Among Bodies: Portuguese Cemeterial Exhumations Three Years after a Pandemic
Abstract
:1. Introduction
2. Postmortem Detection of SARS-CoV-2 in Human Samples
3. Suggested Guidelines
- Safety around the grave: Given that exhumations take place during the opening hours of cemeteries, a safety perimeter should be established around the grave to restrict the access of cemeterial visitors and the relatives of the deceased.
- PPE: Gravediggers must wear head-to-toe PPE as used during the pandemic burials (i.e., safety glasses or face shields, masks, gloves, full body suits, and footwear protection). To avoid cross-contamination, the PPE should be safely removed and disposed in appropriate containers for staff-only use and not on the containers accessed by cemeterial visitors. Reusable PPE should be avoided but, if necessary (e.g., safety glasses or face shields), they should be washed with clean running water and soap, and disinfected.
- Impermeable shroud: Gravediggers will have to open the body bag to ensure the body is completely decomposed. If the body is not skeletonized and the grave must be closed, the impermeable shroud should be safely removed and disposed of in an appropriate container for staff-only use to avoid cross-contamination. If the body continues to be wrapped in the bag, complete decomposition might hardly be achieved in the next two years, as expected by law.
- Exhumed skeletonized remains: As designated by law, bones must be placed in wood coffins for cremation or zinc coffins for ossuaries and vaults. Coffins should be sprayed with a disinfectant solution to avoid cross-contamination when handling, and cremation should take place on the same day of the exhumation.
- Burial materials: Once the body is exhumed, all the materials present in the grave (e.g., coffin boards and the deceased’s garments) should be safely removed and disposed of in an appropriate container for staff-only use to avoid cross-contamination. Nothing should be left inside the graves.
- After the exhumation: Gravediggers should thoroughly wash their hands with running water and soap, and use hand-sanitiser. All personal belongings (e.g., eyeglasses) should also be disinfected. Gravediggers should take a shower before leaving the cemetery as is already common practice.
4. Future Perspectives
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cui, J.; Li, F.; Shi, Z.-L. Origin and evolution of pathogenic coronaviruses. Nat. Rev. Microbiol. 2019, 17, 181–192. [Google Scholar] [CrossRef]
- Masters, P.S. The Molecular Biology of Coronaviruses. In Advances in Virus Research; Maramorosch, K., Shatkin, A., Eds.; Academic Press: New Jersey, NJ, USA, 2006; Volume 66, pp. 193–292. [Google Scholar]
- Drosten, C.; Günther, S.; Preiser, W.; Van Der Werf, S.; Brodt, H.-R.; Becker, S.; Rabenau, H.; Panning, M.; Kolesnikova, L.; Fouchier, R.A. Identification of a novel coronavirus in patients with severe acute respiratory syndrome. N. Engl. J. Med. 2003, 348, 1967–1976. [Google Scholar] [CrossRef]
