 | 102 | |
0.80 | 0.85 | 0.091 | 8.58 | 106 | 0.81 | 0.091 | 8.96 | 102 | |
Codeine | 0.50 | 0.49 | 0.019 | 4.82 | 99 | 0.50 | 0.021 | 5.29 | 99 |
2.50 | 2.57 | 0.035 | 1.36 | 103 | 2.57 | 0.057 | 2.22 | 103 | |
8.00 | 7.86 | 0.162 | 1.65 | 98 | 7.92 | 0.221 | 2.23 | 99 | |
Clomipramine | 0.30 | 0.28 | 0.022 | 9.61 | 92 | 0.27 | 0.019 | 8.37 | 91 |
1.25 | 1.16 | 0.069 | 5.93 | 93 | 1.20 | 0.072 | 5.99 | 96 | |
4.00 | 3.75 | 0.269 | 5.74 | 94 | 3.85 | 0.289 | 6.00 | 96 | |
Diazepam | 0.30 | 0.33 | 0.042 | 15.50 | 108 | 0.31 | 0.039 | 15.2 | 103 |
1.25 | 1.31 | 0.061 | 4.66 | 105 | 1.25 | 0.103 | 8.26 | 100 | |
4.00 | 4.20 | 0.402 | 7.60 | 105 | 4.06 | 0.466 | 9.19 | 101 | |
Chlorpromazine | 0.50 | 0.50 | 0.017 | 4.25 | 100 | 0.51 | 0.016 | 3.92 | 102 |
2.50 | 2.53 | 0.042 | 1.66 | 101 | 2.51 | 0.040 | 1.59 | 100 | |
8.00 | 7.98 | 0.165 | 1.66 | 100 | 8.03 | 0.184 | 1.83 | 100 | |
Nordazepam | 0.30 | 0.31 | 0.04 | 12.86 | 104 | 0.31 | 0.04 | 12.9 | 103 |
1.25 | 1.24 | 0.08 | 6.52 | 99 | 1.25 | 0.09 | 7.22 | 100 | |
4.00 | 4.11 | 0.26 | 6.32 | 103 | 4.08 | 0.31 | 7.60 | 102 | |
Midazolam | 0.06 | 0.07 | 0.003 | 5.36 | 112 | 0.07 | 0.005 | 8.50 | 118 |
0.25 | 0.21 | 0.010 | 4.76 | 84 | 0.22 | 0.020 | 8.93 | 88 | |
0.80 | 0.74 | 0.070 | 7.53 | 93 | 0.80 | 0.100 | 10.0 | 100 | |
Flunitrazepam | 0.025 | 0.03 | 0.003 | 11.11 | 108 | 0.03 | 0.002 | 7.41 | 108 |
0.125 | 0.12 | 0.014 | 12.17 | 92 | 0.12 | 0.011 | 9.48 | 93 | |
0.40 | 0.40 | 0.030 | 6.04 | 99 | 0.40 | 0.022 | 4.41 | 100 | |
7-AF | 0.40 | 0.40 | 0.032 | 9.20 | 99 | 0.40 | 0.023 | 6.63 | 99 |
1.25 | 1.20 | 0.037 | 3.09 | 96 | 1.21 | 0.036 | 2.98 | 97 | |
4.00 | 4.01 | 0.085 | 1.69 | 100 | 4.01 | 0.074 | 1.48 | 100 | |
Fentanyl | 0.03 | 0.03 | 0.003 | 11.54 | 104 | 0.03 | 0.003 | 11.5 | 104 |
0.125 | 0.11 | 0.006 | 5.61 | 86 | 0.11 | 0.008 | 7.41 | 86 | |
0.40 | 0.36 | 0.046 | 10.22 | 90 | 0.39 | 0.050 | 10.4 | 96 | |
Olanzapine | 0.06 | 0.07 | 0.007 | 12.07 | 116 | 0.07 | 0.005 | 8.77 | 114 |
0.25 | 0.26 | 0.025 | 9.80 | 102 | 0.23 | 0.023 | 10.2 | 90 | |
0.80 | 0.73 | 0.096 | 10.51 | 91 | 0.79 | 0.091 | 9.27 | 98 | |
Zolpidem | 0.06 | 0.06 | 0.007 | 13.73 | 102 | 0.06 | 0.007 | 14.6 | 96 |
0.25 | 0.22 | 0.021 | 9.68 | 87 | 0.22 | 0.017 | 7.83 | 87 | |
0.80 | 0.83 | 0.078 | 7.57 | 103 | 0.79 | 0.086 | 8.73 | 99 | |
Clozapine | 0.30 | 0.26 | 0.014 | 6.51 | 86 | 0.28 | 0.023 | 9.75 | 94 |
1.25 | 1.26 | 0.046 | 3.66 | 101 | 1.24 | 0.068 | 5.49 | 99 | |
4.00 | 4.02 | 0.297 | 6.18 | 100 | 4.02 | 0.475 | 9.46 | 100 | |
Haloperidol | 0.30 | 0.33 | 0.016 | 5.78 | 111 | 0.33 | 0.016 | 5.80 | 110 |
