Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples
Abstract
:1. Introduction
2. Materials and Methods
Data Collection: Landmarks and Semi-Landmarks
3. Results
3.1. Landmarks Data
3.2. Semi-Landmarks Data
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Christensen, A.M.; Passalacqua, N.V.; Bartelink, E.J. (Eds.) Sex Estimation. In Forensic Anthropology, 2nd ed.; Academic Press: Warsaw, Poland, 2019; pp. 243–270. ISBN 978-0-12-815734-3. [Google Scholar]
- Spradley, M.K.; Jantz, R.L. Sex Estimation in Forensic Anthropology: Skull Versus Postcranial Elements. J. Forensic Sci. 2011, 56, 289–296. [Google Scholar] [CrossRef] [PubMed]
- Bethard, J.D.; VanSickle, C. Applications of Sex Estimation in Paleoanthropology, Bioarchaeology, and Forensic Anthropology. In Sex Estimation of the Human Skeleton: History, Methods, and Emerging Techniques; Klales, A.R., Ed.; Academic Press: London, UK, 2020; pp. 25–34. ISBN 978-0-12-815767-1. [Google Scholar]
- Curate, F. The Estimation of Sex of Human Skeletal Remains in the Portuguese Identified Collections: History and Prospects. Forensic Sci. 2022, 2, 272–286. [Google Scholar] [CrossRef]
- Berg, G.E. Sex Estimation of Unknown Human Skeletal Remains. In Forensic Anthropology a Comprehensive Introduction; Langley, N.R., Tersigni-Tarrant, M.A., Eds.; CRC Press: Boca Raton, FL, USA, 2017; pp. 143–162. ISBN 978-1-315-30003-0. [Google Scholar]
- Best, K.C.; Garvin, H.M.; Cabo, L.L. An Investigation into the Relationship between Human Cranial and Pelvic Sexual Dimorphism. J. Forensic Sci. 2018, 63, 990–1000. [Google Scholar] [CrossRef] [PubMed]
- Rowbotham, S.K. Anthropological Estimation of Sex. In Handbook of Forensic Anthropology and Archaeology; Blau, S., Ubelaker, D.K., Eds.; Routledge: New York, NY, USA, 2016; p. 738. [Google Scholar]
- Bigoni, L.; Velemínská, J.; Brůzek, J. Three-Dimensional Geometric Morphometric Analysis of Cranio-Facial Sexual Dimorphism in a Central European Sample of Known Sex. Homo 2010, 61, 16–32. [Google Scholar] [CrossRef]
- Dunsworth, H.M. Expanding the Evolutionary Explanations for Sex Differences in the Human Skeleton. Evol. Anthropol. Issues News Rev. 2020, 29, 108–116. [Google Scholar] [CrossRef]
- Steyn, M.; Işcan, M.Y. Sexual Dimorphism in the Crania and Mandibles of South African Whites. Forensic Sci. Int. 1998, 98, 9–16. [Google Scholar] [CrossRef]
- Brůžek, J.; Santos, F.; Dutailly, B.; Murail, P.; Cunha, E. Validation and Reliability of the Sex Estimation of the Human Os Coxae Using Freely Available DSP2 Software for Bioarchaeology and Forensic Anthropology. Am. J. Phys. Anthropol. 2017, 164, 440–449. [Google Scholar] [CrossRef]
- Curate, F.; Coelho, J.; Gonçalves, D.; Coelho, C.; Ferreira, M.T.; Navega, D.; Cunha, E. A Method for Sex Estimation Using the Proximal Femur. Forensic Sci. Int. 2016, 266, 579.e1–579.e7. [Google Scholar] [CrossRef] [Green Version]
- Curate, F.; Mestre, F.; Garcia, S.J. Sex Assessment with the Radius in Portuguese Skeletal Populations (Late 19th–Early to Mid 20th Centuries). Leg. Med. 2021, 48, 101790. [Google Scholar] [CrossRef]
- Koukiasa, A.E.; Eliopoulos, C.; Manolis, S.K. Biometric Sex Estimation Using the Scapula and Clavicle in a Modern Greek Population. Anthropol. Anz. 2017, 74, 241–246. [Google Scholar] [CrossRef]
