Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Ethics
2.3. Tasks, Equipment and Procedures
2.4. Data Collection and Analysis
3. Results
3.1. Quiet Stance
3.2. Voluntary Dynamic Balance I: Hip Flexion-Extension
3.3. Voluntary Dynamic Balance II: Squat-Lift Task
4. Discussion
4.1. Effect of Visual Deprivation
4.2. Better Gymnasts’ Balance Control in the Squat-Lift Task
4.3. Methodological Strengths and Weaknesses
5. Conclusions and Implications
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Paillard, T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017, 72, 129–152. [Google Scholar] [CrossRef] [PubMed]
- Valenciano, P.J.; Monteiro, P.H.M.; Lazzaro, I.M.; Heusi da Silva, F.J.M.; Silva, F.H.; Mizrahi, S.E.; Guimarães, C.P.; Teixeira, L.A. Validation of the equidyn protocol for evaluation of dynamic balance in older adults through a smartphone application. Gait Posture 2024, 111, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Butler, R.J.; Southers, C.; Gorman, P.P.; Kiesel, K.B.; Plisky, P.J. Differences in soccer players’ dynamic valance across levels of competition. J. Athl. Train. 2012, 47, 616–620. [Google Scholar] [CrossRef] [PubMed]
- Pinheiro, L.S.P.; Ocarino, J.d.M.; Bittencourt, N.F.N.; Souza, T.R.; de Souza Martins, S.C.; Bomtempo, R.A.B.; Resende, R.A. Lower limb kinematics and hip extensors strengths are associated with performance of runners at high risk of injury during the modified Star Excursion Balance Test. Braz. J. Phys. Ther. 2020, 24, 488–495. [Google Scholar] [CrossRef] [PubMed]
- Poncumhak, P.; Srithawong, A.; Duangsanjun, W.; Amput, P. Comparison of the ability of static and dynamic balance tests to determine the risk of falls among older community-dwelling individuals. J. Funct. Morphol. Kinesiol. 2023, 8, 43. [Google Scholar] [CrossRef]
- Nakagawa, T.H.; Petersen, R.S. Relationship of hip and ankle range of motion, trunk muscle endurance with knee valgus and dynamic balance in males. Phys. Ther. Sport. 2018, 34, 174–179. [Google Scholar] [CrossRef] [PubMed]
- Kang, M.-H.; Kim, G.-M.; Kwon, O.-Y.; Weon, J.-H.; Oh, J.-S.; An, D.-H. Relationship between the kinematics of the trunk and lower extremity and performance on the Y-Balance Test. PMR 2015, 7, 1152–1158. [Google Scholar] [CrossRef]
- Schaubert, K.L.; Bohannon, R.W. Reliability and validity of three strength measures obtained from community-dwelling elderly persons. J. Strength Cond. Res. 2005, 19, 717–720. [Google Scholar]
- Rizzato, A.; Bozzato, M.; Zullo, G.; Paoli, A.; Marcolin, G. Center of pressure behavior in response to unexpected base of support shifting: A new objective tool for dynamic balance assessment. Sensors 2023, 23, 6203. [Google Scholar] [CrossRef]
- Coelho, D.B.; Silva, M.B.; de Lima-Pardini, A.C.; Martinelli, A.R.; da Silva Baptista, T.; Ramos, R.T.; Teixeira, L.A. Young and older adults adapt automatic postural responses equivalently to repetitive perturbations but are unable to use predictive cueing to optimize recovery of balance stability. Neurosci. Lett. 2018, 685, 167–172. [Google Scholar] [CrossRef]
- Mochizuki, G.; Boe, S.; Marlin, A.; McIlroy, W.E. Perturbation-evoked cortical activity reflects both the context and consequence of postural instability. Neuroscience 2010, 170, 599–609. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, L.A.; Coutinho, J.d.F.S.; Coelho, D.B. Regulation of dynamic postural control to attend manual steadiness constraints. J. Neurophysiol. 2018, 120, 693–702. [Google Scholar] [CrossRef] [PubMed]
- Rizzato, A.; Gobbi, E.; Paoli, A.; Marcolin, G. Validity and reliability of an unstable board for dynamic balance assessment in young adults. PLoS ONE 2023, 18, e0280057. [Google Scholar] [CrossRef]
- Rizzato, A.; Paoli, A.; Andretta, M.; Vidorin, F.; Marcolin, G. Are static and dynamic postural balance assessments two sides of the same coin? A cross-sectional study in the older adults. Front. Physiol. 2021, 12, 681370. [Google Scholar] [CrossRef] [PubMed]