- Zapor, M. Persistent detection and infectious potential of SARS-CoV-2 virus in clinical specimens from COVID-19 patients. Viruses 2020, 12, 1384. [Google Scholar] [CrossRef]
- Sridhar, S.; Nicholls, J. Pathophysiology of infection with SARS-CoV-2—What is known and what remains a mystery. Respirology 2021, 26, 652–665. [Google Scholar] [CrossRef]
- Hoffmann, M.; Kleine-Weber, H.; Schroeder, S.; Krüger, N.; Herrier, T.; Erichsen, S.; Schiergens, T.S.; Herrier, G.; Wu, N.-H.; Nitsche, A.; et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell 2020, 181, 271–280. [Google Scholar] [CrossRef]
- Hamming, I.; Timens, W.; Bulthuis, M.L.C.; Lely, A.T.; Navis, G.J.; van Goor, H. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J. Pathol. 2004, 203, 631–637. [Google Scholar] [CrossRef]
- Crook, H.; Raza, S.; Nowell, J.; Young, M.; Edison, P. Long COVID—Mechanisms, risk factors, and management. BMJ 2021, 374, n1648. [Google Scholar] [CrossRef]
- WHO. Control for the safe management of a dead body in the context of COVID-19. J. Hosp. Infect. 2020, 104, 246–251. [Google Scholar]
- Dent, B.B.; Forbes, S.L.; Stuart, B.H. Review of human decomposition processes in soil. Environ. Geol. 2004, 45, 576–585. [Google Scholar] [CrossRef]
- Alfsdotter, C.; Veltri, M.F.; Crabb, C.L.; Wescott, D.J. An actualistic taphonomic study of human decomposition in coffins. Bioarchaeol. Int. 2022, 6, 190. [Google Scholar] [CrossRef]
- Ferreira, M.T.; Cunha, E. Can we infer post mortem interval on the basis of decomposition rate? A case from a Portuguese cemetery. Forensic Sci. Int. 2013, 226, 298.e1–298.e6. [Google Scholar] [CrossRef]
- Byard, R.W.; Simpson, E.; Forbes, S.L. Arid climate adipocere—The importance of microenvironment. J. Forensic Sci. 2020, 65, 327–329. [Google Scholar] [CrossRef]
- Morgado, R. Inumação em modelos de consumpção aeróbia—Estudo tafonómico das consequências da utilização de caixão e acelerador enzimático na decomposição. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2018. [Google Scholar]
- Williams, A.; Temple, T.; Pollard, S.J.; Jones, R.J.; Ritz, K. Environmental Considerations for Common Burial Site Selection after Pandemic Events. In Criminal and Environmental Soil Forensics; Ritz, K., Dawson, L., Miller, D., Eds.; Springer: Dordrecht, The Netherlands, 2009; pp. 87–101. [Google Scholar]
- Ferreira, M.T.; Coelho, C.; Gama, I. Application of forensic anthropology to non-forensic issues: An experimental taphonomic approach to the study of human body decomposition in aerobic conditions. Aust. J. Forensic Sci. 2019, 51, 149–157. [Google Scholar] [CrossRef]
- Silva-Bessa, A.; Forbes, S.L.; Dinis-Oliveira, R.J.; Madureira-Carvalho, Á.; Ferreira, M.T. A Preliminary Study on Five Exhumed Bodies and Their Burial Graves from the Cemetery of Prado do Repouso (Porto, Portugal). RevSALUS Rev. Científica Int. Da Rede Académica Das Ciências Da Saúde Da Lusofonia 2022, 4, 25. [Google Scholar] [CrossRef]
- Oliveira, B.R.F. Cemitérios: Impacte Nas Águas Subterrâneas; University of Aveiro: Aveiro, Portugal, 2009. [Google Scholar]
- Riedel, S. The value of post-mortem microbiology cultures. J. Clin. Microbiol. 2014, 52, 1028–1033. [Google Scholar] [CrossRef]