- Attia, M.H.; Aboulnoor, B.A.E.-S. Tailored Logistic Regression Models for Sex Estimation of Unknown Individuals Using the Published Population Data of the Humeral Epiphyses. Leg. Med. 2020, 45, 101708. [Google Scholar] [CrossRef] [PubMed]
- Cuzzullin, M.C.; Curate, F.; Freire, A.R.; Costa, S.T.; Prado, F.B.; Daruge Junior, E.; Cunha, E.; Rossi, A.C. Validation of Anthropological Measures of the Human Femur for Sex Estimation in Brazilians. Aust. J. Forensic Sci. 2020, 54, 61–74. [Google Scholar] [CrossRef]
- Kranioti, E.F.; Apostol, M.A. Sexual Dimorphism of the Tibia in Contemporary Greeks, Italians, and Spanish: Forensic Implications. Int. J. Leg. Med. 2015, 129, 357–363. [Google Scholar] [CrossRef] [PubMed]
- Čechová, M.; Dupej, J.; Brůžek, J.; Bejdová, Š.; Horák, M.; Velemínská, J. Sex Estimation Using External Morphology of the Frontal Bone and Frontal Sinuses in a Contemporary Czech Population. Int. J. Leg. Med. 2019, 133, 1285–1294. [Google Scholar] [CrossRef]
- Cunha, E. Cálculo de Funções Discriminantes Para a Diagnose Sexual Do Crânio. Antropol. Port. 1990, 8, 17–37. [Google Scholar]
- Gillet, C.; Costa-Mendes, L.; Rérolle, C.; Telmon, N.; Maret, D.; Savall, F. Sex Estimation in the Cranium and Mandible: A Multislice Computed Tomography (MSCT) Study Using Anthropometric and Geometric Morphometry Methods. Int. J. Leg. Med. 2020, 134, 823–832. [Google Scholar] [CrossRef]
- Curate, F.; d’Oliveira Coelho, J.; Silva, A.M. CalcTalus: An Online Decision Support System for the Estimation of Sex with the Calcaneus and Talus. Archaeol. Anthropol. Sci. 2021, 13, 74. [Google Scholar] [CrossRef]
- Gualdi-Russo, E. Sex Determination from the Talus and Calcaneus Measurements. Forensic Sci. Int. 2007, 171, 151–156. [Google Scholar] [CrossRef]
- Sorrentino, R.; Belcastro, M.G.; Figus, C.; Stephens, N.B.; Turley, K.; Harcourt-Smith, W.; Ryan, T.M.; Benazzi, S. Exploring Sexual Dimorphism of the Modern Human Talus through Geometric Morphometric Methods. PLoS ONE 2020, 15, e0229255. [Google Scholar] [CrossRef] [Green Version]
- Papaioannou, V.A.; Kranioti, E.F.; Joveneaux, P.; Nathena, D.; Michalodimitrakis, M. Sexual Dimorphism of the Scapula and the Clavicle in a Contemporary Greek Population: Applications in Forensic Identification. Forensic Sci. Int. 2012, 217, 231.e1–231.e7. [Google Scholar] [CrossRef]
- Paulis, M.G.; Abu Samra, M.F. Estimation of Sex from Scapular Measurements Using Chest CT in Egyptian Population Sample. J. Forensic Radiol. Imaging 2015, 3, 153–157. [Google Scholar] [CrossRef]
- Scholtz, Y.; Steyn, M.; Pretorius, E. A Geometric Morphometric Study into the Sexual Dimorphism of the Human Scapula. Homo 2010, 61, 253–270. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Macaluso, P.J.; Lucena, J. Estimation of Sex from Sternal Dimensions Derived from Chest Plate Radiographs in Contemporary Spaniards. Int. J. Leg. Med. 2014, 128, 389–395. [Google Scholar] [CrossRef] [PubMed]
- Kazzazi, S.M.; Kranioti, E.F. Sex Estimation Using Cervical Dental Measurements in an Archaeological Population from Iran. Archaeol. Anthropol. Sci. 2018, 10, 439–448. [Google Scholar] [CrossRef] [Green Version]
- Gama, I.; Navega, D.; Cunha, E. Sex Estimation Using the Second Cervical Vertebra: A Morphometric Analysis in a Documented Portuguese Skeletal Sample. Int. J. Leg. Med. 2015, 129, 365–372. [Google Scholar] [CrossRef]
