Relationship between Joint Stiffness, Limb Stiffness and Whole–Body Center of Mass Mechanical Work across Running Speeds
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Experimental Protocol and Data Collection
2.3. Data Analysis
3. Results
3.1. Stiffness
3.2. Mechanical Work and Power
3.3. Multiple and Simple Linear Regression
3.4. Interpretation of Graph Patterns
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farley, C.T.; Ferris, D.P. Biomechanics of Walking and Running: Center of Mass Movements to Muscle Action. Exerc. Sport Sci. Rev. 1998, 26, 253–285. [Google Scholar] [CrossRef] [PubMed]
- Farley, C.T.; Gonzalez, O. Leg Stiffness and in Human Stride Frequency Running. J. Biomech. 1996, 29, 181–186. [Google Scholar] [CrossRef]
- Cavagna, G.A.; Saibene, F.; Margaria, R. Mechanical Work in Running. J. Appl. Physiol. 1964, 19, 249–256. [Google Scholar] [CrossRef] [PubMed]
- Cavagna, G.A.; Heglund, N.C.; Taylor, C.R. Mechanical Work in Terrestrial Locomotion: Two Basic Mechanisms for Minimizing Energy Expenditure. Am. J. Physiol-Regul. Integr. Comp. Physiol. 1977, 233, R243–R261. [Google Scholar] [CrossRef]
- McMahon, T.A.; Cheng, G.C. The Mechanics of Running: How Does Stiffness Couple with Speed? J. Biomech. 1990, 23, 65–78. [Google Scholar] [CrossRef]
- Brughelli, M.; Cronin, J. Influence of Running Velocity on Vertical, Leg and Joint Stiffness: Modelling and Recommendations for Future Research. Sport. Med. 2008, 38, 647–657. [Google Scholar] [CrossRef]
- Farley, C.T.; Glasheen, J.; McMahon, T.A. Running Springs: Speed and Animal Size. J. Exp. Biol. 1993, 185, 71–86. [Google Scholar] [CrossRef]
- Ferris, D.P.; Louie, M.; Farley, C.T. Running in the Real World: Adjusting Leg Stiffness for Different Surfaces. Proc. Biol. Sci./R. Soc. 1998, 265, 989–994. [Google Scholar] [CrossRef]
- McGowan, C.P.; Grabowski, A.M.; McDermott, W.J.; Herr, H.M.; Kram, R. Leg Stiffness of Sprinters Using Running-Specific Prostheses. J. R. Soc. Interface 2012, 9, 1975–1982. [Google Scholar] [CrossRef]
- McMahon, T.A.; Valiant, G.; Frederick, E.C. Groucho Running. J. Appl. Physiol. 1987, 62, 2326–2337. [Google Scholar] [CrossRef]
- Cavagna, G.; Franzetti, P.; Heglund, N.; Willems, P. The Determinants of the Step Frequency in Running, Trotting and Hopping in Man and Other Vertebrates. J. Physiol. 1988, 399, 81–92. [Google Scholar] [CrossRef] [PubMed]
- He, J.P.; Kram, R.; McMahon, T.A. Mechanics of Running Under Simulated Low Gravity. J. Appl. Physiol. 1991, 71, 863–870. [Google Scholar] [CrossRef]
- Cavagna, G.A. Effect of an Increase in Gravity on the Power Output and the Rebound of the Body in Human Running. J. Exp. Biol. 2005, 208, 2333–2346. [Google Scholar] [CrossRef]
- Morin, J.B.; Dalleau, G.; Kyröläinen, H.; Jeannin, T.; Belli, A. A Simple Method for Measuring Stiffness during Running. J. Appl. Biomech. 2005, 21, 167–180. [Google Scholar] [CrossRef] [PubMed]
- Morin, J.B.; Jeannin, T.; Chevallier, B.; Belli, A. Spring-Mass Model Characteristics during Sprint Running: Correlation with Performance and Fatigue-Induced Changes. Int. J. Sport. Med. 2006, 27, 158–165. [Google Scholar] [CrossRef]
- Biewener, A. Scaling Body Support in Mammals: Limb Posture and Muscle Mechanics. Science 1989, 245, 45–48. [Google Scholar] [CrossRef] [PubMed]
- Jin, L.; Hahn, M.E. Modulation of Lower Extremity Joint Stiffness, Work and Power at Different Walking and Running Speeds. Hum. Mov. Sci. 2018, 58, 1–9. [Google Scholar] [CrossRef]
- Crenna, P.; Frigo, C. Dynamics of the Ankle Joint Analyzed through Moment-Angle Loops during Human Walking: Gender and Age Effects. Hum. Mov. Sci. 2011, 30, 1185–1198. [Google Scholar] [CrossRef]