1.00 | 1.09 | 0.110 | 10.13 | 87 | 1.07 | 0.082 | 7.66 | 86 | |
4.00 | 3.82 | 0.369 | 7.72 | 96 | 3.94 | 0.516 | 10.5 | 98 | |
Alprazolam | 0.06 | 0.06 | 0.005 | 10.42 | 96 | 0.06 | 0.009 | 18.0 | 100 |
0.25 | 0.21 | 0.010 | 4.69 | 85 | 0.22 | 0.020 | 8.93 | 90 | |
0.80 | 0.69 | 0.070 | 8.12 | 86 | 0.79 | 0.110 | 11.2 | 98 | |
Quetiapine | 1.30 | 1.21 | 0.068 | 5.84 | 93 | 1.23 | 0.071 | 5.98 | 95 |
5.008.000 | 4.90 | 0.108 | 2.20 | 98 | 5.06 | 0.367 | 7.25 | 101 | |
8.00 | 8.09 | 0.618 | 6.11 | 101 | 7.90 | 0.738 | 7.48 | 99 |
Sample (S) | Compounds | Concentration Found in Laboratory A (μg/mL) | Concentration Found in Laboratory B (μg/mL) |
---|---|---|---|
S1 | Tramadol | 0.271 | 0.270 |
Codeine | 0.018 | 0.018 | |
Flunitrazepam | 0.289 | 0.236 | |
7-Aminoflunitrazepam | 0.707 | 0.730 | |
Alprazolam | 0.876 | 0.781 | |
Lidocaine | 0.171 | 0.174 | |
S2 | Zolpidem | 5.00 | 4.50 |
Tramadol | 0.253 | 0.230 | |
S3 | Ropivacaine | 2.00 | 2.00 |
Lidocaine | 0.988 | 0.955 | |
S4 | Quetiapine | 15.7 | 15.2 |
Diazepam | 0.028 | 0.025 | |
S5 | Diazepam | 0.283 | 0.273 |
Propofol | 0.901 | 0.738 | |
Lidocaine | 0.049 | 0.043 | |
Midazolam | 0.086 | 0.083 | |
S6 | Sertraline | 0.308 | 0.270 |
S7 | Clozapine | 2.50 | 2.30 |
Lidocaine | 0.051 | 0.051 | |
S8 | Clozapine | 4.200 | 4.100 |
Lidocaine | 78 | 74 | |
S9 | Clozapine | 4.20 | 4.40 |
Lidocaine | 0.066 | 0.061 | |
S10 | Mirtazapine | 0.050 | 0.045 |
Citalopram | 0.206 | 0.192 | |
S11 | Clozapine | 4.80 | 4.90 |
Zolpidem | 0.062 | 0.059 | |
Diazepam | 0.580 | 0.559 | |
Biperiden | 0.142 | 0.141 | |
S12 | Diazepam | 0.038 | 0.039 |
Propofol | 1.50 | 1.60 | |
Midazolam | 0.058 | 0.055 | |
Lidocaine | 0.034 | 0.030 |
Case No | Diazepam | Citalopram | Alprazolam | Olanzapine | Mirtazapine | Venlafaxine | Haloperidol | Zolpidem |
---|---|---|---|---|---|---|---|---|
1 | 0.34 | 0.43 | ||||||
2 | 1.12 | |||||||
3 | 0.62 | 0.17 | ||||||
4 | 1.30 | |||||||
5 | 0.52 | 0.18 | ||||||
6 | 0.18 | |||||||
7 | 0.76 | 0.02 | 0.013 | |||||
8 | 0.13 | |||||||
9 | 0.74 | |||||||
10 | 0.25 | |||||||
11 | 0.14 | |||||||
12 | 0.26 | 0.07 | ||||||
13 | 0.93 | |||||||
14 | 0.79 | |||||||
15 | 0.51 | 0.12 | ||||||
16 | 0.35 | |||||||
17 | 1.01 | |||||||
18 | 1.16 | |||||||
19 | 4.34 | 0.24 | ||||||
20 | 0.66 | |||||||
21 | 0.59 | 0.12 | ||||||
22 | 0.67 | |||||||
23 | 0.24 | |||||||
24 | 0.76 | 0.16 | ||||||
25 | 0.56 | 0.33 | ||||||
26 | 0.19 | 0.2 | ||||||
27 | 0.63 | 0.024 | ||||||
28 | 0.21 | 0.006 | ||||||
29 | 0.16 | |||||||
30 | 0.18 | 0.28 | ||||||
31 | 0.25 | 0.04 | ||||||
32 | 3.50 | |||||||
33 | 0.69 | 0.03 | ||||||
