Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review
Abstract
:1. Introduction
2. Biosynthetic Pathways of Triterpenes and Triterpenoids
3. Methodology
4. Extraction of Targeted Compounds
5. Anti-Inflammatory Activity of Triterpenes and Triterpenoids
5.1. Leaf Extracts Containing Triterpenes
5.1.1. Membrane Stability Assay on Triterpenes
5.1.2. Protein Inhibition Assay on Triterpenes
5.1.3. In Vivo Assays on Triterpenes
5.2. Leaf Extracts Containing Triterpenoids and Saponins
5.2.1. Protein and NO Inhibition Assays on Triterpenoids and Saponins
5.2.2. In Vivo Assays on Triterpenoids and Saponins
6. Limitations
7. Conclusions and Future Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jha, A.K.; Sit, N. Extraction of Bioactive Compounds from Plant Materials Using Combination of Various Novel Methods: A Review. Trends Food Sci. Technol. 2022, 119, 579–591. [Google Scholar] [CrossRef]
- Altemimi, A.; Lakhssassi, N.; Baharlouei, A.; Watson, D.G.; Lightfoot, D.A. Phytochemicals: Extraction, Isolation, and Identification of Bioactive Compounds from Plant Extracts. Plants 2017, 6, 42. [Google Scholar] [CrossRef]
- Uwineza, P.A.; Waśkiewicz, A. Recent Advances in Supercritical Fluid Extraction of Natural Bioactive Compounds from Natural Plant Materials. Molecules 2020, 25, 3847. [Google Scholar] [CrossRef]
- Christaki, E.; Bonos, E.; Giannenas, I.; Florou-Paneri, P. Aromatic Plants as a Source of Bioactive Compounds. Agriculture 2012, 2, 228–243. [Google Scholar] [CrossRef]
- Tsiaka, T.; Sinanoglou, V.J.; Zoumpoulakis, P. Extracting Bioactive Compounds From Natural Sources Using Green High-Energy Approaches: Trends and Opportunities in Lab- and Large-Scale Applications. In Ingredients Extraction by Physicochemical Methods in Food; Grumezescu, A.M., Holban, A.M., Eds.; Handbook of Food Bioengineering; Academic Press: Cambridge, MA, USA, 2017; pp. 307–365. ISBN 978-0-12-811521-3. [Google Scholar]
- Socas-Rodríguez, B.; Torres-Cornejo, M.V.; Álvarez-Rivera, G.; Mendiola, J.A. Deep Eutectic Solvents for the Extraction of Bioactive Compounds from Natural Sources and Agricultural By-Products. Appl. Sci. 2021, 11, 4897. [Google Scholar] [CrossRef]
- Thimmappa, R.; Geisler, K.; Louveau, T.; O’Maille, P.; Osbourn, A. Triterpene Biosynthesis in Plants. Annu. Rev. Plant Biol. 2014, 65, 225–257. [Google Scholar] [CrossRef]
- Renda, G.; Gökkaya, İ.; Şöhretoğlu, D. Immunomodulatory Properties of Triterpenes. Phytochem. Rev. 2022, 21, 537–563. [Google Scholar] [CrossRef]
- Miranda, R.D.S.; De Jesus, B.D.S.M.; Da Silva Luiz, S.R.; Viana, C.B.; Adão Malafaia, C.R.; Figueiredo, F.D.S.; Carvalho, T.D.S.C.; Silva, M.L.; Londero, V.S.; Da Costa-Silva, T.A.; et al. Antiinflammatory Activity of Natural Triterpenes—An Overview from 2006 to 2021. Phytother. Res. 2022, 36, 1459–1506. [Google Scholar] [CrossRef]
- Luchnikova, N.A.; Grishko, V.V.; Ivshina, I.B. Biotransformation of Oleanane and Ursane Triterpenic Acids. Molecules 2020, 25, 5526. [Google Scholar] [CrossRef]
- Wu, P.-P.; Zhang, B.-J.; Cui, X.-P.; Yang, Y.; Jiang, Z.-Y.; Zhou, Z.-H.; Zhong, Y.-Y.; Mai, Y.-Y.; Ouyang, Z.; Chen, H.-S.; et al. Synthesis and Biological Evaluation of Novel Ursolic Acid Analogues as Potential α-Glucosidase Inhibitors. Sci. Rep. 2017, 7, 45578. [Google Scholar] [CrossRef]
- Chouaïb, K.; Hichri, F.; Nguir, A.; Daami-Remadi, M.; Elie, N.; Touboul, D.; Ben Jannet, H.; Hamza, M.A. Semi-Synthesis of New Antimicrobial Esters from the Natural Oleanolic and Maslinic Acids. Food Chem. 2015, 183, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Alho, D.P.S.; Salvador, J.A.R.; Cascante, M.; Marin, S. Synthesis and Antiproliferative Activity of Novel Heterocyclic Glycyrrhetinic Acid Derivatives. Molecules 2019, 24, 766. [Google Scholar] [CrossRef]
- Sycz, Z.; Tichaczek-Goska, D.; Wojnicz, D. Anti-Planktonic and Anti-Biofilm Properties of Pentacyclic Triterpenes—Asiatic Acid and Ursolic Acid as Promising Antibacterial Future Pharmaceuticals. Biomolecules 2022, 12, 98. [Google Scholar] [CrossRef] [PubMed]
- Ghiulai, R.; Roşca, O.J.; Antal, D.S.; Mioc, M.; Mioc, A.; Racoviceanu, R.; Macaşoi, I.; Olariu, T.; Dehelean, C.; Creţu, O.M.; et al. Tetracyclic and Pentacyclic Triterpenes with High Therapeutic Efficiency in Wound Healing Approaches. Molecules 2020, 25, 5557. [Google Scholar] [CrossRef]
- Sabaragamuwa, R.; Perera, C.O. Total Triterpenes, Polyphenols, Flavonoids, and Antioxidant Activity of Bioactive Phytochemicals of Centella Asiatica by Different Extraction Techniques. Foods 2023, 12, 3972. [Google Scholar] [CrossRef]
