Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Equipment
2.2. Experimental Setup
2.3. Impact Conditions—Location and Velocity
2.4. Data Processing
2.5. Statistical Analysis
3. Results
3.1. Peak Linear Acceleration
3.2. Peak Rotational Acceleration
3.3. Peak Rotation Velocities
3.4. Head Injury Criterion
3.5. Brain Injury Criterion
4. Discussion
4.1. Effect of Helmet Technology
4.2. Effect of Impact Location
4.3. Resulting Kinematic Findings
4.4. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Puelles Magán, G.; Terra, W.; Sciacchitano, A. Aerodynamics Analysis of Speed Skating Helmets: Investigation by CFD Simulations. Appl. Sci. 2021, 11, 3148. [Google Scholar] [CrossRef]
- International Skating Union. Constitution & Regulations. 2022. Available online: https://www.isu.org/inside-isu/rules-regulations/isu-statutes-constitution-regulations-technical (accessed on 9 August 2023).
- Speed Skating Canada. 1 September 2020. Available online: https://speedskating.ca/ (accessed on 9 August 2023).
- Quinn, A.; Lun, V.; McCall, J.; Overend, T. Injuries in short track speed skating. Am. J. Sports Med. 2003, 31, 507–510. [Google Scholar] [CrossRef] [PubMed]
- Valevicius, A.; Romeas, T.; Bieuzen, F.; Pearsall, D.; Leclerc, S. Concussion in the Canadian National Short Track Speed Skating Team. In 6th International Consensus Conference on Concussion in Sport; 2022; Available online: https://www.researchgate.net/publication/365188947_Concussion_in_the_Canadian_National_Short_Track_Speed_Skating_Team (accessed on 9 August 2023).
- Engebretsen, L.; Steffen, K.; Alonso, J.M.; Aubry, M.; Dvorak, J.; Junge, A.; Meeuwisse, W.; Mountjoy, M.; Renström, P.; Wilkinson, M. Sports injuries and illnesses during the Winter Olympic Games 2010. Br. J. Sports Med. 2010, 44, 772–780. [Google Scholar] [CrossRef] [PubMed]
- Palmer-Green, D.; Brownlow, M.; Hopkins, J.; Eley, J.; Jaques, R.; Hunter, G. Epidemiological study of injury and illness in Great Britain short-track speed skating. Br. J. Sports Med. 2014, 48, 649–650. [Google Scholar] [CrossRef]
- ASTM. Standard Specification for Helmets Used in Short Track Speed Ice Skating (Not to Include Hockey). 2018. Available online: https://www.astm.org/f1849-18.html (accessed on 9 August 2023).
- Hoshizaki, T.B.; Post, A.; Oeur, R.A.; Brien, S.E. Current and future concepts in helmet and sports injury prevention. Neurosurgery 2014, 75 (Suppl. 4), S136–S148. [Google Scholar] [CrossRef] [PubMed]
- Patricios, J.S.; Schneider, K.J.; Dvorak, J.; Ahmed, O.H.; Blauwet, C.; Cantu, R.C.; Davis, G.A.; Echemendia, R.J.; Makdissi, M.; McNamee, M.; et al. Consensus statement on concussion in sport: The 6th International Conference on Concussion in Sport-Amsterdam, October 2022. Br. J. Sports Med. 2023, 57, 695–711. [Google Scholar] [CrossRef] [PubMed]
- Clark, J.M.; Hoshizaki, T.B.; Gilchrist, M.D. Protective capacity of an ice hockey goaltender helmet for three events associated with concussion. Comput. Methods Biomech. Biomed. Eng. 2017, 20, 1299–1311. [Google Scholar] [CrossRef] [PubMed]
- Forero Rueda, M.A.; Cui, L.; Gilchrist, M.D. Finite element modelling of equestrian helmet impacts exposes the need to address rotational kinematics in future helmet designs. Comput. Methods Biomech. Biomed. Eng. 2011, 14, 1021–1031. [Google Scholar] [CrossRef] [PubMed]