- Krishan, K.; Chatterjee, P.M.; Kanchan, T.; Kaur, S.; Baryah, N.; Singh, R.K. A Review of Sex Estimation Techniques during Examination of Skeletal Remains in Forensic Anthropology Casework. Forensic Sci. Int. 2016, 261, 165.e1–165.e8. [Google Scholar] [CrossRef]
- Omar, N.; Ali, S.H.M.; Shafie, M.S.; Ismail, N.A.N.; Hadi, H.; Nor, F.M. A preliminary study of sexual dimorphism of scapula by computed tomography in the Malaysian population. Asian J. Pharm. Clin. Res. 2019, 12, 391–395. [Google Scholar] [CrossRef] [Green Version]
- Petaros, A.; Garvin, H.M.; Sholts, S.B.; Schlager, S.; Wärmländer, S.K.T.S. Sexual Dimorphism and Regional Variation in Human Frontal Bone Inclination Measured via Digital 3D Models. Leg. Med. 2017, 29, 53–61. [Google Scholar] [CrossRef] [PubMed]
- Galeta, P.; Brůžek, J. Sex Estimation Using Continuous Variables: Problems and Principles of Sex Classification in the Zone of Uncertainty. In Statistics and Probability in Forensic Anthropology; Obertova, Z., Stewart, A., Cattaneo, C., Eds.; Academic Press: London, UK, 2020; pp. 155–182. ISBN 978-0-12-815765-7. [Google Scholar]
- Ubelaker, D.H.; DeGaglia, C.M. Population Variation in Skeletal Sexual Dimorphism. Forensic Sci. Int. 2017, 278, 407.e1–407.e7. [Google Scholar] [CrossRef]
- Kimmerle, E.H.; Ross, A.; Slice, D. Sexual Dimorphism in America: Geometric Morphometric Analysis of the Craniofacial Region. J. Forensic Sci. 2008, 53, 54–57. [Google Scholar] [CrossRef]
- Bookstein, F.L. Morphometric Tools for Landmark Data: Geometry and Biology; Cambridge University Press: Cambridge, UK, 1991; ISBN 978-0-521-58598-9. [Google Scholar]
- Mitteroecker, P.; Gunz, P.; Windhager, S.; Schaefer, K. A Brief Review of Shape, Form, and Allometry in Geometric Morphometrics, with Applications to Human Facial Morphology. Hystrix Ital. J. Mammal. 2013, 24, 59–66. [Google Scholar] [CrossRef]
- Rohlf, F.J. Morphometrics. Annu. Rev. Ecol. Syst. 1990, 21, 299–316. [Google Scholar] [CrossRef]
- Wärmländer, S.K.T.S.; Garvin, H.; Guyomarc’h, P.; Petaros, A.; Sholts, S.B. Landmark Typology in Applied Morphometrics Studies: What’s the Point? Anat. Rec. 2019, 302, 1144–1153. [Google Scholar] [CrossRef] [PubMed]
- Gunz, P.; Mitteroecker, P. Semilandmarks: A Method for Quantifying Curves and Surfaces. Hystrix Ital. J. Mammal. 2013, 24, 103–109. [Google Scholar] [CrossRef]
- Zelditch, M.L.; Swiderski, D.L.; Sheets, H.D. Geometric Morphometrics for Biologists: A Primer, 2nd ed.; Academic Press: Oxford, UK, 2012. [Google Scholar]
- Cardoso, H. An Ethical, Cultural and Historical Background for Cemetery-Based Human Skeletal Reference Collections. J. Contemp. Archaeol. 2021, 8, 21–52. [Google Scholar] [CrossRef]
- Henderson, C.Y.; Alves Cardoso, F. Identified Skeletal Collections: The Testing Ground of Anthropology? In Identified Skeletal Collections: The Testing Ground of Anthropology? Archaeopress Publishing Ltd.: Oxford, UK, 2018; pp. 1–190. [Google Scholar] [CrossRef]
- Mendes Correia, A. Osteometria Portuguesa: II Cintura Escapular. Ann. Sci. Da Acad. Polytech. Do Porto 1918, XIII, 102–123. [Google Scholar]
- Mendes Correia, A. Osteometria Portuguesa: II Cintura Escapular (Continuação). Ann. Sci. Da Acad. Polytech. Do Porto 1918, XIII, 172–195. [Google Scholar]
