Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Stair Ascent
3.2. Stair Descent
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Challenging Surfaces
Appendix B. Whole Body Marker Set
Markers | |
---|---|
Head | Front, back, left, and right head |
Trunk | Acromion process, jugular notch, xiphoid process, C7 vertebrae, T10 vertebrae |
Arm | Medial and lateral wrist and elbow, forearm, and hand |
Pelvis | Anterior–superior iliac spines, posterior–superior iliac spines, and iliac crests |
Thigh | Greater trochanter, distal thigh, medial and lateral femoral epicondyles |
Shank | Tibial tuberosity, lateral fibula, distal tibia, medial and lateral malleoli |
Foot | Posterior heel, first and fifth metatarsal heads |
Appendix C. Patellofemoral Joint Stress Model
References
- Dahlhamer, J.; Lucas, J.; Zelaya, C.; Nahin, R.; Mackey, S.; DeBar, L.; Kerns, R.; von Korff, M.; Porter, L.; Helmick, C. Prevalence of Chronic Pain and High-Impact Chronic Pain Among Adults—United States, 2016. Morb. Mortal. Wkly. Rep. 2018, 67, 1001–1006. [Google Scholar] [CrossRef] [PubMed]
- Kaye, A.D.; Baluch, A.; Scott, J.T. Pain Management in the Elderly. J. Am. Med Dir. Assoc. 2016, 17, 678–679. [Google Scholar] [CrossRef]
- Smith, B.E.; Selfe, J.; Thacker, D.; Hendrick, P.; Bateman, M.; Moffatt, F.; Rathleff, M.S.; Smith, T.O.; Logan, P. Incidence and prevalence of patellofemoral pain: A systematic review and meta-analysis. PLoS ONE 2018, 13, e0190892. [Google Scholar] [CrossRef]
- Glaviano, N.R.; Kew, M.; Hart, J.M.; Saliba, S. Demographic and epidemiological trends in patellofemoral pain. Int. J. Sports Phys. Ther. 2015, 10, 281–290. [Google Scholar] [PubMed]
- Coburn, S.L.; Barton, C.J.; Filbay, S.R.; Hart, H.F.; Rathleff, M.S.; Crossley, K.M. Quality of life in individuals with patellofemoral pain: A systematic review including meta-analysis. Phys. Ther. Sport 2018, 33, 96–108. [Google Scholar] [CrossRef] [PubMed]
- Rolauffs, B.; Kurz, B.; Felka, T.; Rothdiener, M.; Uynuk-Ool, T.; Aurich, M.; Frank, E.; Bahrs, C.; Badke, A.; Stöckle, U.; et al. Stress-vs-time signals allow the prediction of structurally catastrophic events during fracturing of immature cartilage and predetermine the biomechanical, biochemical, and structural impairment. J. Struct. Biol. 2013, 183, 501–511. [Google Scholar] [CrossRef]
- Brechter, J.H.; Powers, C.M. Patellofemoral stress during walking in person with and without patellofemoral pain. Med. Sci. Sports Exerc. 2002, 34, 1582–1593. [Google Scholar] [CrossRef] [PubMed]
- Powers, C.M.; Heino, J.G.; Rao, S.; Perry, J. The influence of patellofemoral pain on lower limb loading during gait. Clin. Biomech. 1999, 14, 722–728. [Google Scholar] [CrossRef]
- Larsen, A.H.; Puggaard, L.; Hämäläinen, U.; Aagaard, P. Comparison of ground reaction forces and antagonist muscle coactivation during stair walking with ageing. J. Electromyogr. Kinesiol. 2008, 18, 568–580. [Google Scholar] [CrossRef]
- DeVita, P.; Hortobagyi, T. Age causes a redistribution of joint torques and powers during gait. J. Appl. Physiol. 2000, 88, 1804–1811. [Google Scholar] [CrossRef]
- Besier, T.F.; Draper, C.E.; Gold, G.E.; Beaupre, G.S.; Delp, S.L. Patellofemoral joint contact area increases with knee flexion and weight-bearing. J. Orthop. Res. 2005, 23, 345–350. [Google Scholar] [CrossRef] [PubMed]
- McGregor, R.A.; Cameron-Smith, D.; Poppitt, S.D. It is not just muscle mass: A review of muscle quality, composition and metabolism during ageing as determinants of muscle function and mobility in later life. Longev. Heal. 2014, 3, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Meachim, G.; Bentley, G.; Baker, R. Effect of age on thickness of adult patellar articular cartilage. Ann. Rheum. Dis. 1977, 36, 563–568. [Google Scholar] [CrossRef] [PubMed]
- Toda, H.; Nagano, A.; Luo, Z. Age-related differences in muscle control of the lower extremity for support and propulsion during walking. J. Phys. Ther. Sci. 2016, 28, 794–801. [Google Scholar] [CrossRef]
- Novak, A.C.; Brouwer, B. Sagittal and frontal lower limb joint moments during stair ascent and descent in young and older adults. Gait Posture 2011, 33, 54–60. [Google Scholar] [CrossRef]