- Eliason, P.H.; Galarneau, J.M.; Kolstad, A.T.; Pankow, M.P.; West, S.W.; Bailey, S.; Miutz, L.; Black, A.M.; Broglio, S.P.; Davis, G.A.; et al. Prevention strategies and modifiable risk factors for sport-related concussions and head impacts: A systematic review and meta-analysis. Br. J. Sports Med. 2023, 57, 749–761. [Google Scholar] [CrossRef]
- Bain, A.C.; Meaney, D.F. Tissue-level thresholds for axonal damage in an experimental model of central nervous system white matter injury. J. Biomech. Eng. 2000, 122, 615–622. [Google Scholar] [CrossRef]
- Kleiven, S. Evaluation of head injury criteria using a finite element model validated against experiments on localized brain motion, intracerebral acceleration, and intracranial pressure. Int. J. Crashworthiness 2006, 11, 65–79. [Google Scholar] [CrossRef]
- Beckwith, J.G.; Zhao, W.; Ji, S.; Ajamil, A.G.; Bolander, R.P.; Chu, J.J.; McAllister, T.W.; Crisco, J.J.; Duma, S.M.; Rowson, S.; et al. Estimated Brain Tissue Response Following Impacts Associated With and Without Diagnosed Concussion. Ann. Biomed. Eng. 2018, 46, 819–830. [Google Scholar] [CrossRef] [PubMed]
- Marjoux, D.; Baumgartner, D.; Deck, C.; Willinger, R. Head injury prediction capability of the HIC, HIP, SIMon and ULP criteria. Accid. Anal. Prev. 2008, 40, 1135–1148. [Google Scholar] [CrossRef]
- Bonin, S.J.; DeMarco, A.L.; Siegmund, G.P. The Effect of MIPS, Headform Condition, and Impact Orientation on Headform Kinematics Across a Range of Impact Speeds During Oblique Bicycle Helmet Impacts. Ann. Biomed. Eng. 2022, 50, 860–870. [Google Scholar] [CrossRef] [PubMed]
- Chung, V.W.J.; Dias, L.; Booth, G.; Cripton, P.A. Incorporating neck biomechanics in helmet testing: Evaluation of commercially available WaveCel helmets. Clin. Biomech. 2022, 94, 105628. [Google Scholar] [CrossRef]
- DiGiacomo, G.; Tsai, S.; Bottlang, M. Impact Performance Comparison of Advanced Snow Sport Helmets with Dedicated Rotation-Damping Systems. Ann. Biomed. Eng. 2021, 49, 2805–2813. [Google Scholar] [CrossRef]
- Karton, C.; Rousseau, P.; Vassilyadi, M.; Hoshizaki, T.B. The evaluation of speed skating helmet performance through peak linear and rotational accelerations. Br. J. Sports Med. 2014, 48, 46–50. [Google Scholar] [CrossRef]
- Bliven, E.; Rouhier, A.; Tsai, S.; Willinger, R.; Bourdet, N.; Deck, C.; Madey, S.M.; Bottlang, M. Evaluation of a novel bicycle helmet concept in oblique impact testing. Acc. Anal. Prev. 2019, 124, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Hansen, K.; Dau, N.; Feist, F.; Deck, C.; Willinger, R.; Madey, S.M.; Bottlang, M. Angular Impact Mitigation system for bicycle helmets to reduce head acceleration and risk of traumatic brain injury. Accid. Anal. Prev. 2013, 59, 109–117. [Google Scholar] [CrossRef]
- Jadischke, R.; Viano, D.C.; Dau, N.; King, A.I.; McCarthy, J. On the accuracy of the Head Impact Telemetry (HIT) System used in football helmets. J. Biomech. 2013, 46, 2310–2315. [Google Scholar] [CrossRef]
- Rousseau, P.; Post, A.; Hoshizaki, T.B. A comparison of peak linear and angular headform accelerations using ice hockey helmets. J. ASTM Int. 2009, 6, JAI101877. [Google Scholar] [CrossRef]