- Stiti, N.; Triki, S.; Hartmann, M.-A. Formation of Triterpenoids throughout Olea europaea Fruit Ontogeny. Lipids 2007, 42, 55–67. [Google Scholar] [CrossRef]
- Kaps, A.; Gwiazdoń, P.; Chodurek, E. Nanoformulations for Delivery of Pentacyclic Triterpenoids in Anticancer Therapies. Molecules 2021, 26, 1764. [Google Scholar] [CrossRef]
- Yang, W.; Chen, X.; Li, Y.; Guo, S.; Wang, Z.; Yu, X. Advances in Pharmacological Activities of Terpenoids. Nat. Prod. Commun. 2020, 15, 1934578X20903555. [Google Scholar] [CrossRef]
- Noushahi, H.A.; Khan, A.H.; Noushahi, U.F.; Hussain, M.; Javed, T.; Zafar, M.; Batool, M.; Ahmed, U.; Liu, K.; Harrison, M.T.; et al. Biosynthetic Pathways of Triterpenoids and Strategies to Improve Their Biosynthetic Efficiency. Plant Growth Regul. 2022, 97, 439–454. [Google Scholar] [CrossRef]
- Rufino-Palomares, E.E.; Pérez-Jiménez, A.; García-Salguero, L.; Mokhtari, K.; Reyes-Zurita, F.J.; Peragón-Sánchez, J.; Lupiáñez, J.A. Nutraceutical Role of Polyphenols and Triterpenes Present in the Extracts of Fruits and Leaves of Olea europaea as Antioxidants, Anti-Infectives and Anticancer Agents on Healthy Growth. Molecules 2022, 27, 2341. [Google Scholar] [CrossRef] [PubMed]
- Kemboi, D.; Peter, X.; Langat, M.; Tembu, J. A Review of the Ethnomedicinal Uses, Biological Activities, and Triterpenoids of Euphorbia Species. Molecules 2020, 25, 4019. [Google Scholar] [CrossRef]
- Huang, L.-R.; Hao, X.-J.; Li, Q.-J.; Wang, D.-P.; Zhang, J.-X.; Luo, H.; Yang, X.-S. 18β-Glycyrrhetinic Acid Derivatives Possessing a Trihydroxylated A Ring Are Potent Gram-Positive Antibacterial Agents. J. Nat. Prod. 2016, 79, 721–731. [Google Scholar] [CrossRef]
- Moura, L.F.W.G.; da Silva Neto, J.X.; Lopes, T.D.P.; Benjamin, S.R.; Brito, F.C.R.; Magalhães, F.E.A.; Florean, E.O.P.T.; de Sousa, D.d.O.B.; Guedes, M.I.F. Ethnobotanic, Phytochemical Uses and Ethnopharmacological Profile of Genus Cnidoscolus spp. (Euphorbiaceae): A Comprehensive Overview. Biomed. Pharmacother. 2019, 109, 1670–1679. [Google Scholar] [CrossRef]
- Wang, L.; Wang, C.; Jia, Y.; Liu, Z.; Shu, X.; Liu, K. Resveratrol Increases Anti-Proliferative Activity of Bestatin Through Downregulating P-Glycoprotein Expression Via Inhibiting PI3K/Akt/mTOR Pathway in K562/ADR Cells. J. Cell. Biochem. 2016, 117, 1233–1239. [Google Scholar] [CrossRef]
- Ghante, M.H.; Jamkhande, P.G. Role of Pentacyclic Triterpenoids in Chemoprevention and Anticancer Treatment: An Overview on Targets and Underling Mechanisms. J. Pharmacopunct. 2019, 22, 55–67. [Google Scholar] [CrossRef]
- Biswas, T.; Dwivedi, U.N. Plant Triterpenoid Saponins: Biosynthesis, in Vitro Production, and Pharmacological Relevance. Protoplasma 2019, 256, 1463–1486. [Google Scholar] [CrossRef]
- Bildziukevich, U.; Wimmerová, M.; Wimmer, Z. Saponins of Selected Triterpenoids as Potential Therapeutic Agents: A Review. Pharmaceuticals 2023, 16, 386. [Google Scholar] [CrossRef]
- Miettinen, K.; Iñigo, S.; Kreft, L.; Pollier, J.; De Bo, C.; Botzki, A.; Coppens, F.; Bak, S.; Goossens, A. The TriForC Database: A Comprehensive up-to-Date Resource of Plant Triterpene Biosynthesis. Nucleic Acids Res. 2018, 46, D586–D594. [Google Scholar] [CrossRef]
- Wang, Q.; Quan, S.; Xiao, H. Towards Efficient Terpenoid Biosynthesis: Manipulating IPP and DMAPP Supply. Bioresour. Bioprocess. 2019, 6, 6. [Google Scholar] [CrossRef]
- Paramasivan, K.; Mutturi, S. Recent Advances in the Microbial Production of Squalene. World J. Microbiol. Biotechnol. 2022, 38, 91. [Google Scholar] [CrossRef]
- Liu, G.; Fu, J. Squalene Synthase Cloning and Functional Identification in Wintersweet Plant (Chimonanthus zhejiangensis). Bot. Stud. 2018, 59, 30. [Google Scholar] [CrossRef]
- Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreño, M.A.; Martins, J.C.; Thevelein, J.M.; Goossens, A. Combinatorial Biosynthesis of Sapogenins and Saponins in Saccharomyces cerevisiae Using a C-16α Hydroxylase from Bupleurum Falcatum. Proc. Natl. Acad. Sci. USA 2014, 111, 1634–1639. [Google Scholar] [CrossRef]
- Seki, H.; Tamura, K.; Muranaka, T. P450s and UGTs: Key Players in the Structural Diversity of Triterpenoid Saponins. Plant Cell Physiol. 2015, 56, 1463–1471. [Google Scholar] [CrossRef]
- Shi, L.; Ren, A.; Mu, D.; Zhao, M. Current Progress in the Study on Biosynthesis and Regulation of Ganoderic Acids. Appl. Microbiol. Biotechnol. 2010, 88, 1243–1251. [Google Scholar] [CrossRef]