- Ridgway, E.J.; Subramanian, B.M.; Raza, M. Clinical Microbiology and Virology in the Context of the Autopsy. In Forensic Microbiology; Carter, D.O., Tomberlin, J.K., Benbow, M.E., Metcalf, J.L., Eds.; John Wiley & Sons: West Sussex, UK, 2017; pp. 146–191. [Google Scholar]
- Spiliopoulou, C.; Papadodima, S.; Kotakidis, N.; Koutselinis, A. Clinical diagnoses and autopsy findings: A retrospective analysis of 252 cases in Greece. Arch. Pathol. Lab. Med. 2005, 129, 210–214. [Google Scholar] [CrossRef]
- Tambuzzi, S.; Maciocco, F.; Gentile, G.; Boracchi, M.; Faraone, C.; Andreola, S.; Zoja, R. Utility and diagnostic value of post-mortem microbiology associated with histology for forensic purposes. Forensic Sci. Int. 2023, 342, 111534. [Google Scholar] [CrossRef]
- Fernández-Rodríguez, A.; Casas, I.; Culebras, E.; Morilla, E.; Cohen, M.C.; Alberola, J. COVID-19 y estudios microbiológicos post mortem. Rev. Española De Med. Leg. 2020, 46, 127–138. [Google Scholar] [CrossRef]
- Beltempo, P.; Curti, S.M.; Maserati, R.; Gherardi, M.; Castelli, M. Persistence of SARS-CoV-2 RNA in post-mortem swab 35 days after death: A case report. Forensic Sci. Int. 2021, 319, 110653. [Google Scholar] [CrossRef]
- Edler, C.; Schröder, A.S.; Aepfelbacher, M.; Fitzek, A.; Heinemann, A.; Heinrich, F.; Klein, A.; Langenwalder, F.; Lütgehetmann, M.; Meißner, K.; et al. Dying with SARS-CoV-2 infection—An autopsy study of the first consecutive 80 cases in Hamburg, Germany. Int. J. Leg. Med. 2020, 134, 1275–1284. [Google Scholar] [CrossRef]
- Sawant, O.B.; Singh, S.; Wright, R.E., III; Jones, K.M.; Titus, M.S.; Dennis, E.; Hicks, E.; Majmudar, P.A.; Kumar, A.; Mian, S.I. Prevalence of SARS-CoV-2 in human post-mortem ocular tissues. Ocul. Surf. 2021, 19, 322–329. [Google Scholar] [CrossRef]
- Singh, S.; Garcia, G., Jr.; Shah, R.; Kramerov, A.A.; Wright, R.E., III; Spektor, T.M.; Ljubimov, A.V.; Arumugaswami, V.; Kumar, A. SARS-CoV-2 and its beta variant of concern infect human conjunctival epithelial cells and induce differential antiviral innate immune response. Ocul. Surf. 2022, 23, 184–194. [Google Scholar] [CrossRef]
- Zanon, M.; Neri, M.; Pizzolitto, S.; Radaelli, D.; Concato, M.; Peruch, M.; D’Errico, S. Liver pathology in COVID-19 related death and leading role of autopsy in the pandemic. World J. Gastroenterol. 2023, 29, 200–220. [Google Scholar] [CrossRef]
- Bugra, A.; Das, T.; Arslan, M.N.; Ziyade, N.; Buyuk, Y. Post-mortem pathological changes in extrapulmonary organs in SARS-CoV-2 rt-PCR–positive cases: A single-center experience. Ir. J. Med. Sci. 2022, 191, 81–91. [Google Scholar] [CrossRef]
- McConnell, M.J.; Kondo, R.; Kawaguchi, N.; Iwakiri, Y. COVID-19 and liver injury: Role of inflammatory endotheliopathy, platelet dysfunction, and thrombosis. Hepatol. Commun. 2022, 6, 255–269. [Google Scholar] [CrossRef]
- Mahjani, M.; Parvin, M.; Ghobadi, S.; Jafari, A.; Ahangar, H.; Gohari, S.; Gohari, S. Post-mortem histopathologic findings and SARS-CoV-2 detection in autopsy kidneys of patients with COVID-19: A systematic review and meta-analysis. Am. J. Clin. Pathol. 2023, 159, aqad001. [Google Scholar] [CrossRef]