- Xavier de Morais, M.H. Estudo Antropológico Da Omoplata Nos Portugueses: I. Caracteres Métricos. Contrib. Para O Estud. Da Antropol. Port. 1966, VIII, 21–97. [Google Scholar]
- Wasterlain, R.S.N. Morphé: Análise das Proporções Entre os Membros, Dimorfismo Sexual E Estatura de uma Amostra da Colecção de Esqueletos Identificados do Museu Antropológico da Universidade de Coimbra. Ph.D. Thesis, Universidade de Coimbra, Coimbra, Portugal, 2000. [Google Scholar]
- Xavier de Morais, M.H. Estudo Antropológico Da Omoplata Nos Portugueses: II Caracteres Morfológicos. Contrib. Para O Estud. Da Antropol. Port. 1968, 8, 103–151. [Google Scholar]
- Cunha, E.; Wasterlain, S. The Coimbra Identified Osteological Collections. In Skeletal Series and Their Socio-Economic Context; Grupe, G., Peters, J., Eds.; M. Leidorf: Rahden/Westf, Germany, 2007; pp. 23–33. ISBN 978-3-89646-620-4. [Google Scholar]
- Ferreira, M.T.; Coelho, C.; Makhoul, C.; Navega, D.; Gonçalves, D.; Cunha, E.; Curate, F. New Data about the 21st Century Identified Skeletal Collection (University of Coimbra, Portugal). Int. J. Leg. Med. 2021, 135, 1087–1094. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.T.; Vicente, R.; Navega, D.; Gonçalves, D.; Curate, F.; Cunha, E. A New Forensic Collection Housed at the University of Coimbra, Portugal: The 21st Century Identified Skeletal Collection. Forensic Sci. Int. 2014, 245, 202.e1–202.e5. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Taylor, A.B.; Slice, D.E. A Geometric Morphometric Assessment of the Relationship between Scapular Variation and Locomotion in African Apes. In Modern Morphometrics in Physical Anthropology; Slice, D.E., Ed.; Springer: Boston, MA, USA, 2005; pp. 299–318. [Google Scholar]
- Viscosi, V.; Cardini, A. Leaf Morphology, Taxonomy and Geometric Morphometrics: A Simplified Protocol for Beginners. PLoS ONE 2011, 6, e0025630. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Klingenberg, C.P. MorphoJ: An Integrated Software Package for Geometric Morphometrics. Mol. Ecol. Resour. 2011, 11, 353–357. [Google Scholar] [CrossRef] [PubMed]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. Past: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Klingenberg, C.P. Walking on Kendall’s Shape Space: Understanding Shape Spaces and Their Coordinate Systems. Evol. Biol. 2020, 47, 334–352. [Google Scholar] [CrossRef]
- Mitteroecker, P.; Gunz, P. Advances in Geometric Morphometrics. Evol. Biol. 2009, 36, 235–247. [Google Scholar] [CrossRef] [Green Version]
- Savriama, Y. A Step-by-Step Guide for Geometric Morphometrics of Floral Symmetry. Front. Plant Sci. 2018, 9, 1433. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dryden, I.L.; Mardia, K.V. Statistical Shape Analysis with Applications in R, 2nd ed.; John Wiley and Sons Ltd.: Chichester, UK, 2016; ISBN 978-1-119-07250-8. [Google Scholar]
- Tatsuta, H.; Takahashi, K.H.; Sakamaki, Y. Geometric Morphometrics in Entomology: Basics and Applications. Entomol. Sci. 2018, 21, 164–184. [Google Scholar] [CrossRef] [Green Version]
- Jolliffe, I.T.; Cadima, J. Principal Component Analysis: A Review and Recent Developments. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2016, 374, 20150202. [Google Scholar] [CrossRef] [Green Version]