- Liu, D.; Gong, J.; Dai, W.; Kang, X.; Huang, Z.; Zhang, H.-M.; Liu, W.; Liu, L.; Ma, J.; Xia, Z.; et al. The Genome of Ganderma lucidum Provide Insights into Triterpense Biosynthesis and Wood Degradation. PLoS ONE 2012, 7, e36146. [Google Scholar] [CrossRef]
- Pu, X.; Dong, X.; Li, Q.; Chen, Z.; Liu, L. An Update on the Function and Regulation of Methylerythritol Phosphate and Mevalonate Pathways and Their Evolutionary Dynamics. J. Integr. Plant Biol. 2021, 63, 1211–1226. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef]
- Cannavacciuolo, C.; Pagliari, S.; Celano, R.; Campone, L.; Rastrelli, L. Critical Analysis of Green Extraction Techniques Used for Botanicals: Trends, Priorities, and Optimization Strategies—A Review. TrAC Trends Anal. Chem. 2024, 173, 117627. [Google Scholar] [CrossRef]
- Gil-Martín, E.; Forbes-Hernández, T.; Romero, A.; Cianciosi, D.; Giampieri, F.; Battino, M. Influence of the Extraction Method on the Recovery of Bioactive Phenolic Compounds from Food Industry By-Products. Food Chem. 2022, 378, 131918. [Google Scholar] [CrossRef]
- Veršić Bratinčević, M.; Kovačić, R.; Popović, M.; Radman, S.; Generalić Mekinić, I. Comparison of Conventional and Green Extraction Techniques for the Isolation of Phenolic Antioxidants from Sea Fennel. Processes 2023, 11, 2172. [Google Scholar] [CrossRef]
- Yang, Y.-P.; Tasneem, S.; Daniyal, M.; Zhang, L.; Jia, Y.-Z.; Jian, Y.-Q.; Li, B.; Wang, W. Lanostane Tetracyclic Triterpenoids as Important Sources for Anti-Inflammatory Drug Discovery. World J. Tradit. Chin. Med. 2020, 6, 229. [Google Scholar] [CrossRef]
- Dakin, S.G.; Coles, M.; Sherlock, J.P.; Powrie, F.; Carr, A.J.; Buckley, C.D. Pathogenic Stromal Cells as Therapeutic Targets in Joint Inflammation. Nat. Rev. Rheumatol. 2018, 14, 714–726. [Google Scholar] [CrossRef]
- Relea, L.; Calvo, M.; Pons, F.; Salas, C.; Abreu, L. Adult Autoinmune Enteropathy and Colitis: A Challenge Successfully Treated With Adalimumab. Inflamm. Bowel Dis. 2018, 24, e11. [Google Scholar] [CrossRef]
- Lima, L.C.; Queiroz, G.d.A.; Costa, R.D.S.; Alcantara-Neves, N.M.; Marques, C.R.; Costa, G.N.d.O.; Barreto, M.L.; Figueiredo, C.A.V.; Carneiro, V.L. Genetic Variants in RORA Are Associated with Asthma and Allergy Markers in an Admixed Population. Cytokine 2019, 113, 177–184. [Google Scholar] [CrossRef]
- Onal, E.M.; Afsar, B.; Covic, A.; Vaziri, N.D.; Kanbay, M. Gut Microbiota and Inflammation in Chronic Kidney Disease and Their Roles in the Development of Cardiovascular Disease. Hypertens. Res. Off. J. Jpn. Soc. Hypertens. 2019, 42, 123–140. [Google Scholar] [CrossRef]
- Furuya, T.K.; Jacob, C.E.; Tomitão, M.T.P.; Camacho, L.C.C.; Ramos, M.F.K.P.; Eluf-Neto, J.; Alves, V.A.F.; Zilberstein, B.; Cecconello, I.; Ribeiro, U.; et al. Association between Polymorphisms in Inflammatory Response-Related Genes and the Susceptibility, Progression and Prognosis of the Diffuse Histological Subtype of Gastric Cancer. Genes 2018, 9, 631. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, F.; Gao, G.; Yan, S.; Zhang, L.; Wang, L.; Cai, X.; Wang, X.; Xu, D.; Wang, J. MiR-548a-3p Regulates Inflammatory Response via TLR4/NF-κB Signaling Pathway in Rheumatoid Arthritis. J. Cell. Biochem. 2019, 120, 1133–1140. [Google Scholar] [CrossRef]
- Sun, Y.; Liu, Y.; He, W.; Wang, C.; Tickner, J.; Kuek, V.; Zhou, C.; Wang, H.; Zou, X.; Hong, Z. Cajaninstilbene Acid Inhibits Osteoporosis through Suppressing Osteoclast Formation and RANKL-Induced Signaling Pathways. J. Cell. Physiol. 2019, 234, 11792–11804. [Google Scholar] [CrossRef]
- Schett, G.; Neurath, M.F. Resolution of Chronic Inflammatory Disease: Universal and Tissue-Specific Concepts. Nat. Commun. 2018, 9, 3261. [Google Scholar] [CrossRef]
- O’Carroll, S.J.; Kho, D.T.; Wiltshire, R.; Nelson, V.; Rotimi, O.; Johnson, R.; Angel, C.E.; Graham, E.S. Pro-Inflammatory TNFα and IL-1β Differentially Regulate the Inflammatory Phenotype of Brain Microvascular Endothelial Cells. J. Neuroinflamm. 2015, 12, 131. [Google Scholar] [CrossRef]
- Li, W.; Huang, B.; Liu, K.; Hou, J.; Meng, H. Upregulated Leptin in Periodontitis Promotes Inflammatory Cytokine Expression in Periodontal Ligament Cells. J. Periodontol. 2015, 86, 917–926. [Google Scholar] [CrossRef]
- Cheng, C.; Shan, W.; Huang, W.; Ding, Z.; Cui, G.; Liu, F.; Lu, W.; Xu, J.; He, W.; Yin, Z. ACY-1215 Exhibits Anti-Inflammatory and Chondroprotective Effects in Human Osteoarthritis Chondrocytes via Inhibition of STAT3 and NF-κB Signaling Pathways. Biomed. Pharmacother. Biomed. Pharmacother. 2019, 109, 2464–2471. [Google Scholar] [CrossRef]
