The Influence of Flock Variation, Sample Size, Flock Size and Mean Egg Count on the Accuracy and Precision of the Estimated Mean Egg Count
Abstract
:1. Introduction
2. Results
2.1. Variation in the Flock
2.2. Sample Size
2.3. Flock Size
2.4. Flock Mean
2.5. A Plausible Scenario That Estimates the Flock Mean with Low Precision
3. Discussion
4. Materials and Methods
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Coop, R.L.; Sykes, A.R.; Angus, K.W. The effect of three levels of Ostertagia circumcincta larvae on growth rate, food intake and body composition of growing lambs. J. Agric. Sci. 1982, 98, 247–255. [Google Scholar] [CrossRef]
- Burgess, C.G.; Bartley, Y.; Redman, E.; Skuce, P.J.; Nath, M.; Whitelaw, F.; Tait, A.; Gilleard, J.S.; Jackson, F. A survey of the trichostrongylid nematode species present on UK sheep farms and associated anthelmintic control practices. Vet. Parasitol. 2012, 189, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Stubbings, L.; Bartley, D.; Busin, V.; Lovatt, F.; Page, P.; Rose Vineer, H.; Skuce, P. SCOPS Technical Manual; OSF: Charlottesville, VA, USA, 2020. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Denwood, M.J.; Nielsen, M.K.; Thamsborg, S.M.; Torgerson, P.R.; Gilleard, J.S.; Dobson, R.J.; Vercruysse, J.; Levecke, B. World Association for the Advancement of Veterinary Parasitology (WAAVP) guideline for diagnosing anthelmintic resistance using the faecal egg count reduction test in ruminants, horses and swine. Vet. Parasitol. 2023, 318, 109936. [Google Scholar] [CrossRef]
- Denwood, M.J.; Kaplan, R.M.; McKendrick, I.J.; Thamsborg, S.M.; Nielsen, M.K.; Levecke, B. A statistical framework for calculating prospective sample sizes and classifying efficacy results for faecal egg count reduction tests in ruminants, horses and swine. Vet. Parasitol. 2023, 314, 109867. [Google Scholar] [CrossRef] [PubMed]
- Torgerson, P.R.; Schnyder, M.; Hertzberg, H. Detection of anthelmintic resistance: A comparison of mathematical techniques. Vet. Parasitol. 2005, 128, 291–298. [Google Scholar] [CrossRef]
- Kahn, L. Accuracy and Precision of Sampling for Worm Egg Count Estimates (Abstract). In Proceedings of the 23rd International Conference of the World Association of the Advancement of Veterinary Parasitology, Buenos Aires, Argentina, 21–25 August 2011; Available online: https://hdl.handle.net/1959.11/15773 (accessed on 28 February 2024).
- Cochran, W.G. Sampling Techniques; John Wiley & Sons: Hoboken, NJ, USA, 1977. [Google Scholar]
- Bliss, C.I.; Fisher, R.A. Fitting the Negative Binomial Distribution to Biological Data. Biometrika 1953, 9, 176–200. [Google Scholar] [CrossRef]
- Gaba, S.; Ginot, V.; Cabaret, J. Modelling macroparasite aggregation using a nematode-sheep system: The Weibull distribution as an alternative to the negative binomial distribution? Parasitology 2005, 131, 393–401. [Google Scholar] [CrossRef]
- Taylor, L.R. Aggregation, variance and the mean. Nature 1961, 189, 732–735. [Google Scholar] [CrossRef]
- McVinish, R.; Lester, R.J.G. Measuring aggregation in parasite populations. J. R. Soc. Interface/R. Soc. 2020, 17, 20190886. [Google Scholar] [CrossRef]