- Maccio, U.; Zinkernagel, A.S.; Schuepbach, R.; Probst-Mueller, E.; Frontzek, K.; Brugger, S.D.; Hofmaenner, D.A.; Moch, H.; Varga, Z. Long-term persisting SARS-CoV-2 RNA and pathological findings: Lessons learnt from a series of 35 COVID-19 autopsies. Front. Med. 2022, 9, 778489. [Google Scholar] [CrossRef]
- Putra, S.P.; Hidayat, T.; Zhuhra, R.T. SARS-CoV-2 persistence and infectivity in COVID-19 corpses: A systematic review. Forensic Sci. Med. Pathol. 2022, 19, 94–102. [Google Scholar] [CrossRef]
- Sablone, S.; Solarino, B.; Ferorelli, D.; Benevento, M.; Chironna, M.; Loconsole, D.; Sallustio, A.; Dell’Erba, A.; Introna, F. Post-mortem persistence of SARS-CoV-2: A preliminary study. Forensic Sci. Med. Pathol. 2021, 17, 403–410. [Google Scholar] [CrossRef]
- Prasad, M.; Nachappa, S.A.; Anand, N.; Rudresh, D.U.; Singh, Y.; Gangani, S.P.; Bhansali, F.K.; Sharma, B.R.; Senathipathi, D.N.; Byrappa, S.H.; et al. The detection of SARS-CoV-2 in autolysed samples from an exhumed decomposed body: Implications to virus survival, genome stability and spatial distribution in tissues. medRxiv 2021, 19, 2021–2102. [Google Scholar] [CrossRef]
- Gabbrielli, M.; Gandolfo, C.; Anichini, G.; Candelori, T.; Benvenuti, M.; Savellini, G.G.; Cusi, M.G. How long can SARS-CoV-2 persist in human corpses? Int. J. Infect. Dis. 2021, 106, 1–2. [Google Scholar] [CrossRef]
- Musso, N.; Falzone, L.; Stracquadanio, S.; Bongiorno, D.; Salerno, M.; Esposito, M.; Sessa, F.; Libra, M.; Stefani, S.; Pomara, C. Post-mortem detection of SARS-CoV-2 RNA in long-buried lung samples. Diagnostics 2021, 11, 1158. [Google Scholar] [CrossRef]
- Manjula, S.; Ajjamada, S.; Kiran, T.; Prasad, D.M. Positive RT-PCR for COVID-19 in the exhumed body: A dilemma in dead body safety, virus survival, and genome stability. Asian J. Res. Med. Med. Sci. 2021, 3, 71–77. [Google Scholar]
- Plenzig, S.; Holz, F.; Bojkova, D.; Kettner, M.; Cinatl, J.; Verhoff, M.A.; Birngruber, C.G.; Ciesek, S.; Rabenau, H.F. Detection and infectivity of SARS-CoV-2 in exhumated corpses. Int. J. Leg. Med. 2021, 135, 2531–2536. [Google Scholar] [CrossRef]
- Finegan, O.; Abboud, D.; Fonseca, S.; Malgrati, I.; Mendez, M.D.M.; Burri, J.-M.; Guyomarc’h, P. International Committee of the Red Cross (ICRC): Cemetery planning, preparation and management during COVID-19: A quick guide to proper documentation and disposition of the dead. Forensic Sci. Int. 2020, 316, 110436. [Google Scholar] [CrossRef]
- Watanabe, T.; Kawaoka, Y. Pathogenesis of the 1918 pandemic influenza virus. PLoS Pathog. 2011, 7, e1001218. [Google Scholar] [CrossRef]
- Mills, C.E.; Robins, J.M.; Lipsitch, M. Transmissibility of 1918 pandemic influenza. Nature 2004, 432, 904–906. [Google Scholar] [CrossRef]
- Lowe, K.M.; Law, E. Location of historic mass graves from the 1919 Spanish Influenza in the Aboriginal community of Cherbourg using geophysics. Qld. Archaeol. Res. 2022, 25, 67–81. [Google Scholar] [CrossRef]
- Fornaciari, A.; Giuffra, V. The 1854–55 Cholera Pandemic in Tuscany and the Cholera Cemetery of the Village of Bennabbio. Med. Nei Secoli J. Hist. Med. Med. Humanit. 2021, 33, 261–274. [Google Scholar]