- Davis, R.B.; DeLuca, P.A. Gait Characterization via Dynamic Joint Stiffness. Gait Posture 1996, 4, 224–231. [Google Scholar] [CrossRef]
- Gabriel, R.C.; Abrantes, J.; Granata, K.; Bulas-Cruz, J.; Melo-Pinto, P.; Filipe, V. Dynamic Joint Stiffness of the Ankle during Walking: Gender-Related Differences. Phys. Ther. Sport 2008, 9, 16–24. [Google Scholar] [CrossRef]
- Arampatzis, A.; Bruk, G.-P.; Metzler, V. The Effect of Speed on Leg Stiffness and Joint Kinetics in Human Running. J. Biomech. 1999, 32, 1349–1353. [Google Scholar] [CrossRef]
- Kuitunen, S.; Komi, P.V.; Kyröläinen, H.; Kyrolainen, H. Knee and Ankle Joint Stiffness in Sprint Running. Med. Sci. Sport. Exerc. 2002, 34, 166–173. [Google Scholar] [CrossRef] [PubMed]
- Farley, C.T.; Morgenroth, D.C. Leg Stiffness Primarily Depends on Ankle Stiffness during Human Hopping. J. Biomech. 1999, 32, 267–273. [Google Scholar] [CrossRef]
- Günther, M.; Blickhan, R. Joint Stiffness of the Ankle and the Knee in Running. J. Biomech. 2002, 35, 1459–1474. [Google Scholar] [CrossRef]
- Farley, C.T.; Houdijk, H.H.; Van Strien, C.; Louie, M. Mechanism of Leg Stiffness Adjustment for Hopping on Surfaces of Different Stiffnesses. J. Appl. Physiol. 1998, 85, 1044–1055. [Google Scholar] [CrossRef] [PubMed]
- Sholukha, V.; Gunther, M.; Blickhan, R. Running Synthesis with a Passive Support Leg. In Proceedings of the XIIth International Biomechanics Seminar on Dynamical Simulation, Gothenburg, Sweden, 10–11 September 1999; pp. 63–72. [Google Scholar]
- Greene, P.R.; McMahon, T.A. Reflex Stiffness of Man’s Anti-Gravity Muscles during Kneebends While Carrying Extra Weights. J. Biomech. 1979, 12, 881–891. [Google Scholar] [CrossRef]
- Segers, V.; Aerts, P.; Lenoir, M.; De Clercq, D. Dynamics of the Body Centre of Mass during Actual Acceleration across Transition Speed. J. Exp. Biol. 2007, 210, 578–585. [Google Scholar] [CrossRef]
- Zelik, K.E.; Kuo, A.D. Human Walking Isn’t All Hard Work: Evidence of Soft Tissue Contributions to Energy Dissipation and Return. J. Exp. Biol. 2010, 213, 4257–4264. [Google Scholar] [CrossRef]
- Donelan, J.M.M.; Kram, R.; Kuo, A.D. Simultaneous Positive and Negative External Mechanical Work in Human Walking. J. Biomech. 2002, 35, 117–124. [Google Scholar] [CrossRef]
- Adamczyk, P.G.; Kuo, A.D. Redirection of Center-of-Mass Velocity during the Step-to-Step Transition of Human Walking. J. Exp. Biol. 2009, 212, 2668–2678. [Google Scholar] [CrossRef] [Green Version]
- Arampatzis, A.; Knicker, A.; Metzler, V.; Brüggemann, G.-P. Mechanical Power in Running: A Comparison of Different Approaches. J. Biomech. 2000, 33, 457–463. [Google Scholar] [CrossRef]
- Fukunaga, T.; Matsuo, A.; Yuasa, K.; Fujimatsu, H.; Asahina, K. Effect of Running Velocity on External Mechanical Power Output. Ergonomics 1980, 23, 123–136. [Google Scholar] [CrossRef] [PubMed]
- Lindstedt, S.L.; Reich, T.E.; Keim, P.; LaStayo, P.C. Do Muscles Function as Adaptable Locomotor Springs? J. Exp. Biol. 2002, 205, 2211–2216. [Google Scholar] [CrossRef] [PubMed]
- Reich, T.E.; Lindstedt, S.L.; LaStayo, P.C.; Pierotti, D.J. Is the Spring Quality of Muscle Plastic? Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000, 278, R1661–R1666. [Google Scholar] [CrossRef]
- Sawers, A.; Hahn, M.E. Regulation of Whole-Body Frontal Plane Balance Varies within a Step during Unperturbed Walking. Gait Posture 2012, 36, 322–324. [Google Scholar] [CrossRef]
- Resseguie, S.C.; Jin, L.; Hahn, M.E. Analysis of Dynamic Balance Control in Transtibial Amputees with Use of a Powered Prosthetic Foot. Biomed. Eng. Appl. Basis Commun. 2016, 28, 1650011. [Google Scholar] [CrossRef]