- Stear, M.J.; Bairden, K.; Duncan, J.L.; Gettinby, G.; McKellar, Q.A.; Murray, M.; Wallace, D.S. The distribution of faecal nematode egg counts in Scottish Blackface lambs following natural, predominantly Ostertagia circumcincta infection. Parasitology 1995, 110, 573–581. [Google Scholar] [CrossRef]
- Evans, M.; Hastings, N.; Peacock, B. Statistical Distributions; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Vaz, M.F.; Fortes, M. Grain size distribution: The lognormal and the gamma distribution functions. Scr. Metall. 1988, 22, 35–40. [Google Scholar] [CrossRef]
- Hunter, G.C.; Quenouille, M.H. A statistical examination of the worm egg count sampling technique for sheep. J. Helminthol. 1952, 26, 157–170. [Google Scholar] [CrossRef]
- Morgan, E.R.; Cavill, L.; Curry, G.E.; Wood, R.M.; Mitchell, E.S. Effects of aggregation and sample size on composite faecal egg counts in sheep. Vet. Parasitol. 2005, 131, 79–87. [Google Scholar] [CrossRef] [PubMed]
- Kenyon, F.; Rinaldi, L.; McBean, D.; Pepe, P.; Bosco, A.; Melville, L.; Devin, L.; Mitchell, G.; Ianniello, D.; Charlier, J.; et al. Pooling sheep faecal samples for the assessment of anthelmintic drug efficacy using McMaster and Mini-FLOTAC in gastrointestinal strongyle and Nematodirus infection. Vet. Parasitol. 2016, 225, 53–60. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, L.; Levecke, B.; Bosco, A.; Ianniello, D.; Pepe, P.; Charlier, J.; Cringoli, G.; Vercruysse, J. Comparison of individual and pooled faecal samples in sheep for the assessment of gastrointestinal strongyle infection intensity and anthelmintic drug efficacy using McMaster and Mini-FLOTAC. Vet. Parasitol. 2014, 205, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Grenfell, B.T.; Wilson, K.; Isham, V.S.; Boyd, H.E.G.; Dietz, K. Modelling patterns of parasite aggregation in natural populations: Trichostrongylid nematode–ruminant interactions as a case study. Parasitology 1995, 111, S135–S151. [Google Scholar] [CrossRef] [PubMed]
- Lohr, S.L. Sampling: Design and Analysis; Brooks/Cole, Cengage Learning: Boston, MA, USA, 2010. [Google Scholar]
- Ikurior, S.J.; Pomroy, W.E.; Scott, I.; Corner-Thomas, R.; Marquetoux, N.; Leu, S.T. Gastrointestinal nematode infection affects overall activity in young sheep monitored with tri-axial accelerometers. Vet. Parasitol. 2020, 283, 109188. [Google Scholar] [CrossRef]
- Lloyd-Smith, J.O. Maximum likelihood estimation of the negative binomial dispersion parameter for highly overdispersed data, with applications to infectious diseases. PLoS ONE 2007, 2, e180. [Google Scholar] [CrossRef] [PubMed]
- Gordon, H.M.; Whitlock, H.V. A new technique for counting nematode eggs in sheep faeces. J. Counc. Sci. Ind. Res. Aust. 1939, 12, 50–52. [Google Scholar]
- Rossanigo, C.E.; Gruner, L. Accuracy of two methods for counting eggs of sheep nematode parasites. Vet. Parasitol. 1991, 39, 115–121. [Google Scholar] [CrossRef]
- Cringoli, G.; Rinaldi, L.; Albonico, M.; Bergquist, R.; Utzinger, J. Geospatial (s)tools: Integration of advanced epidemiological sampling and novel diagnostics. Geospat. Health 2013, 7, 399–404. [Google Scholar] [CrossRef]