- Ringhof, S.; Stein, T. Biomechanical assessment of dynamic balance: Specificity of different balance tests. Hum. Mov. Sci. 2018, 58, 140–147. [Google Scholar] [CrossRef] [PubMed]
- Kiers, H.; van Dieën, J.; Dekkers, H.; Wittink, H.; Vanhees, L. A systematic review of the relationship between physical activities in sports or daily life and postural sway in upright stance. Sports Med. 2013, 43, 1171–1189. [Google Scholar] [CrossRef] [PubMed]
- Andreeva, A.; Melnikov, A.; Skvortsov, D.; Akhmerova, K.; Vavaev, A.; Golov, A.; Draugelite, V.; Nikolaev, R.; Chechelnickaia, S.; Zhuk, D.; et al. Postural stability in athletes: The role of sport direction. Gait Posture 2021, 89, 120–125. [Google Scholar] [CrossRef] [PubMed]
- Davlin, C.D. Dynamic balance in high level athletes. Percept. Mot. Ski. 2004, 98, 1171–1176. [Google Scholar] [CrossRef] [PubMed]
- Vuillerme, N.; Danion, F.; Marin, L.; Boyadjian, A.; Prieur, J.M.; Weise, I.; Nougier, V. The effect of expertise in gymnastics on postural control. Neurosci. Lett. 2001, 303, 83–86. [Google Scholar] [CrossRef]
- Vuillerme, N.; Nougier, V. Attentional demand for regulating postural sway: The effect of expertise in gymnastics. Brain Res. Bull. 2004, 63, 161–165. [Google Scholar] [CrossRef]
- Asseman, F.B.; Caron, O.; Crémieux, J. Are there specific conditions for which expertise in gymnastics could have an effect on postural control and performance? Gait Posture 2008, 27, 76–81. [Google Scholar] [CrossRef] [PubMed]
- Gautier, G.; Thouvarecq, R.; Larue, J. Influence of experience on postural control: Effect of expertise in gymnastics. J. Mot. Behav. 2008, 40, 400–408. [Google Scholar] [CrossRef] [PubMed]
- Isableu, B.; Hlavackova, P.; Diot, B.; Vuillerme, N. Regularity of center of pressure trajectories in expert gymnasts during bipedal closed-eyes quiet standing. Front. Hum. Neurosci. 2017, 11, 317. [Google Scholar] [CrossRef] [PubMed]
- Bueno, J.W.F.; Coelho, D.B.; de Souza, C.R.; Teixeira, L.A. Association of foot sole sensibility with quiet and dynamic body balance in morbidly obese women. Biomechanics 2021, 1, 334–345. [Google Scholar] [CrossRef]
- Podsiadlo, D.; Richardson, S. The timed “Up & Go”: A test of basic functional mobility for frail elderly persons. J. Am. Geriatr. Soc. 1991, 39, 142–148. [Google Scholar] [CrossRef] [PubMed]
- Jeon, W.; Jensen, J.L.; Griffin, L. Muscle activity and balance control during sit-to-stand across symmetric and asymmetric initial foot positions in healthy adults. Gait Posture 2019, 71, 138–144. [Google Scholar] [CrossRef] [PubMed]
- Lord, S.R.; Murray, S.M.; Chapman, K.; Munro, B.; Tiedemann, A. Sit-to-stand performance depends on sensation, speed, balance, and psychological status in addition to strength in older people. J. Gerontol. A 2002, 57, M539–M543. [Google Scholar] [CrossRef] [PubMed]
- Rezende, L.S.; Monteiro, P.H.; Oliveira, J.A.; Souza, C.R.; Coelho, D.B.; Marcori, A.J.; Teixeira, L.A. Do timed up and go and five times sit to stand test outcomes correlate with trunk stability? A pilot-study. Braz. J. Mot. Behav. 2023, 17, 150–157. [Google Scholar] [CrossRef]
- Schenkman, M.; Hughes, M.A.; Samsa, G.; Studenski, S. The relative importance of strength and balance in chair rise by functionally impaired older individuals. J. Am. Geriatr. Soc. 1996, 44, 1441–1446. [Google Scholar] [CrossRef]
- Termoz, N.; Halliday, S.E.; Winter, D.A.; Frank, J.S.; Patla, A.E.; Prince, F. The control of upright stance in young, elderly and persons with Parkinson’s disease. Gait Posture 2008, 27, 463–470. [Google Scholar] [CrossRef]
- Alcazar, J.; Alegre, L.M.; Van Roie, E.; Magalhães, J.P.; Nielsen, B.R.; González-Gross, M.; Júdice, P.B.; Casajús, J.A.; Delecluse, C.; Sardinha, L.B.; et al. Relative sit-to-stand power: Aging trajectories, functionally relevant cut-off points, and normative data in a large european cohort. J. Cachexia Sarcopenia Muscle 2021, 12, 921–932. [Google Scholar] [CrossRef] [PubMed]
- Sarabon, N.; Rosker, J.; Loefler, S.; Kern, H. The effect of vision elimination during quiet stance tasks with different feet positions. Gait Posture 2013, 38, 708–711. [Google Scholar] [CrossRef] [PubMed]