- Norden, D.M.; Faw, T.D.; McKim, D.B.; Deibert, R.J.; Fisher, L.C.; Sheridan, J.F.; Godbout, J.P.; Basso, D.M. Bone Marrow-Derived Monocytes Drive the Inflammatory Microenvironment in Local and Remote Regions after Thoracic Spinal Cord Injury. J. Neurotrauma 2019, 36, 937–949. [Google Scholar] [CrossRef]
- Orsini, M.; Chateauvieux, S.; Rhim, J.; Gaigneaux, A.; Cheillan, D.; Christov, C.; Dicato, M.; Morceau, F.; Diederich, M. Sphingolipid-Mediated Inflammatory Signaling Leading to Autophagy Inhibition Converts Erythropoiesis to Myelopoiesis in Human Hematopoietic Stem/Progenitor Cells. Cell Death Differ. 2019, 26, 1796–1812. [Google Scholar] [CrossRef]
- Asano, T.; Hattori, T.; Tanaka, K.-I.; Yamakawa, N.; Suemasu, S.; Aida, S.; Kataoka, M.; Mizushima, T.; Takenaga, M. Antinociception by Fluoro-Loxoprofen, a Novel Non-Steroidal Anti-Inflammatory Drug with Less Ulcerogenic Effects, in Rat Models of Inflammatory Pain. Eur. J. Pharmacol. 2019, 844, 253–258. [Google Scholar] [CrossRef]
- Wang, Y.; Wei, S.; Gao, T.; Yang, Y.; Lu, X.; Zhou, X.; Li, H.; Wang, T.; Qian, L.; Zhao, Y.; et al. Anti-Inflammatory Effect of a TCM Formula Li-Ru-Kang in Rats with Hyperplasia of Mammary Gland and the Underlying Biological Mechanisms. Front. Pharmacol. 2018, 9, 1318. [Google Scholar] [CrossRef]
- Chen, F.; Liu, D.-L.; Wang, W.; Lv, X.-M.; Li, W.; Shao, L.-D.; Wang, W.-J. Bioactive Triterpenoids from Sambucus javanica Blume. Nat. Prod. Res. 2020, 34, 2816–2821. [Google Scholar] [CrossRef]
- Mai, Y.; Wang, Z.; Wang, Y.; Xu, J.; He, X. Anti-Neuroinflammatory Triterpenoids from the Seeds of Quercus serrata Thunb. Fitoterapia 2020, 142, 104523. [Google Scholar] [CrossRef]
- Rathor, R.; Agrawal, A.; Kumar, R.; Suryakumar, G.; Singh, S.N. Ursolic Acid Ameliorates Hypobaric Hypoxia-Induced Skeletal Muscle Protein Loss via Upregulating Akt Pathway: An Experimental Study Using Rat Model. IUBMB Life 2021, 73, 375–389. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X.; Ciric, B.; Curtis, M.T.; Chen, W.-J.; Rostami, A.; Zhang, G.-X. A Dual Effect of Ursolic Acid to the Treatment of Multiple Sclerosis through Both Immunomodulation and Direct Remyelination. Proc. Natl. Acad. Sci. USA 2020, 117, 9082–9093. [Google Scholar] [CrossRef]
- Sun, Q.; He, M.; Zhang, M.; Zeng, S.; Chen, L.; Zhou, L.; Xu, H. Ursolic Acid: A Systematic Review of Its Pharmacology, Toxicity and Rethink on Its Pharmacokinetics Based on PK-PD Model. Fitoterapia 2020, 147, 104735. [Google Scholar] [CrossRef]
- Figueroa-Suárez, M.Z.; González Christen, J.; Cardoso-Taketa, A.T.; Gutiérrez Villafuerte, M.d.C.; Rodríguez-López, V. Anti-Inflammatory and Antihistaminic Activity of Triterpenoids Isolated from Bursera cuneata (Schldl.). Engl. J. Ethnopharmacol. 2019, 238, 111786. [Google Scholar] [CrossRef]
- Bolaji, A.O.; Adeniran, O.I.; Adedayo, A.; Akinpelu, B.A. Evaluation of Chemical Composition, Anti-Inflammatory, Antioxidant and Cytotoxic Potential of Leaf and Root Extracts of Euphorbia graminae. Trop. J. Nat. Prod. Res. 2019, 3, 201–209. [Google Scholar] [CrossRef]
- Fujiati, F.; Haryati, H.; Joharman, J.; Utami, S.W. In Vitro Metabolite Profiling and Anti-Inflammatory Activities of Rhodomyrtus tomentosa with Red Blood Cell Membrane Stabilization Methods. Rep. Biochem. Mol. Biol. 2022, 11, 502–510. [Google Scholar] [CrossRef]
- Mancarz, G.F.F.; Laba, L.C.; da Silva, E.C.P.; Prado, M.R.M.; de Souza, L.M.; de Souza, D.; Nakashima, T.; Mello, R.G. Liquidambar styraciflua L.: A New Potential Source for Therapeutic Uses. J. Pharm. Biomed. Anal. 2019, 174, 422–431. [Google Scholar] [CrossRef]
- Rengifo-Rios, A.M.; Muñoz-Gómez, L.M.; Cabezas-Fajardo, F.A.; Guerrero-Vargas, J.A. Edematic and Coagulant Effects Caused by the Venom of Bothrops rhombeatus Neutralized by the Ethanolic Extract of Piper auritum. J. Ethnopharmacol. 2019, 242, 112046. [Google Scholar] [CrossRef]
- Abdullahi, I.D.; Yaro, A.H.; Nazifi, A.B. Preliminary Studies on the Anti-Inflammatory and Analgesic Effects of Methanol Leaf Extract of Ficus asperifolia Miq. Trop. J. Nat. Prod. Res. 2020, 4, 85–90. [Google Scholar] [CrossRef]
- Fernández-Flores, N.; Rojas-Cardenas, N.F.; Vásquez-Quispe, A.D.; Chávez-Flores Juana, E.; Justil-Guerrero Hugo, J.; Parreño-Tipian, J.M.; Silva-Correa Carmen, R.; Villarreal-La Torre Víctor, E. Protection of Erythrocytes against Lipoperoxidation and Anti-Inflammatory Effects of Ethanolic Extract of Encelia canescens Lam Leaves in Mice. Pharmacogn. J. 2020, 12, 798–804. [Google Scholar] [CrossRef]