- Kosziwka, G.; Champoux, L.; Cournoyer, J.; Gilchrist, M.; Hoshizaki, T.B. Risk of head injury associated with distinct head impact events in elite women’s hockey. J. Concussion 2021, 5, 20597002211058896. [Google Scholar] [CrossRef]
- Jeffries, L.; Zerpa, C.; Przysucha, E.; Sanzo, P.; Carlson, S. The Use of a Pneumatic Horizontal Impact System for Helmet Testing. Int. J. Reliab. Qual. Saf. Eng. 2017, 6, 8–13. [Google Scholar]
- Whyte, T.; Stuart, C.A.; Mallory, A.; Ghajari, M.; Plant, D.J.; Siegmund, G.P.; Cripton, P.A. A review of impact testing methods for headgear in sports: Considerations for improved prevention of head injury through research and standards. J. Biomech. Eng. 2019, 141, 070803. [Google Scholar] [CrossRef] [PubMed]
- Jelen, K.; Fanta, O.; Billich, R.; Hadraba, D.; Kubový, P. Whiplash Injury and Head Injury Criterion during Deceleration. Trans. Transp. Sci. 2011, 4, 217–224. [Google Scholar] [CrossRef]
- Padgaonkar, A.J.; Krieger, K.W.; King, A.I. Measurement of Angular Acceleration of a Rigid Body Using Linear Accelerometers. J. Appl. Mech. 1975, 42, 552–556. [Google Scholar] [CrossRef]
- Dufek, J.S.; Ryan-Wenger, N.A.; Eggleston, J.D.; Mefferd, K.C. A Novel Approach to Assessing Head Injury Severity in Pediatric Patient Falls. J. Pediatr. Health Care 2018, 32, e59–e66. [Google Scholar] [CrossRef] [PubMed]
- McHenry, B.G. Head injury criterion and the ATB. ATB Users’ Group 2004, 29, 5–8. [Google Scholar]
- Takhounts, E.G.; Craig, M.J.; Moorhouse, K.; McFadden, J.; Hasija, V. Development of brain injury criteria (BrIC). Stapp Car Crash J. 2013, 57, 243–266. [Google Scholar]
- Tierney, G. Concussion biomechanics, head acceleration exposure and brain injury criteria in sport: A review. Sports Biomech. 2021, 1–29. [Google Scholar] [CrossRef]
- Rohlf, F.J. Biometry, 4th ed.; Extensively Rev.; W. H. Freeman: New York, NY, USA, 2011; Volume xix, 937p. [Google Scholar]
- Benjamini, Y.; Hochberg, Y. Controlling the false discovery rate: A practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Stat. Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Routledge: London, UK, 2013. [Google Scholar] [CrossRef]
- Rowson, B.; Rowson, S.; Duma, S.M. Hockey STAR: A Methodology for Assessing the Biomechanical Performance of Hockey Helmets. Ann. Biomed. Eng. 2015, 43, 2429–2443. [Google Scholar] [CrossRef] [PubMed]
- Takhounts, E.G.; Ridella, S.A.; Hasija, V.; Tannous, R.E.; Campbell, J.Q.; Malone, D.; Danelson, K.; Stitzel, J.; Rowson, S.; Duma, S. Investigation of traumatic brain injuries using the next generation of simulated injury monitor (SIMon) finite element head model. Stapp Car Crash J. 2008, 52, 1–31. [Google Scholar] [PubMed]
- Zhang, L.; Yang, K.H.; King, A.I. A proposed injury threshold for mild traumatic brain injury. J. Biomech. Eng. 2004, 126, 226–236. [Google Scholar] [CrossRef] [PubMed]
3.8 m/s Impacts | |||||
---|---|---|---|---|---|
Parameter | Helmet | Side Impact | Posterior Impact | Rear Oblique Impact | Mean by Model |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
PLAR [g] | BT | 92.91 ± 1.76 | 90.15 ± 1.73 | 87. 94 ± 1.91 | 90.33 ± 2.68 |
ST | 75.38 ± 2.11 | 85.69 ± 2.18 | 73.47 ± 3.82 | 78.18 ± 6.14 | |
MIPS | 122.46 ± 3.88 | 105.52 ± 2.54 | 105.73 ± 6.28 | 111.24 ± 9.21 | |