34 | 0.52 | |||||||
35 | 2.88 | |||||||
36 | 0.21 | |||||||
37 | 0.24 | |||||||
38 | 0.26 | |||||||
39 | 0.22 | 0.029 | ||||||
40 | 0.14 | 0.19 | 0.33 | |||||
41 | 0.23 | 0.05 | 0.13 | |||||
42 | 0.20 | |||||||
43 | 0.14 | |||||||
44 | 0.27 | 0.11 | 0.009 | |||||
45 | 0.22 | |||||||
46 | 0.27 | 0.12 | ||||||
47 | 0.41 | 0.06 | 0.083 | |||||
48 | 0.27 | 0.21 | 0.05 | 0.06 | ||||
49 | 0.60 | |||||||
50 | 0.32 | 0.17 | ||||||
51 | 0.22 | 0.032 | ||||||
52 | 0.13 | |||||||
53 | 0.43 | 0.13 | 0.03 | |||||
54 | 0.31 | 0.02 | ||||||
55 | 0.15 | 0.05 | ||||||
56 | 0.26 | 0.05 | ||||||
57 | 0.32 | 0.015 | ||||||
58 | 0.04 | |||||||
59 | 0.16 | 0.02 | ||||||
60 | 0.05 | |||||||
61 | 0.24 | 0.08 | ||||||
62 | 0.15 | |||||||
63 | 0.14 | |||||||
64 | 0.05 | |||||||
65 | 0.01 | 0.05 | ||||||
66 | 0.01 | |||||||
67 | 0.09 | 0.03 | ||||||
68 | 0.06 | |||||||
69 | 0.12 | 0.035 | ||||||
70 | 0.028 | |||||||
71 | 0.010 | |||||||
72 | 0.022 | |||||||
73 | 0.017 | |||||||
74 | 0.05 | 0.01 | ||||||
75 | 0.10 | |||||||
76 | 0.24 | 0.16 | ||||||
77 | 0.03 | |||||||
78 | 0.01 | |||||||
79 | 0.63 | 0.015 | ||||||
80 | 0.92 | |||||||
81 | 0.01 | |||||||
82 | 0.22 | |||||||
83 | 0.06 | |||||||
84 | 0.15 | |||||||
85 | 0.19 | |||||||
86 | 0.007 | |||||||
87 | 0.10 | |||||||
88 | 0.09 | |||||||
89 | 0.11 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orfanidis, A.; Krokos, A.; Mastrogianni, O.; Gika, H.; Raikos, N.; Theodoridis, G. Development and Validation of a Single Step GC/MS Method for the Determination of 41 Drugs and Drugs of Abuse in Postmortem Blood. Forensic Sci. 2022, 2, 473-491. https://doi.org/10.3390/forensicsci2030035
Orfanidis A, Krokos A, Mastrogianni O, Gika H, Raikos N, Theodoridis G. Development and Validation of a Single Step GC/MS Method for the Determination of 41 Drugs and Drugs of Abuse in Postmortem Blood. Forensic Sciences. 2022; 2(3):473-491. https://doi.org/10.3390/forensicsci2030035
Chicago/Turabian StyleOrfanidis, Amvrosios, Adamantios Krokos, Orthodoxia Mastrogianni, Helen Gika, Nikolaos Raikos, and Georgios Theodoridis. 2022. "Development and Validation of a Single Step GC/MS Method for the Determination of 41 Drugs and Drugs of Abuse in Postmortem Blood" Forensic Sciences 2, no. 3: 473-491. https://doi.org/10.3390/forensicsci2030035
APA StyleOrfanidis, A., Krokos, A., Mastrogianni, O., Gika, H., Raikos, N., & Theodoridis, G. (2022). Development and Validation of a Single Step GC/MS Method for the Determination of 41 Drugs and Drugs of Abuse in Postmortem Blood. Forensic Sciences, 2(3), 473-491. https://doi.org/10.3390/forensicsci2030035