- Willmott, H.; Townend, P.; Swales, D.M.; Poinar, H.; Eaton, K.; Klunk, J. A Black Death mass grave at Thornton Abbey: The discovery and examination of a fourteenth-century rural catastrophe. Antiquity 2020, 94, 179–196. [Google Scholar] [CrossRef]
- Kacki, S.; Rahalison, L.; Rajerison, M.; Ferroglio, E.; Bianucci, R. Black Death in the rural cemetery of Saint-Laurent-de-la-Cabrerisse Aude-Languedoc, southern France, 14th century: Immunological evidence. J. Archaeol. Sci. 2011, 38, 581–587. [Google Scholar] [CrossRef]
- Mariani, R.; García-Mancuso, R.; Varela, G.; Inda, A. Entomofauna of a buried body: Study of the exhumation of a human cadaver in Buenos Aires, Argentina. Forensic Sci. Int. 2014, 237, 19–26. [Google Scholar] [CrossRef]
- Cardoso, H. An ethical, cultural and historical background for cemetery-based human skeletal reference collections. J. Contemp. Archaeol. 2021, 8, 21–52. [Google Scholar] [CrossRef]
- Guareschi, E.E.; Magni, P.A. Preliminary taphonomical comparison of the decomposition process in simple burials, traditional tombs and aerated tombs in an urban cemetery in Northern Italy. Forensic Sci. 2022, 2, 37. [Google Scholar] [CrossRef]
- Silva-Bessa, A.; Madureira-Carvalho, Á.; Dawson, L.; Ferreira, M.T.; Dinis-Oliveira, R.J.; Forbes, S.L. The importance of soil on human taphonomy and management of Portuguese public cemeteries. Forensic Sci. 2022, 2, 47. [Google Scholar] [CrossRef]
- Parks, C.L. A study of the human decomposition sequence in central Texas. J. Forensic Sci. 2011, 56, 19–22. [Google Scholar] [CrossRef]
- Hyde, E.R.; Haarmann, D.P.; Petrosino, J.F.; Lynne, A.M.; Bucheli, S.R. Initial insights into bacterial succession during human decomposition. Int. J. Leg. Med. 2015, 129, 661–671. [Google Scholar] [CrossRef]
- Dautartas, A.; Kenyhercz, M.W.; Vidoli, G.M.; Meadows Jantz, L.; Mundorff, A.; Steadman, D.W. Differential decomposition among pig, rabbit, and human remains. J. Forensic Sci. 2018, 63, 1673–1683. [Google Scholar] [CrossRef]
- Cockle, D.L.; Bell, L.S. The environmental variables that impact human decomposition in terrestrially exposed contexts within Canada. Sci. Justice 2017, 57, 107–117. [Google Scholar] [CrossRef]
- Ribéreau-Gayon, A.; Carter, D.O.; Forbes, S. Developing a new scoring method to evaluate human decomposition in a humid, continental (Dfb) climate in Quebec. J. Forensic Sci. 2023, 68, 536–548. [Google Scholar] [CrossRef]
- Suckling, J.K.; Spradley, M.K.; Godde, K. A longitudinal study on human outdoor decomposition in Central Texas. J. Forensic Sci. 2016, 61, 19–25. [Google Scholar] [CrossRef]
- Bugelli, V.; Gherardi, M.; Focardi, M.; Pinchi, V.; Vanin, S.; Campobasso, C.P. Decomposition pattern and insect colonization in two cases of suicide by hanging. Forensic Sci. Res. 2018, 3, 94–102. [Google Scholar] [CrossRef]
- Matuszewski, S.; Konwerski, S.; Frątczak, K.; Szafałowicz, M. Effect of body mass and clothing on decomposition of pig carcasses. Int. J. Leg. Med. 2014, 128, 1039–1048. [Google Scholar] [CrossRef]