PRAR [rad/s2] | BT | 9053.01 ± 125.84 | 3033.54 ± 179.55 | 8020.13 ± 245.35 | 6702.23 ± 2726.12 |
ST | 7633.23 ± 334.95 | 2651.95 ± 138.92 | 7472.42 ± 310.44 | 5919.20 ± 2405.92 | |
MIPS | 12,109.68 ± 337.61 | 6089.09 ± 382.33 | 10,169.81 ± 269.75 | 9456.19 ± 2615.48 | |
PRVR [rad/s] | BT | 24.94 ± 0.23 | 29.19 ± 0.50 | 25.85 ± 0.55 | 26.66 ± 1.93 |
ST | 23.72 ± 0.43 | 29.25 ± 0.51 | 25.08 ± 0.43 | 26.02 ± 2.47 | |
MIPS | 27.30 ± 0.25 | 24.02 ± 0.54 | 25.99 ± 0.11 | 25.77 ± 1.43 | |
HIC 15 | BT | 176.88 ± 4.39 | 210.61 ± 9.78 | 164.27 ± 4.68 | 183.92 ± 21.19 |
ST | 154.93 ± 2.74 | 171.85 ± 10.02 | 145.93 ± 3.98 | 157.57 ± 12.61 | |
MIPS | 243.47 ± 10.90 | 260.61 ± 12.30 | 197.79 ± 16.89 | 233.96 ± 30.19 | |
BrIC [%] | BT | 44.18 ± 0.41 | 51.70 ± 0.88 | 45.17 ± 0.77 | 47.02 ± 3.52 |
ST | 42.01 ± 0.76 | 51.82 ± 0.90 | 44.43 ± 0.91 | 46.09 ± 4.39 | |
MIPS | 48.36 ± 0.45 | 42.55 ± 0.95 | 47.40 ± 0.33 | 46.11 ± 2.70 |
6.2 m/s Impacts | |||||
---|---|---|---|---|---|
Parameter | Helmet | Side Impact | Posterior Impact | Rear Oblique Impact | Mean by Model |
Mean ± SD | Mean ± SD | Mean ± SD | Mean ± SD | ||
PLAR [g] | BT | 162.93 ± 2.69 | 170.40 ± 3.71 | 159.30 ± 2.21 | 164.21 ± 5.50 |
ST | 139.37 ± 2.08 | 147.54 ± 6.17 | 140.00 ± 6.85 | 142.30 ± 6.35 | |
MIPS | 206.44 ± 9.97 | 170.50 ± 14.49 | 184.25 ± 15.70 | 187.06 ± 19.85 | |
PRAR [rad/s2] | BT | 14,001.45 ± 88.65 | 7905.05 ± 507.38 | 13,239.43 ± 226.93 | 11,715.31 ± 2823.43 |
ST | 13,739.02 ± 148.27 | 6224.81 ± 508.32 | 12,517.17 ± 434.79 | 10,827.00 ± 3427.42 | |
MIPS | 14,396.52 ± 290.94 | 10,859.94 ± 402.35 | 16,572.81 ± 741.63 | 13,943.09 ± 2483.09 | |
PRVR [rad/s] | BT | 37.59 ± 0.20 | 43.59 ± 0.18 | 39.41 ± 0.27 | 40.19 ± 2.61 |
ST | 38.22 ± 0.56 | 43.75 ± 0.85 | 39.30 ± 0.60 | 40.42 ± 2.56 | |
MIPS | 35.35 ± 1.18 | 37.70 ± 1.13 | 42.75 ± 0.68 | 38.60 ± 3.34 | |
HIC 15 | BT | 643.79 ± 22.02 | 872.82 ± 30.69 | 40.42 ± 2.56 | 712.55 ± 119.84 |
ST | 543.07 ± 15.54 | 701.21 ± 55.42 | 38.60 ± 3.34 | 594.66 ± 85.12 | |
MIPS | 832.60 ± 73.23 | 879.53 ± 100.31 | 724.90 ± 103.68 | 812.34 ± 109.40 | |
BrIC [%] | BT | 66.58 ± 0.35 | 77.22 ± 0.33 | 70.66 ± 0.35 | 71.49 ± 4.55 |
ST | 67.70 ± 1.00 | 77.51 ± 1.51 | 70.57 ± 1.68 | 71.92 ± 4.46 | |
MIPS | 62.61 ± 2.09 | 66.79 ± 2.00 | 78.45 ± 1.13 | 69.29 ± 7.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valevicius, A.; Croteau, F.; Romeas, T.; Leclerc, S.; Pearsall, D.J. Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs. Biomechanics 2024, 4, 483-493. https://doi.org/10.3390/biomechanics4030034
Valevicius A, Croteau F, Romeas T, Leclerc S, Pearsall DJ. Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs. Biomechanics. 2024; 4(3):483-493. https://doi.org/10.3390/biomechanics4030034
Chicago/Turabian StyleValevicius, Aïda, Felix Croteau, Thomas Romeas, Suzanne Leclerc, and David J. Pearsall. 2024. "Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs" Biomechanics 4, no. 3: 483-493. https://doi.org/10.3390/biomechanics4030034
APA StyleValevicius, A., Croteau, F., Romeas, T., Leclerc, S., & Pearsall, D. J. (2024). Assessing Kinematic Variables in Short-Track Speed Skating Helmets: A Comparative Study between Traditional Rigid Foam and Anti-Rotation Designs. Biomechanics, 4(3), 483-493. https://doi.org/10.3390/biomechanics4030034