- Ly, H.T.; Pham Nguyen, M.T.; Nguyen, T.K.O.; Bui, T.P.Q.; Ke, X.; Le, V.M. Phytochemical Analysis and Wound-Healing Activity of Noni (Morinda citrifolia) Leaf Extract. J. Herbs Spices Med. Plants 2020, 26, 379–393. [Google Scholar] [CrossRef]
- Belkhodja, H.; Belhouala, K.; Nehal, S. Phytochemical Screening and Evaluation of the Antiarthritic Potential of Ammoides pusilla Aqueous Extract on Freund’s Adjuvant-Induced Rheumatoid Arthritis. Pharm. Sci. 2021, 27, 170–182. [Google Scholar] [CrossRef]
- Anjum, B.; Kumar, R.; Kumar, R.; Prakash, O.; Srivastava, R.M.; Pant, A.K. Phytochemical Analysis, Antioxidant, Anti-Inflammatory and Insect Antifeeding Activity of Ardisia solanacea Roxb. Extracts. J. Biol. Act. Prod. Nat. 2019, 9, 372–386. [Google Scholar] [CrossRef]
- Aro, A.O.; Dzoyem, J.P.; Awouafack, M.D.; Selepe, M.A.; Eloff, J.N.; McGaw, L.J. Fractions and Isolated Compounds from Oxyanthus speciosus Subsp. stenocarpus (Rubiaceae) Have Promising Antimycobacterial and Intracellular Activity. BMC Complement. Altern. Med. 2019, 19, 108. [Google Scholar] [CrossRef]
- Karan, B.N.; Maity, T.K.; Pal, B.C.; Singha, T.; Jana, S. Betulinic Acid, the First Lupane-Type Triterpenoid Isolated via Bioactivity-Guided Fractionation, and Identified by Spectroscopic Analysis from Leaves of Nyctanthes arbortristis: Its Potential Biological Activities in Vitro Assays. Nat. Prod. Res. 2019, 33, 3287–3292. [Google Scholar] [CrossRef]
- Sakna, S.T.; Mocan, A.; Sultani, H.N.; El-fiky, N.M.; Wessjohann, L.A.; Farag, M.A. Metabolites Profiling of Ziziphus Leaf Taxa via UHPLC/PDA/ESI-MS in Relation to Their Biological Activities. Food Chem. 2019, 293, 233–246. [Google Scholar] [CrossRef] [PubMed]
- Van Thanh, N.; Jang, H.-J.; Vinh, L.B.; Linh, K.T.P.; Huong, P.T.T.; Cuong, N.X.; Nam, N.H.; Van Minh, C.; Kim, Y.H.; Yang, S.Y. Chemical Constituents from Vietnamese Mangrove Calophyllum inophyllum and Their Anti-Inflammatory Effects. Bioorg. Chem. 2019, 88, 102921. [Google Scholar] [CrossRef] [PubMed]
- Tai, B.H.; Ninh, B.H.; Yen, P.H.; Dung, D.T.; Hoang, N.H.; Nhiem, N.X.; Van Tuyen, N.; Anh, L.T.; Van Kiem, P. New Nitric Oxide Production Inhibitors from Syzygium bullockii. J. Nat. Med. 2023, 77, 964–971. [Google Scholar] [CrossRef]
- Vinh, L.B.; Jang, H.-J.; Phong, N.V.; Cho, K.; Park, S.S.; Kang, J.S.; Kim, Y.H.; Yang, S.Y. Isolation, Structural Elucidation, and Insights into the Anti-Inflammatory Effects of Triterpene Saponins from the Leaves of Stauntonia hexaphylla. Bioorg. Med. Chem. Lett. 2019, 29, 965–969. [Google Scholar] [CrossRef] [PubMed]
- Gazioglu, I.; Semen, S.; Acar, O.O.; Kolak, U.; Sen, A.; Topcu, G. Triterpenoids and Steroids Isolated from Anatolian capparis ovata and Their Activity on the Expression of Inflammatory Cytokines. Pharm. Biol. 2020, 58, 925–931. [Google Scholar] [CrossRef]
- Jeong, D.E.; Shim, S.-Y.; Lee, M. Anti-Inflammatory Activity of Phenylpropyl Triterpenoids from Osmanthus fragrans Var. aurantiacus Leaves. Int. Immunopharmacol. 2020, 86, 106576. [Google Scholar] [CrossRef]
- Grivennikov, S.I.; Greten, F.R.; Karin, M. Immunity, Inflammation, and Cancer. Cell 2010, 140, 883–899. [Google Scholar] [CrossRef]
- Han, S.; Lim, S.-L.; Kim, H.; Choi, H.; Lee, M.Y.; Shim, S.-Y.; Le, D.D.; Ha, I.J.; Lee, M.; Lee, S.-G. Ethyl Acetate Fraction of Osmanthus fragrans var. aurantiacus and Its Triterpenoids Suppress Proliferation and Survival of Colorectal Cancer Cells by Inhibiting NF-κB and COX2. J. Ethnopharmacol. 2024, 319, 117362. [Google Scholar] [CrossRef] [PubMed]
- Daga, M.A.; Nicolau, S.T.; Jurumenha-Barreto, J.; Lima, L.B.S.; Cabral, I.L.; Pivotto, A.P.; Stefanello, A.; Amorim, J.P.A.; Hoscheid, J.; Silva, E.A.; et al. Ursolic Acid-Rich Extract Presents Trypanocidal Action in Vitro but Worsens Mice under Experimental Acute Chagas Disease. Parasite Immunol. 2023, 45, e13005. [Google Scholar] [CrossRef]
- Sharma, J.N.; Al-Omran, A.; Parvathy, S.S. Role of Nitric Oxide in Inflammatory Diseases. Inflammopharmacology 2007, 15, 252–259. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.F.; Khan, B.; Bani, S.; Suri, K.A.; Satti, N.K.; Qazi, G.N. Amelioration of Adjuvant-Induced Arthritis by Ursolic Acid through Altered Th1/Th2 Cytokine Production. Pharmacol. Res. 2006, 53, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Deng, S.; Zhou, D.; Huang, Y.; Li, C.; Hao, L.; Zhang, G.; Su, S.; Xu, X.; Yang, R.; et al. 3,4-Seco-Dammarane Triterpenoid Saponins with Anti-Inflammatory Activity Isolated from the Leaves of Cyclocarya paliurus. J. Agric. Food Chem. 2020, 68, 2041–2053. [Google Scholar] [CrossRef] [PubMed]