- Laurent, M.; Antonio, L.; Sinnesael, M.; Dubois, V.; Gielen, E.; Classens, F.; Vanderschueren, D. Androgens and Estrogens in Skeletal Sexual Dimorphism. Asian J. 2014, 16, 213–222. [Google Scholar] [CrossRef] [Green Version]
- Torimitsu, S.; Makino, Y.; Saitoh, H.; Sakuma, A.; Ishii, N.; Yajima, D.; Inokuchi, G.; Motomura, A.; Chiba, F.; Yamaguchi, R.; et al. Sex Estimation Based on Scapula Analysis in a Japanese Population Using Multidetector Computed Tomography. Forensic Sci. Int. 2016, 262, 285.e1–285.e5. [Google Scholar] [CrossRef] [PubMed]
- Curate, F.; Umbelino, C.; Perinha, A.; Nogueira, C.; Silva, A.M.; Cunha, E. Sex Determination from the Femur in Portuguese Populations with Classical and Machine-Learning Classifiers. J. Forensic Leg. Med. 2017, 52, 75–81. [Google Scholar] [CrossRef] [PubMed]
- Lescure, J.; Ardevines, C.; Becerra, P.; Marrodán, M.D. New Random Generalized Linear Model for Sex Determination Based on Cranial Measurements. Archaeol. Anthropol. Sci. 2020, 12, 168. [Google Scholar] [CrossRef]
- Dabbs, G.R.; Moore-Jansen, P.H. A Method for Estimating Sex Using Metric Analysis of the Scapula. J. Forensic Sci. 2010, 55, 149–152. [Google Scholar] [CrossRef] [PubMed]
- Peckmann, T.R.; Scott, S.; Meek, S.; Mahakkanukrauh, P. Sex Estimation from the Scapula in a Contemporary Thai Population: Applications for Forensic Anthropology. Sci. Justice 2017, 57, 270–275. [Google Scholar] [CrossRef]
- Vassallo, S.; Davies, C.; Biehler-Gomez, L. Sex Estimation Using Scapular Measurements: Discriminant Function Analysis in a Modern Italian Population. Aust. J. Forensic Sci. 2022, 54, 785–798. [Google Scholar] [CrossRef]
- Prescher, A.; Klumpen, T.H. Does the Area of the Glenoid Cavity of the Scapula Show Sexual Dimorphism? J. Anat. 1995, 186, 223. [Google Scholar]
- Almeida, M.; Laurent, M.R.; Dubois, V.; Claessens, F.; O’Brien, C.A.; Bouillon, R.; Vanderschueren, D.; Manolagas, S.C. Estrogens and Androgens in Skeletal Physiology and Pathophysiology. Physiol. Rev. 2017, 97, 135–187. [Google Scholar] [CrossRef] [Green Version]
- Callewaert, F.; Sinnesael, M.; Gielen, E.; Boonen, S.; Vanderschueren, D. Skeletal Sexual Dimorphism: Relative Contribution of Sex Steroids, GH-IGF1, and Mechanical Loading. J. Endocrinol. 2010, 207, 127–134. [Google Scholar] [CrossRef] [Green Version]
- Seeman, E. Clinical Review 137: Sexual Dimorphism in Skeletal Size, Density, and Strength. J. Clin. Endocrinol. Metab. 2001, 86, 4576–4584. [Google Scholar] [CrossRef]
- Cutler, G.B. The Role of Estrogen in Bone Growth and Maturation during Childhood and Adolescence. J. Steroid Biochem. Mol. Biol. 1997, 61, 141–144. [Google Scholar] [CrossRef] [PubMed]
- Bass, S.; Delmas, P.D.; Pearce, G.; Hendrich, E.; Tabensky, A.; Seeman, E. The Differing Tempo of Growth in Bone Size, Mass, and Density in Girls Is Region-Specific. J. Clin. Investig. 1999, 104, 795–804. [Google Scholar] [CrossRef]
- Seeman, E. Pathogenesis of Bone Fragility in Women and Men. Lancet 2002, 359, 1841–1850. [Google Scholar] [CrossRef] [PubMed]
- Berns, C.M. The Evolution of Sexual Dimorphism: Understanding Mechanisms of Sexual Shape Differences. In Sexual Dimorphism; Moriyama, H., Ed.; IntechOpen: London, UK, 2013; pp. 1–16. ISBN 978-953-51-1075-0. [Google Scholar]