- Ross, A.H.; Hale, A.R. Decomposition of juvenile-sized remains: A macro-and microscopic perspective. Forensic Sci. Res. 2018, 3, 310–319. [Google Scholar] [CrossRef]
- Javan, G.T.; Finley, S.J.; Tuomisto, S.; Hall, A.; Benbow, M.E.; Mills, D. An interdisciplinary review of the thanatomicrobiome in human decomposition. Forensic Sci. Med. Pathol. 2019, 15, 75–83. [Google Scholar] [CrossRef]
- Bates, L.N.; Wescott, D.J. Comparison of decomposition rates between autopsied and non-autopsied human remains. Forensic Sci. Int. 2016, 261, 93–100. [Google Scholar] [CrossRef]
- Smith, A.C. The effects of sharp-force thoracic trauma on the rate and pattern of decomposition. J. Forensic Sci. 2014, 59, 319–326. [Google Scholar] [CrossRef]
- Fiedler, S.; Graw, M. Decomposition of buried corpses, with special reference to the formation of adipocere. Naturwissenschaften 2003, 90, 291–300. [Google Scholar] [CrossRef]
- Forbes, S.L.; Stuart, B.H.; Dent, B.B. The effect of the burial environment on adipocere formation. Forensic Sci. Int. 2005, 154, 24–34. [Google Scholar] [CrossRef]
- Forbes, S.L.; Stuart, B.H.; Dent, B.B. The effect of the method of burial on adipocere formation. Forensic Sci. Int. 2005, 154, 44–52. [Google Scholar] [CrossRef]
- Saegeman, V.; Cohen, M.C.; Burton, J.L.; Martinez, M.J.; Rakislova, N.; Offiah, A.C.; Fernandez-Rodriguez, A. Microbiology in minimally invasive autopsy: Best techniques to detect infection. ESGFOR (ESCMID study group of forensic and post-mortem microbiology) guidelines. Forensic Sci. Med. Pathol. 2021, 17, 87–100. [Google Scholar] [CrossRef]
- Baj, J.; Ciesielka, M.; Buszewicz, G.; Maciejewski, R.; Budzyńska, B.; Listos, P.; Teresiński, G. COVID-19 in the autopsy room—requirements, safety, recommendations and pathological findings. Forensic Sci. Med. Pathol. 2021, 17, 101–113. [Google Scholar] [CrossRef]
- Biagini, P.; Thèves, C.; Balaresque, P.; Geraut, A.; Cannet, C.; Keyser, C.; Nikolaeva, D.; Gerard, P.; Duchesne, S.; Orlando, L. Variola virus in a 300-year-old Siberian mummy. N. Engl. J. Med. 2012, 367, 2057–2059. [Google Scholar] [CrossRef]
- Duggan, A.T.; Perdomo, M.F.; Piombino-Mascali, D.; Marciniak, S.; Poinar, D.; Emery, M.V.; Buchmann, J.P.; Duchêne, S.; Jankauskas, R.; Humphreys, M.; et al. 17th century variola virus reveals the recent history of smallpox. Curr. Biol. 2016, 26, 3407–3412. [Google Scholar] [CrossRef]
- Meffray, A.; Ardagna, Y.; Sillano, B.; Parmentier, S.; Pouget, B.; Signoli, M.; Biagini, P. Variola virus DNA in skeletal remains, 17th to 18th centuries, southeastern France. Clin. Microbiol. Infect. 2021, 27, 1871–1872. [Google Scholar] [CrossRef]
- Luna, L.H.; Aranda, C.M.; Santos, A.L.; Donoghue, H.D.; Lee, O.Y.-C.; Wu, H.H.T.; Besra, G.S.; Minnikin, D.E.; Llewellyn, G.; Williams, C.M.; et al. Oldest evidence of tuberculosis in Argentina: A multidisciplinary investigation in an adult male skeleton from Saujil, Tinogasta, Catamarca (905–1030 CE). Tuberculosis 2020, 125, 101995. [Google Scholar] [CrossRef]