- Luo, S.-Y.; Pu, R.; Tang, Y.-Q.; Fan, R.-Z.; Yin, S.; Tang, G.-H. Euphane- and 19(10 → 9)Abeo-Euphane-Type Triterpenoids from Jatropha gossypiifolia. Fitoterapia 2020, 143, 104582. [Google Scholar] [CrossRef]
- Singh, A.; Cullen, J.K.; Bruce, Z.C.; Reddell, P.; Münch, G.; Raju, R. Ternstroenols A–E: Undescribed Pentacyclic Triterpenoids from the Australian Rainforest Plant Ternstroemia cherryi. Phytochemistry 2020, 176, 112426. [Google Scholar] [CrossRef]
- Buakaew, W.; Pankla Sranujit, R.; Noysang, C.; Thongsri, Y.; Potup, P.; Nuengchamnong, N.; Suphrom, N.; Usuwanthim, K. Phytochemical Constituents of Citrus hystrix Dc. Leaves Attenuate Inflammation via Nf-Κb Signaling and Nlrp3 Inflammasome Activity in Macrophages. Biomolecules 2021, 11, 105. [Google Scholar] [CrossRef]
- Chianese, G.; Masi, F.; Cicia, D.; Ciceri, D.; Arpini, S.; Falzoni, M.; Pagano, E.; Taglialatela-Scafati, O. Isomadecassoside, a New Ursane-Type Triterpene Glycoside from Centella asiatica Leaves, Reduces Nitrite Levels in LPS-Stimulated Macrophages. Biomolecules 2021, 11, 494. [Google Scholar] [CrossRef]
- Magiera, A.; Marchelak, A.; Michel, P.; Owczarek, A.; Olszewska, M.A. Lipophilic Extracts from Leaves, Inflorescences and Fruits of Prunus padus L. as Potential Sources of Corosolic, Ursolic and Oleanolic Acids with Anti-Inflammatory Activity. Nat. Prod. Res. 2021, 35, 2263–2268. [Google Scholar] [CrossRef]
- Termer, M.; Carola, C.; Salazar, A.; Keck, C.M.; Hemberger, J.; von Hagen, J. Identification of Plant Metabolite Classes from Waltheria indica L. Extracts Regulating Inflammatory Immune Responses via COX-2 Inhibition. J. Ethnopharmacol. 2021, 270, 113741. [Google Scholar] [CrossRef]
- Moro, I.J.; Carvalho, F.A.; Scardelato Pereira, J.A.; Brasil Romão, G.; Faibicher, A.; Rodrigues, W.D.; Pires Assis, R.; Lourenço Brunetti, I.; de Lacorte Singulani, J.; Fusco-Almeida, A.M.; et al. Green Chromatographic Methods and in Vitro Pharmacological Analysis of Varronia curassavica Leaf Derivatives. Chem. Biodivers. 2023, 20, e202300329. [Google Scholar] [CrossRef] [PubMed]
- Hu, Z.-F.; Su, J.-C.; Sun, X.; Xia, R.-F.; Wu, J.-L.; Fu, X.-N.; Zhang, B.-Z.; Chen, J.-C.; Wan, L.-S. Brujavanoids A–U, Structurally Diverse Apotirucallane-Type Triterpenoids from Brucea javanica and Their Anti-Inflammatory Effects. Bioorg. Chem. 2022, 127, 106012. [Google Scholar] [CrossRef]
- Liu, H.; Bi, L.; Chen, Q.; He, X.; Yan, H.; Ni, W.; Wu, W.; He, L.; Liu, H. Enrichment Process, Structural Prediction, Isolation, in Vitro Cytotoxic and Anti-Inflammatory Effects of Triterpenoid Saponins in Camellia japonica L. Leaves Water Extract through UPLC-Q-TOF Based Mass Spectrometry Similarity Networking. Food Chem. 2024, 441, 138360. [Google Scholar] [CrossRef] [PubMed]
- Camponogara, C.; Casoti, R.; Brusco, I.; Piana, M.; Boligon, A.A.; Cabrini, D.A.; Trevisan, G.; Ferreira, J.; Silva, C.R.; Oliveira, S.M. Tabernaemontana catharinensis Leaves Effectively Reduce the Irritant Contact Dermatitis by Glucocorticoid Receptor-Dependent Pathway in Mice. Biomed. Pharmacother. 2019, 109, 646–657. [Google Scholar] [CrossRef] [PubMed]
- Gatis-Carrazzoni, A.S.S.G.; Mota, F.V.B.; Leite, T.C.C.; de Oliveira, T.B.; da Silva, S.C.; Bastos, I.V.A.; de Souza Maia, M.B.; Pereira, P.S.; Neto, P.P.M.; de Oliveira Chagas, E.C.; et al. Anti-Inflammatory and Antinociceptive Activities of the Leaf Methanol Extract of Miconia minutiflora (Bonpl.) DC. and Characterization of Compounds by UPLC-DAD-QTOF-MS/MS. Naunyn. Schmiedebergs Arch. Pharmacol. 2019, 392, 55–68. [Google Scholar] [CrossRef]
- Lee, Y.; Choi, H.K.; N’deh, K.P.U.; Choi, Y.-J.; Fan, M.; Kim, E.-K.; Chung, K.-H.; An, J.H. Inhibitory Effect of Centella asiatica Extract on DNCB-Induced Atopic Dermatitis in HaCaT Cells and BALB/c Mice. Nutrients 2020, 12, 411. [Google Scholar] [CrossRef]
- Dembogurski, D.S.D.O.; Bonfá, I.S.; Candeloro, L.; Parisotto, E.B.; Toffoli Kadri, M.C.; Silva, D.B. Infusion from Miconia albicans (Melastomataceae) Leaves Exhibits Anti-Inflammatory and Anti-Hyperalgesic Activities without Toxicity. J. Ethnopharmacol. 2023, 308, 116251. [Google Scholar] [CrossRef]
- Chang, M.-L.; Lin, Y.-T.; Kung, H.-N.; Hou, Y.-C.; Liu, J.-J.; Pan, M.-H.; Chen, H.-L.; Yu, C.-H.; Tsai, P.-J. A Triterpenoid-Enriched Extract of Bitter Melon Leaves Alleviates Hepatic Fibrosis by Inhibiting Inflammatory Responses in Carbon Tetrachloride-Treated Mice. Food Funct. 2021, 12, 7805–7815. [Google Scholar] [CrossRef]