- Lassek, W.D.; Gaulin, S.J.C. Substantial but Misunderstood Human Sexual Dimorphism Results Mainly from Sexual Selection on Males and Natural Selection on Females. Front. Psychol. 2022, 13, 859931. [Google Scholar] [CrossRef] [PubMed]
- Hrdlička, A. The Adult Scapula. Additional Observations and Measurements. Am. J. Phys. Anthropol. 1942, 29, 363–415. [Google Scholar] [CrossRef]
- Kuhns, J.G. Variations in the Vertebral Border of the Scapula: Their Relation to Muscular Function. Phys. Ther. 1945, 25, 207–210. [Google Scholar] [CrossRef]
- Wolffson, D.M. Scapula Shape and Muscle Function, with Special Reference to the Vertebral Border. Am. J. Phys. Anthropol. 1950, 8, 331–341. [Google Scholar] [CrossRef]
- Scott, J.H. Muscle Growth and Function in Relation to Skeletal Morphology. Am. J. Phys. Anthropol. 1957, 15, 197–234. [Google Scholar] [CrossRef]
- Charisi, D.; Eliopoulos, C.; Vanna, V.; Koilias, C.G.; Manolis, S.K. Sexual Dimorphism of the Arm Bones in a Modern Greek Population. J. Forensic Sci. 2011, 56, 10–18. [Google Scholar] [CrossRef]
- Gonzalez, P.N.; Bernal, V.; Perez, S.I. Geometric Morphometric Approach to Sex Estimation of Human Pelvis. Forensic Sci. Int. 2009, 189, 68–74. [Google Scholar] [CrossRef]
- Baca, K.; Bridge, B.; Snow, M. Three-Dimensional Geometric Morphometric Sex Determination of the Whole and Modeled Fragmentary Human Pubic Bone. PLoS ONE 2022, 17, e0265754. [Google Scholar] [CrossRef] [PubMed]
- Ammer, S.; d’Oliveira Coelho, J.; Cunha, E.M. Outline Shape Analysis on the Trochlear Constriction and Olecranon Fossa of the Humerus: Insights for Sex Estimation and a New Computational Tool. J. Forensic Sci. 2019, 64, 1788–1795. [Google Scholar] [CrossRef] [PubMed]
- Garcovich, D.; Albert Gasco, L.; Alvarado Lorenzo, A.; Aiuto, R.; Adobes Martin, M. Sex Estimation through Geometric Morphometric Analysis of the Frontal Bone: An Assessment in Pre-Pubertal and Post-Pubertal Modern Spanish Population. Int. J. Leg. Med. 2022, 136, 319–328. [Google Scholar] [CrossRef] [PubMed]
- Kranioti, E.F.; Nathena, D.; Michalodimitrakis, M. Sex Estimation of the Cretan Humerus: A Digital Radiometric Study. Int. J. Leg. Med. 2011, 125, 659–667. [Google Scholar] [CrossRef]
- Kranioti, E.F.; Bastir, M.; Sánchez-Meseguer, A.; Rosas, A. A Geometric-Morphometric Study of the Cretan Humerus for Sex Identification. Forensic Sci. Int. 2009, 189, 111.e1–111.e8. [Google Scholar] [CrossRef]
- López-Lázaro, S.; Pérez-Fernández, A.; Alemán, I.; Viciano, J. Sex Estimation of the Humerus: A Geometric Morphometric Analysis in an Adult Sample. Leg. Med. 2020, 47, 101773. [Google Scholar] [CrossRef]
- Ali, Z.; Cox, C.; Stock, M.K.; Zandee van Rilland, E.E.; Rubio, A.; Fowler, D.R. Estimating Sex Using Metric Analysis of the Scapula by Postmortem Computed Tomography. J. Forensic Sci. 2018, 63, 1346–1349. [Google Scholar] [CrossRef]
- Benítez, H.A. Sexual Dimorphism Using Geometric Morphometric Approach. In Sexual Dimorphism; Moriyama, H., Ed.; IntechOpen: London, UK, 2013; pp. 35–50. ISBN 978-953-51-1075-0. [Google Scholar]
Age Group (Years) | Females | Males | Total Number of Individuals | Percentage |
---|---|---|---|---|
17–29 | 6 | 5 | 11 | 5.21% |
30–39 | 6 | 7 | 13 | 6.16% |
40–49 | 10 | 9 | 19 | 9.00% |