- Pfrengle, S.; Neukamm, J.; Guellil, M.; Keller, M.; Molak, M.; Avanzi, C.; Kushniarevich, A.; Montes, N.; Neumann, G.U.; Reiter, E.; et al. Mycobacterium leprae diversity and population dynamics in medieval Europe from novel ancient genomes. BMC Biol. 2021, 19, 220. [Google Scholar] [CrossRef]
- Haensch, S.; Bianucci, R.; Signoli, M.; Rajerison, M.; Schultz, M.; Kacki, S.; Vermunt, M.; Weston, D.A.; Hurst, D.; Achtman, M. Distinct clones of Yersinia pestis caused the black death. PLoS Pathog. 2010, 6, e1001134. [Google Scholar] [CrossRef]
- Bianucci, R.; Rahalison, L.; Massa, E.R.; Peluso, A.; Ferroglio, E.; Signoli, M. A rapid diagnostic test detects plague in ancient human remains: An example of the interaction between archeological and biological approaches (southeastern France, 16th–18th centuries). Am. J. Phys. Anthropol. 2008, 136, 361–367. [Google Scholar] [CrossRef]
- Raoult, D.; Aboudharam, G.; Crubézy, E.; Larrouy, G.; Ludes, B.; Drancourt, M. Molecular identification by “suicide PCR” of Yersinia pestis as the agent of medieval black death. Proc. Natl. Acad. Sci. USA 2000, 97, 12800–12803. [Google Scholar] [CrossRef]
- Aboubakr, H.A.; Sharafeldin, T.A.; Goyal, S.M. Stability of SARS-CoV-2 and other coronaviruses in the environment and on common touch surfaces and the influence of climatic conditions: A review. Transbound. Emerg. Dis. 2021, 68, 296–312. [Google Scholar] [CrossRef]
- Chin, A.W.H.; Chu, J.T.S.; Perera, M.R.A.; Hui, K.P.Y.; Yen, H.-L.; Chan, M.C.W.; Peiris, M.; Poon, L.L.M. Correspondence. Stability of SARS-CoV-2 in different environmental conditions. Lancet Microbe 2020, 1, 30003. [Google Scholar]
- Steffan, J.; Brevik, E.; Burgess, L.; Cerdà, A. The effect of soil on human health: An overview. Eur. J. Soil Sci. 2018, 69, 159–171. [Google Scholar] [CrossRef]
- Burgess, J.; Schwan, W.; Volk, T. PCR-based detection of DNA from the human pathogen Blastomyces dermatitidis from natural soil samples. Med. Mycol. 2006, 44, 741–748. [Google Scholar] [CrossRef]
- Steffan, J.J.; Derby, J.A.; Brevik, E.C. Soil pathogens that may potentially cause pandemics, including severe acute respiratory syndrome (SARS) coronaviruses. Curr. Opin. Environ. Sci. Health 2020, 17, 35–40. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silva-Bessa, A.; Ferreira, M.T.; Dinis-Oliveira, R.J. Among Bodies: Portuguese Cemeterial Exhumations Three Years after a Pandemic. Forensic Sci. 2023, 3, 293-301. https://doi.org/10.3390/forensicsci3020022
Silva-Bessa A, Ferreira MT, Dinis-Oliveira RJ. Among Bodies: Portuguese Cemeterial Exhumations Three Years after a Pandemic. Forensic Sciences. 2023; 3(2):293-301. https://doi.org/10.3390/forensicsci3020022
Chicago/Turabian StyleSilva-Bessa, Angela, Maria Teresa Ferreira, and Ricardo Jorge Dinis-Oliveira. 2023. "Among Bodies: Portuguese Cemeterial Exhumations Three Years after a Pandemic" Forensic Sciences 3, no. 2: 293-301. https://doi.org/10.3390/forensicsci3020022
APA StyleSilva-Bessa, A., Ferreira, M. T., & Dinis-Oliveira, R. J. (2023). Among Bodies: Portuguese Cemeterial Exhumations Three Years after a Pandemic. Forensic Sciences, 3(2), 293-301. https://doi.org/10.3390/forensicsci3020022