- Novillo, F.; Velasco-Barrios, E.; Nieto-Camacho, A.; López-Huerta, F.A.; Méndez Cuesta, C.A.; Ramírez-Apan, M.T.; Chávez, M.I.; Martínez, E.M.; Hernández-Delgado, T.; Espinosa-García, F.J.; et al. 3β-Palmitoyloxy-Olean-12-Ene Analogs from Sapium lateriflorum (Euphorbiaceae): Their Cytotoxic and Anti-Inflammatory Properties and Docking Studies. Fitoterapia 2021, 155, 105067. [Google Scholar] [CrossRef]
- Chou, M.-C.; Lee, Y.-J.; Wang, Y.-T.; Cheng, S.-Y.; Cheng, H.-L. Cytotoxic and Anti-Inflammatory Triterpenoids in the Vines and Leaves of Momordica charantia. Int. J. Mol. Sci. 2022, 23, 1071. [Google Scholar] [CrossRef]
Sample | Triterpene | Anti-Inflammatory Effect | Ref. |
---|---|---|---|
E. graminae | Triterpenes determined through non-specific colorimetric techniques | 30% membrane stability from the extract, ~80% membrane stability from diclofenac | [64] |
L. styraciflua L | Aqueous extract IC50 values (75.32 mg/mL), ethyl acetate fraction (59.57 mg/mL), butanol fraction (51.29 mg/mL), and hydroalcoholic fraction (49.13 mg/mL), compared to propolis IC50 value of 32.13 mg/mL in hyaluronidase inhibition assay | [66] | |
P. auritum | Antivenom and anti-inflammatory activities at 500 mg/kg better than those of NIH serum dexamethasone when used at 2 mg/kg in an albumin denaturation assay | [67] | |
F. asperifolia | Comparable activity to piroxicam, achieving >50% pain inhibition | [68] | |
E. canescens Lam | Albumin denaturation assay: 500 mg/kg of extract achieved 1.01 compared to 1.21 g/dL that 2 mg/kg for dexamethasone | [69] | |
M. citrifolia | IC50: higher protein denaturation activity (70.21 mg/L) than ascorbic acid (168.81 mg/L) | [70] | |
A. pusilla | Edema reduced from 5.56 to 2.59 mm in the curative group and from 4.76 to 2.51 mm in the preventive group at 250 mg/kg of the aqueous extract of A. pusilla | [71] |
Sample | Triterpenoid | Anti-Inflammatory Effect | Ref. |
---|---|---|---|
A. solanacea Roxb. | α-Amyrenone | Ethyl acetate extract had an IB50 value of 3.13 μg/mL in the protein denaturation assay compared to 2.80 μg/mL for diclofenac | [72] |
O. speciosus subsp. stenocarpus | Rotundic acid | Extract concentrations of 3.12−25 μg/mL achieved 2.39−0.48 μM NO production inhibition | [73] |
N. arbor-tristis | Betulinic acid | IC50: COX-1 (10.34 μg/mL), COX-2 (12.92 μg/mL), 5-LOX (15.53 μg/mL), NO (15.21 μg/mL), TNF-α (16.65 μg/mL) | [74] |
Z. mauritana | Ceanothic acid, isoceanothic acid, apiceanothic acid, and epigouanic acid | % COX-1 inhibition of Z. Mauritiana (90.34), Z. Spina-Christi (89.31), and Z. Jujuba (76.87) | [75] |
Z. spina-christi | |||
Z. jujuba | |||
C. inophyllum | Twelve unknown triterpenoids | Compounds (1) and (2) had 2.44 and 7.00 μM IC50 values compared to dexamethasone (0.012 μM) against cytokine production in RAW 264.7 cells | [76] |
S. bullockii | Six triterpenoid glycosides, including an unknown compound (syzybulloside A) | IC50 values of 6.93–11.58 μM for triterpenoids (1–6) against NO production in RAW 264.7 cells | [77] |
S. hexaphylla | Twenty-three triterpenoid saponins, two of them novel | Compound (13) had an IC50 value of 0.59 μM compared to 0.13 μM for dexamethasone against NO production | [78] |
Cappars ovata | Oleanolic acid, β-sitosterol, ursolic acid, bismethyl-octylphthalate, stigmast-5,22-dien-3-β-myristate, and the novel compound olean-12-en-28ol, 3b-pentacosanoate (1) | Compound (1) reduced the mRNA Expression of CXCL9 (19.36-fold), CXCL10 (8.14-fold), and TNF (18.69) compared to that in the control group | [79] |
O. fragrans var. aurantiacus | 3-O-trans-p-coumaroyltormentic acid (1), 3β-trans-p-coumaroyloxy-2α-hydroxyl-urs-12-en-28-oic acid (2), 3-β-cis-p-coumaroyloxy-2α-hydroxyl-urs-12-en-28-oic acid (3), and 3-O-cis-coumaroylmaslinic acid (4) | Compounds (2−4) decreased the levels of LPS-stimulated cytokines COX-2, NF-κB, and phosphorylated extracellular regulated kinase (pERK)1/2 | [80] |
Maslinic acid, corosolic acid | In both HCT116 and HT29 cell lines, the phosphorylation levels of p65, Iκ-Bα, and ERK were considerably reduced by the ethyl acetate fraction (at 50 and 100 μg/mL, respectively); however, corosolic acid had stronger anticancer activity | [82] | |
C. pachystachya | Ursolic acid, pomolic acid | NO production in RAW 246.7 macrophages decreased from ~20 to ~5 μM using 300 μg/mL extract | [83] |
C. paliurus | Eighteen dammarane triterpenoid saponins | IC50 values for compounds (7), (8), (10), and (11) ranged from 8.23 to 11.23 μM for NO inhibition; ethyl acetate extract at 80 μg/mL decreased TNF-α, PGE2, IL-6, COX-2, iNOS, and NF-κB/p65 expression | [86] |