- Stear, M.J.; Bairden, K.; Bishop, S.C.; Buitkamp, J.; Duncan, J.L.; Gettinby, G.; McKellar, Q.A.; Park, M.; Parkins, J.J.; Reid, S.W.J.; et al. The genetic basis of resistance to Ostertagia circumcincta in lambs. Vet. J. 1997, 154, 111–119. [Google Scholar] [CrossRef]
- Raadsma, H.W.; Gray, G.D.; Woolaston, R.R. Breeding for disease resistance in Merino sheep in Australia. Rev. Sci. Tech. L’office Int. Epizoot. 2009, 17, 315–328. [Google Scholar] [CrossRef]
- Bisset, S.A.; Morris, C.A.; McEwan, J.C.; Vlassoff, A. Breeding sheep in New Zealand that are less reliant on anthelmintics to maintain health and productivity. New Zealand Vet. J. 2001, 49, 236–246. [Google Scholar] [CrossRef]
- Benavides, M.V.; Sonstegard, T.S.; Kemp, S.; Mugambi, J.M.; Gibson, J.P.; Baker, R.L.; Hanotte, O.; Marshall, K.; Van Tassell, C. Identification of Novel Loci Associated with Gastrointestinal Parasite Resistance in a Red Maasai x Dorper Backcross Population. PLoS ONE 2015, 10, e0122797. [Google Scholar] [CrossRef]
- Bishop, S.; Bairden, K.; McKellar, Q.; Park, M.; Stear, M. Genetic parameters for faecal egg count following mixed, natural, predominantly Ostertagia circumcincta infection and relationships with live weight in young lambs. Anim. Sci. 1996, 63, 423–428. [Google Scholar] [CrossRef]
- Mugambi, J.M.; Wanyangu, S.W.; Bain, R.K.; Owango, M.O.; Duncan, J.L.; Stear, M.J. Response of Dorper and Red Maasai lambs to trickle Haemonchus contortus infections. Res. Vet. Sci. 1996, 61, 218–221. [Google Scholar] [CrossRef]
- Emery, D.L.; Hunt, P.W.; Le Jambre, L.F. Haemonchus contortus: The then and now, and where to from here? Int. J. Parasitol. 2016, 46, 755–769. [Google Scholar] [CrossRef]
- Waller, P.J.; Bernes, G.; Rudby-Martin, L.; Ljungstrõm, B.; Rydzik, A. Evaluation of copper supplementation to control Haemonchus contortus infections of sheep in Sweden. Acta Vet. Scand. 2004, 45, 149–160. [Google Scholar] [CrossRef]
- Douch, P.G.C.; Green, R.S.; Morris, C.A.; McEwan, J.C.; Windon, R.G. Phenotypic markers for selection of nematode-resistant sheep. Int. J. Parasitol. 1996, 26, 899–911. [Google Scholar] [CrossRef]
- Thomas, R.J.; Boag, B. Epidemiological studies on gastro-intestinal nematode parasites of sheep. The control of infection in lambs on contaminated pasture. Res. Vet. Sci. 1973, 15, 238–249. [Google Scholar] [CrossRef] [PubMed]
- Stear, M.J.; Bairden, K.; Bishop, S.C.; Gettinby, G.; McKellar, Q.A.; Park, M.; Strain, S.A.J.; Wallace, D.S. The processes influencing the distribution of parasitic nematodes among naturally infected lambs. Parasitology 1998, 117, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Stear, M.J.; Singleton, D.; Matthews, L. An evolutionary perspective on gastrointestinal nematodes of sheep. J. Helminthol. 2011, 85, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Grafen, A.; Woolhouse, M.E.J. Does the negative binomial distribution add up? Parasitol. Today 1993, 9, 475–477. [Google Scholar] [CrossRef]