- Winter, D.A. Biomechanics and Motor Control of Human Movement, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2009; ISBN 9780470549148. [Google Scholar]
- Hobara, H.; Baum, B.S.; Kwon, H.J.; Miller, R.H.; Ogata, T.; Kim, Y.H.; Shim, J.K. Amputee Locomotion: Spring-like Leg Behavior and Stiffness Regulation Using Running-Specific Prostheses. J. Biomech. 2013, 46, 2483–2489. [Google Scholar] [CrossRef]
- Blum, Y.; Lipfert, S.W.; Seyfarth, A. Effective Leg Stiffness in Running. J. Biomech. 2009, 42, 2400–2405. [Google Scholar] [CrossRef]
- Cavagna, G.A. Force Platforms as Ergometers. J. Appl. Physiol. 1975, 39, 174–179. [Google Scholar] [CrossRef]
Stiffness | Running Speed (m/s) | |||||
---|---|---|---|---|---|---|
1.8 | 2.2 | 2.6 | 3.0 | 3.4 | 3.8 | |
23.03 (5.19) a | 24.98 (4.77) b | 27.10 (4.50) a,c | 29.79 (4.70) a,b,d | 32.84 (6.40) a,b,c | 40.29 (9.16) a,b,c,d | |
13.49 (3.40) | 13.39 (3.85) | 13.22 (3.28) | 13.07 (2.76) | 12.96 (3.65) | 13.45 (4.17) | |
0.18 (0.08) | 0.18 (0.05) | 0.19 (0.06) | 0.19 (0.09) | 0.21 (0.07) | 0.23 (0.09) | |
0.10 (0.02) e | 0.11 (0.02) f | 0.12 (0.03) | 0.14 (0.04) e,f | 0.15 (0.06) | 0.18 (0.08) e,f | |
0.25 (0.14) | 0.22 (0.11) | 0.26 (0.12) | 0.24 (0.07) | 0.27 (0.10) | 0.27 (0.10) |
Running Speed (m/s) | ||||||
---|---|---|---|---|---|---|
1.8 | 2.2 | 2.6 | 3.0 | 3.4 | 3.8 | |
Work | ||||||
1.03 (0.14) a | 1.06 (0.23) | 1.16 (0.14) | 1.21 (0.20) a | 1.22 (0.31) a | 1.31 (0.29) a | |
−0.85 (0.11) b | −0.90 (0.12) | −0.96 (0.11) | −0.96 (0.13) | −0.98 (0.15) b | −0.94 (0.19) | |
0.21 (0.05) c | 0.26 (0.08) d | 0.33 (0.09) c,e | 0.39 (0.12) c,d,f | 0.43 (0.17) c,d,e | 0.54 (0.17) c,d,e,f | |
−0.17 (0.05) g | −0.22 (0.05) h | −0.30 (0.08) g | −0.33 (0.08) g | −0.37 (0.09) g,h | −0.39 (0.12) g | |
0.83 (0.14) | 0.81 (0.17) | 0.85 (0.12) | 0.84 (0.13) | 0.81 (0.16) | 0.79 (0.18) | |
−0.69 (0.11) | −0.69 (0.11) | −0.68 (0.10) | −0.65 (0.11) | −0.62 (0.10) | −0.56 (0.11) | |
Power | ||||||
10.80 (2.63) i | 12.42 (2.30) i,j | 13.99 (2.74) i,j,k | 16.43 (3.46) i | 17.55 (2.75) i,j,k | 18.80 (4.92) i,j.k | |
−11.39 (1.97) l | −12.69 (2.08) l,m | −14.70 (3.01) | −15.48 (2.15) l,m | −16.56 (2.57) l,m | −17.75 (4.62) l |
Variable | Speed (m/s) | Model Summary | |||
---|---|---|---|---|---|
1.8 | 0.246 | 0.509 * | 0.142 | = 8.298, R2 = 0.384, p = 0.046 | |
2.2 | 0.040 | 0.553 * | 0.338 | = 9.289, R2 = 0.498, p = 0.014 | |
1.8 | −0.076 | 0.532 * | 0.323 | = 4.815, R2 = 0.424, p = 0.028 | |
2.2 | −0.237 | 0.553 * | 0.526 * | = 3.210, R2 = 0.793, p < 0.0001 | |
2.6 | 0.048 | 0.456 * | 0.404 | = 4.512, R2 = 0.399, p = 0.039 | |
3.4 | −0.353 | 0.046 | 0.721 * | = 9.760, R2 = 0.474, p = 0.026 |
Variable | Model Summary | |
---|---|---|
0.950 | = 0.677, R2 = 0.902, p = 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jin, L.; Hahn, M.E. Relationship between Joint Stiffness, Limb Stiffness and Whole–Body Center of Mass Mechanical Work across Running Speeds. Biomechanics 2022, 2, 441-452. https://doi.org/10.3390/biomechanics2030034
Jin L, Hahn ME. Relationship between Joint Stiffness, Limb Stiffness and Whole–Body Center of Mass Mechanical Work across Running Speeds. Biomechanics. 2022; 2(3):441-452. https://doi.org/10.3390/biomechanics2030034
Chicago/Turabian StyleJin, Li, and Michael E. Hahn. 2022. "Relationship between Joint Stiffness, Limb Stiffness and Whole–Body Center of Mass Mechanical Work across Running Speeds" Biomechanics 2, no. 3: 441-452. https://doi.org/10.3390/biomechanics2030034
APA StyleJin, L., & Hahn, M. E. (2022). Relationship between Joint Stiffness, Limb Stiffness and Whole–Body Center of Mass Mechanical Work across Running Speeds. Biomechanics, 2(3), 441-452. https://doi.org/10.3390/biomechanics2030034