50–59 | 6 | 11 | 17 | 8.06% |
60–69 | 12 | 16 | 28 | 13.27% |
70–79 | 18 | 19 | 37 | 17.54% |
80+ | 53 | 33 | 86 | 40.76% |
Total | 111 | 100 | 211 | 100% |
Centroid Size | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 33.798357 | 2.414168 | 14 | 1979.15 | <0.001 |
Error 1 | 0.018297 | 0.001220 | 15 | ||
Shape | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 0.166898 | 0.001192 | 140 | 251.16 | <0.001 |
Error 1 | 0.000712 | 0.000005 | 150 |
Centroid Size | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 35.128895 | 2.509207 | 14 | 650.49 | <0.001 |
Error 1 | 0.057861 | 0.003857 | 15 | ||
Shape | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 0.169308 | 0.001209 | 140 | 138.41 | <0.001 |
Error 1 | 0.001311 | 0.000009 | 150 |
Centroid Size | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 190.960227 | 190.960227 | 1 | 101.02 | <0.001 |
Residual | 395.062558 | 1.890251 | 209 | ||
Shape | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 0.030745 | 0.003075 | 10 | 5.19 | <0.001 |
Residual | 1.238128 | 0.000592 | 2090 |
Jackknife Resampling | ||||
---|---|---|---|---|
Males | Females | Total | Accuracy | |
Males | 67 | 33 | 100 | 67.00% |
Females | 37 | 74 | 111 | 66.67% |
Total | 104 | 107 | 211 | 66.82% |
Jackknife Resampling | ||||
---|---|---|---|---|
Males | Females | Total | Accuracy | |
Males | 78 | 22 | 100 | 78.00% |
Females | 20 | 91 | 111 | 81.98% |
Total | 98 | 113 | 211 | 80.09 |
Sum of squares | |
Total SS: | 1.238128 |
Predicted SS: | 0.012018 |
Residual SS: | 1.226110 |
Size-shape influence | |
% predicted: | 0.97% |
Centroid Size | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 779.947691 | 779.947691 | 1 | 95.51 | <0.001 |
Residual | 1633.109111 | 7.889416 | 207 | ||
Shape | |||||
Effect | SS | MS | df | F | P (param.) |
Individual | 0.025323 | 0.000333 | 76 | 4.54 | <0.001 |
Residual | 1.164965 | 0.000073 | 15,732 |
Jackknife Resampling | ||||
---|---|---|---|---|
Males | Females | Total | Accuracy | |
Males | 63 | 37 | 100 | 63.00% |
Females | 35 | 76 | 111 | 68.47% |
Total | 98 | 113 | 211 | 65.88% |
Jackknife Resampling | ||||
---|---|---|---|---|
M | F | Total | Accuracy | |
M | 71 | 29 | 100 | 71.00% |
F | 36 | 75 | 111 | 67.57% |
Total | 107 | 104 | 211 | 69.19% |
Sum of Squares | |
Total SS: | 1.164965 |
Predicted SS: | 0.008401 |
Residual SS: | 1.156564 |
Size-shape influence | |
% predicted: | 0.72% |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maranho, R.; Ferreira, M.T.; Curate, F. Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples. Forensic Sci. 2022, 2, 780-794. https://doi.org/10.3390/forensicsci2040056
Maranho R, Ferreira MT, Curate F. Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples. Forensic Sciences. 2022; 2(4):780-794. https://doi.org/10.3390/forensicsci2040056
Chicago/Turabian StyleMaranho, Rúben, Maria Teresa Ferreira, and Francisco Curate. 2022. "Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples" Forensic Sciences 2, no. 4: 780-794. https://doi.org/10.3390/forensicsci2040056
APA StyleMaranho, R., Ferreira, M. T., & Curate, F. (2022). Sexual Dimorphism of the Human Scapula: A Geometric Morphometrics Study in Two Portuguese Reference Skeletal Samples. Forensic Sciences, 2(4), 780-794. https://doi.org/10.3390/forensicsci2040056