- Anscombe, F.J. Sampling theory of the negative binomial and logarithmic series distributions. Biometrika 1950, 37, 358–382. [Google Scholar]
- Stear, M.J.; Abuagob, O.; Benothman, M.; Bishop, S.C.; Innocent, G.; Kerr, A.; Mitchell, S. Variation among faecal egg counts following natural nematode infection in Scottish Blackface lambs. Parasitology 2006, 132, 275–280. [Google Scholar] [CrossRef]
Number Sampled/Egg Count | 10 | 20 | 30 | 40 | 50 | 100 |
---|---|---|---|---|---|---|
≤100 | 0.1 | |||||
≤200 | 1.5 | 0.3 | ||||
≤300 | 8.1 | 1.1 | 0.2 | |||
≤400 | 16.9 | 6.0 | 3.1 | 0.8 | 0.4 | |
≤500 | 28.8 | 17.0 | 11.6 | 6.4 | 5.2 | 1.4 |
≤600 | 40.6 | 30.6 | 27.5 | 21.7 | 18.6 | 16.1 |
≤700 | 51.6 | 49 | 45.4 | 45.0 | 41.6 | 36.1 |
Figure | Identity | Mean | S.d. | 1/k | Wald 95% CL |
---|---|---|---|---|---|
1 | K = 0.5 | 196.5 | 288.9 | 2.25 | 1.58–3.21 |
1 | K = 1 | 201.5 | 230.6 | 1.16 | 0.79–1.68 |
1 | K = 2 | 200.5 | 171.7 | 0.51 | 0.33–0.80 |
1 | K = 3 | 201.0 | 138.3 | 0.27 | 0.15–0.49 |
1 | K = 4 | 200.5 | 130.0 | 0.17 | 0.08–0.34 |
2 | N = 10–50 | 450.5 | 467.0 | 0.998 | 0.73–1.36 |
3a | N = 5/50 | 448 | 452.3 | 0.92 | 0.60–1.40 |
3a | N = 10/100 | 450.5 | 467.0 | 0.998 | 0.73–1.36 |
3a | N = 25/250 | 446.6 | 451.0 | 1.00 | 0.82–1.23 |
3a | N = 50/500 | 454.8 | 481.7 | 0.97 | 0.84–1.11 |
3a | N = 100/1000 | 454.4 | 488.7 | 1.02 | 0.93–1.13 |
3b | T = 50 | 449.0 | 489.5 | 1.01 | 0.65–1.56 |
3b | T = 100 | 450.5 | 467.0 | 0.998 | 0.73–1.36 |
3b | T = 250 | 446.6 | 451.0 | 1.00 | 0.82–1.23 |
3b | T = 500 | 454.8 | 481.7 | 0.97 | 0.84–1.11 |
3b | T = 1000 | 454.4 | 488.7 | 1.02 | 0.93–1.13 |
4 | Mean = 200 | 199.6 | 210.8 | 0.92 | 0.82–1.04 |
4 | Mean = 450 | 454.3 | 488.7 | 1.02 | 0.93–1.13 |
4 | Mean = 750 | 753.0 | 829.2 | 1.04 | 0.95–1.14 |
5 | T = 1000 | 753.4 | 1232.8 | 2.01 | 1.84–2.19 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stear, M.; Preston, S.; Piedrafita, D.; Cullimore, G.; Donskow-Łysoniewska, K. The Influence of Flock Variation, Sample Size, Flock Size and Mean Egg Count on the Accuracy and Precision of the Estimated Mean Egg Count. Parasitologia 2024, 4, 137-149. https://doi.org/10.3390/parasitologia4020012
Stear M, Preston S, Piedrafita D, Cullimore G, Donskow-Łysoniewska K. The Influence of Flock Variation, Sample Size, Flock Size and Mean Egg Count on the Accuracy and Precision of the Estimated Mean Egg Count. Parasitologia. 2024; 4(2):137-149. https://doi.org/10.3390/parasitologia4020012
Chicago/Turabian StyleStear, Michael, Sarah Preston, David Piedrafita, George Cullimore, and Katarzyna Donskow-Łysoniewska. 2024. "The Influence of Flock Variation, Sample Size, Flock Size and Mean Egg Count on the Accuracy and Precision of the Estimated Mean Egg Count" Parasitologia 4, no. 2: 137-149. https://doi.org/10.3390/parasitologia4020012
APA StyleStear, M., Preston, S., Piedrafita, D., Cullimore, G., & Donskow-Łysoniewska, K. (2024). The Influence of Flock Variation, Sample Size, Flock Size and Mean Egg Count on the Accuracy and Precision of the Estimated Mean Egg Count. Parasitologia, 4(2), 137-149. https://doi.org/10.3390/parasitologia4020012