- Sozzi, S.; Monti, A.; De Nunzio, A.M.; Do, M.-C.; Schieppati, M. Sensori-motor integration during stance: Time adaptation of control mechanisms on adding or removing vision. Hum. Mov. Sci. 2011, 30, 172–189. [Google Scholar] [CrossRef]
- Buchanan, J.J.; Horak, F.B. Emergence of postural patterns as a function of vision and translation frequency. J. Neurophysiol. 1999, 81, 2325–2339. [Google Scholar] [CrossRef] [PubMed]
- Martinelli, A.R.; Coelho, D.B.; Teixeira, L.A. Light touch leads to increased stability in quiet and perturbed balance: Equivalent effects between post-stroke and healthy older individuals. Hum. Mov. Sci. 2018, 58, 268–278. [Google Scholar] [CrossRef] [PubMed]
- Horlings, C.G.C.; Küng, U.M.; Bloem, B.R.; Honegger, F.; Van Alfen, N.; Van Engelen, B.G.M.; Allum, J.H.J. Identifying deficits in balance control following vestibular or proprioceptive loss using posturographic analysis of stance tasks. Clin. Neurophysiol. 2008, 119, 2338–2346. [Google Scholar] [CrossRef]
- Meyer, P.F.; Oddsson, L.I.E.; De Luca, C.J. Reduced plantar sensitivity alters postural responses to lateral perturbations of balance. Exp. Brain Res. 2004, 157, 526–536. [Google Scholar] [CrossRef] [PubMed]
- Bloem, B.; Allum, J.H.J.; Carpenter, M.; Verschuuren, J.; Honegger, F. Triggering of balance corrections and compensatory strategies in a patient with total leg proprioceptive loss. Exp. Brain Res. 2002, 142, 91–107. [Google Scholar] [CrossRef]
- Bertenthal, B.I.; Bai, D.L. Infants’ sensitivity to optical flow for controlling posture. Dev. Psychol. 1989, 25, 936–945. [Google Scholar] [CrossRef]
- Lee, D.N.; Aronson, E. Visual proprioceptive control of standing in human infants. Percept. Psychophys. 1974, 15, 529–532. [Google Scholar] [CrossRef]
- Teixeira, L.A.; Maia Azzi, N.; de Oliveira, J.Á.; Ribeiro de Souza, C.; da Silva Rezende, L.; Boari Coelho, D. Automatic postural responses are scaled from the association between online feedback and feedforward control. Eur. J. Neurosci. 2020, 51, 2023–2032. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.S.; Gribble, P.L.; Pruszynski, J.A. Learning new feedforward motor commands based on feedback responses. Curr. Biol. 2020, 30, 1941–1948. [Google Scholar] [CrossRef] [PubMed]
- Maeda, R.S.; Kersten, R.; Pruszynski, J.A. Shared internal models for feedforward and feedback control of arm dynamics in non-human primates. Eur. J. Neurosci. 2021, 53, 1605–1620. [Google Scholar] [CrossRef] [PubMed]
- Hue, O.; Simoneau, M.; Marcotte, J.; Berrigan, F.; Doré, J.; Marceau, P.; Marceau, S.; Tremblay, A.; Teasdale, N. Body weight is a strong predictor of postural stability. Gait Posture 2007, 26, 32–38. [Google Scholar] [CrossRef]
Gymnasts | Other Athletes | |
---|---|---|
Age (years) | 20.44 (4.33) | 22.7 (2.67) |
Weight (Kg) | 64.26 (7.41) | 80.10 (12.38) |
Height (cm) | 167.67 (4.36) | 178.80 (7.19) |
Weekly training (h) | 32.11 (5.27) | 6.10 (5.57) |
Weekly frequency (days) | 6.00 (0) | 4.20 (1.03) |
Total practice time (years) | 11.33 (7.82) | 6.00 (2.02) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bueno, J.W.F.; Coelho, D.B.; Teixeira, L.A. Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports. Biomechanics 2024, 4, 439-451. https://doi.org/10.3390/biomechanics4030030
Bueno JWF, Coelho DB, Teixeira LA. Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports. Biomechanics. 2024; 4(3):439-451. https://doi.org/10.3390/biomechanics4030030
Chicago/Turabian StyleBueno, Jair Wesley Ferreira, Daniel Boari Coelho, and Luis Augusto Teixeira. 2024. "Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports" Biomechanics 4, no. 3: 439-451. https://doi.org/10.3390/biomechanics4030030
APA StyleBueno, J. W. F., Coelho, D. B., & Teixeira, L. A. (2024). Evaluation of Voluntary Dynamic Balance through Standardized Squat-Lift Movements: A Comparison between Gymnasts and Athletes from Other Sports. Biomechanics, 4(3), 439-451. https://doi.org/10.3390/biomechanics4030030