J. gossypiifolia | Unknown jagabeoeuphols A–C (1−3) and jagoseuphone A (4), a common euphane-type triterpenoid | Compound (4): lower IC50 value (20.1 μM) than the positive control quercetin (16.8 μM) for NO production inhibition | [87] |
T. cherryi | Three ternstroenols | IC50 value of 0.72−3.70 μM against NO production in RAW 264.7 macrophages activated with LPS and IFN-γ | [88] |
C. hystrix | Lupeol | At 25 μg/mL, IL-1β, IL-6, and TNF-α were significantly reduced with either a lupeol fraction or with ethanolic C. hystrix extract at 1.5 or 2.5 μg/mL | [89] |
C. asiatica | Asiatic acid, asiaticoside, madecassic acid, and madecassoside | Decrease in the expression of cytokines TNF-α, IL-4, IL-5, IL-6, IL-10, IL-17, iNOS, COX-2, and CXCL9 | [98] |
Madecassoside (1), terminoloside (2), and isomadecassoside (3) | At 50 μM, compounds (1) and (2) decreased from NO production from ~19 to 15 μM; compound (3) lowered NO production from ~18 to 14 μM | [90] | |
P. padus | Corosolic (CA), ursolic (UA), and oleanolic (OA)acids | CA fraction: IC50 value 14.3–22.2 μg/U for LOX and 12.6–18.1 μg/U for HYAL); the extracts were more effective LOX inhibitors (IC50: 10.5–12.8 μg/U) than HYAL inhibitors (IC50: 19.3–22.0 μg/U) | [91] |
W. indica | Triterpenoid saponins expressed as oleanolic acid equivalents | Ethanolic and ethyl acetate extracts achieved 37.7% and 38.9% inhibition of COX-2 | [92] |
V. curassavica | Cordialin A | Inhibition of phospholipase A2 (2.8–10.3%), COX-1 (8.3–27.2%), and COX-2 (3.3–22.2%) at a concentration range of 10.0–100.0 μg/mL | [93] |
B. javanica | 27 triterpenoids named brujavanoids A–U | Brujavanoid E had a lower IC50 value compared to dexamethasone (4.1 and 9.2 μM, respectively) in the NO production inhibition assay | [94] |
C. japonica | Unknown, camellioside B, and camellioside A | The three triterpenoids achieved 37.99, 31.31, and 28.96% NO production inhibition at a 25 μM concentration | [95] |
T. catharinensis | Ehretiolide, oleanolic acid, and oleanonic acid | ID50 values for ear edema ranged from 0.001 to 0.0061 μg/ear for fractions | [96] |
M. minutiflora | Myrianthic acid, arjunolic acid | Methanolic extract achieved 5.36 × 106 PMNL/mL compared to indomethacin 5 mg/kg (6.54 × 106 PMNL/mL); ~80 μg/mL decreased edema at 100 or 200 mg/kg of extract | [97] |
M. albicans | O-hexosyl triterpenoid | Reduction in leukocytes by 65% (compared to 66% for indomethacin) and paw edema by 55.5% (compared to 66.6% for indomethacin) from carrageenan induction | [99] |
Bitter melon | 24-O-acetyl-cimigenol-3-O-β-D-xylopyranoside as the most abundant, methyl lucidenate P, 25-O-acetyl cimigenol-3-O-β-D-galactoside, and asperosaponin VI | Triterpenoid-rich extract: ALT decreased from ~130 to 60−70 U/L; AST decreased from ~80 to ~40 U/L | [100] |
S. lateriflorum | Ten triterpenoids, one of which is novel (3β-palmitoyloxy-1β,11α-dihydroxy-olean-12-ene) (1) | 0.1 μmol/ear of compound (1) achieved 68.76% inhibition, indomethacin 78.76% in TPA-induced ear edema; 31.6 mg/kg of compound (1) achieved a 0.040 mL edema volume (0.034 mL when 7.5 mg/kg of indomethacin was used) | [101] |
M. charantia | Momordicines I, II, and IV and (23E) 3β,7β,25-trihydroxycucurbita-5,23-dien-19-al (TCD) | 40 µM TCD reduced iNOS expression from 1 to ~0.2 iNOS/actin compared to the control group. Regarding the TPA control group, TCD at 250, 500, or 750 µg/ear decreased ear edema in mice after 4, 16, and 24 h from ~45 to 30 μm of ear thickness compared to ~50 μm in the control group, comparable to indomethacin | [102] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mantiniotou, M.; Athanasiadis, V.; Kalompatsios, D.; Bozinou, E.; Lalas, S.I. Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review. Compounds 2025, 5, 2. https://doi.org/10.3390/compounds5010002
Mantiniotou M, Athanasiadis V, Kalompatsios D, Bozinou E, Lalas SI. Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review. Compounds. 2025; 5(1):2. https://doi.org/10.3390/compounds5010002
Chicago/Turabian StyleMantiniotou, Martha, Vassilis Athanasiadis, Dimitrios Kalompatsios, Eleni Bozinou, and Stavros I. Lalas. 2025. "Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review" Compounds 5, no. 1: 2. https://doi.org/10.3390/compounds5010002
APA StyleMantiniotou, M., Athanasiadis, V., Kalompatsios, D., Bozinou, E., & Lalas, S. I. (2025). Therapeutic Capabilities of Triterpenes and Triterpenoids in Immune and Inflammatory Processes: A Review. Compounds, 5(1), 2. https://doi.org/10.3390/compounds5010002