- Riener, R.; Rabuffetti, M.; Frigo, C. Stair ascent and descent at different inclinations. Gait Posture 2002, 15, 32–44. [Google Scholar] [CrossRef]
- Brechter, J.H.; Powers, C.M. Patellofemoral joint stress during stair ascent and descent in persons with and without patellofemoral pain. Gait Posture 2002, 16, 115–123. [Google Scholar] [CrossRef]
- Reeves, N.D.; Spanjaard, M.; Mohagheghi, A.A.; Baltzopoulos, V.; Maganaris, C.N. Older adults employ alternative strategies to operate within their maximum capabilities when ascending stairs. J. Electromyogr. Kinesiol. 2009, 19, e57–e68. [Google Scholar] [CrossRef]
- Voloshina, A.S.; Kuo, A.D.; Daley, M.A.; Ferris, D.P. Biomechanics and energetics of walking on uneven terrain. J. Exp. Biol. 2013, 216, 3963–3970. [Google Scholar] [CrossRef]
- Toebes, M.J.P.; Hoozemans, M.J.M.; Furrer, R.; Dekker, J.; van Dieën, J.H. Associations between measures of gait stability, leg strength and fear of falling. Gait Posture 2015, 41, 76–80. [Google Scholar] [CrossRef]
- Ferlinc, A.; Fabiani, E.; Velnar, T.; Gradisnik, L. The Importance and Role of Proprioception in the Elderly: A Short Review. Mater. Sociomedica 2019, 31, 219–221. [Google Scholar] [CrossRef]
- Dixon, P.C.; Schütte, K.H.; Vanwanseele, B.; Jacobs, J.V.; Dennerlein, J.T.; Schiffman, J.M. Gait adaptations of older adults on an uneven brick surface can be predicted by age-related physiological changes in strength. Gait Posture 2018, 61, 257–262. [Google Scholar] [CrossRef]
- Irvine, C.H.; Snook, S.H.; Sparshatt, J.H. Stairway risers and treads: Acceptable and preferred dimensions. Appl. Ergon. 1990, 21, 215–225. [Google Scholar] [CrossRef]
- van Melick, N.; Meddeler, B.M.; Hoogeboom, T.J.; der Sanden, M.W.G.N.-V.; van Cingel, R.E.H. How to determine leg dominance: The agreement between self-reported and observed performance in healthy adults. PLoS ONE 2017, 12, e0189876. [Google Scholar] [CrossRef] [PubMed]
- Gronqvist, R.; Hirvonen, M. Slipperiness of footwear and mechanisms of walking friction on icy surfaces. Int. J. Ind. Ergon. 1995, 16, 191–200. [Google Scholar] [CrossRef]
- Grood, E.S.; Suntay, W.J. A joint coordinate system for the clinical description of three-dimensional motions: Application to the knee. J. Biomech. Eng. 1983, 105, 136–144. [Google Scholar] [CrossRef]
- van Eijden, T.M.G.J.; de Boer, E.W.; Weijs, W.A. The orientation of the distal part of the quadriceps femoris muscle as a function of the knee flexion-extension angle. J. Biomech. 1985, 18, 803–809. [Google Scholar] [CrossRef] [PubMed]
- van Eijden, T.M.; Weijs, W.A.; Kouwenhoven, E.; Verburg, J. Forces Acting on the Patella during Maximal Voluntary Contraction of the Quadriceps femoris Muscle at Different Knee Flexion/Extension Angles. Acta Anat. 1987, 129, 310–314. [Google Scholar] [CrossRef] [PubMed]
- van Eijden, T.M.; Kouwenhoven, E.; Verburg, J.; Weijs, W.A. A Mathematical Model of the Patellofemoral Joint. J. Biomech. 1986, 19, 219–229. [Google Scholar] [CrossRef]
- Connolly, K.D.; Ronsky, J.L.; Westover, L.M.; Küpper, J.C.; Frayne, R. Differences in patellofemoral contact mechanics associated with patellofemoral pain syndrome. J. Biomech. 2009, 42, 2802–2807. [Google Scholar] [CrossRef]
- Hommel, G. A stagewise rejective multiple test procedure based on a modified Bonferroni test. Biometrika 1988, 75, 383–389. [Google Scholar] [CrossRef]
- Richardson, J.T.E. Eta squared and partial eta squared as measures of effect size in educational research. Educ. Res. Rev. 2011, 6, 135–147. [Google Scholar] [CrossRef]
- Gignac, G.E.; Szodorai, E.T. Effect size guidelines for individual differences researchers. Personal. Individ. Differ. 2016, 102, 74–78. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Pataky, T.C. Generalized n-dimensional biomechanical field analysis using statistical parametric mapping. J. Biomech. 2010, 43, 1976–1982. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.J.; Taylor, J.E.; Worsley, K.J. Applications of Random Fields and Geometry Foundations and Case Studies. 2015. Available online: www.math.mcgill.ca/keith (accessed on 16 February 2022).
- Zimmerman, N.B.; Smith, D.G.; Pottenger, L.A.; Cooperman, D.R. Mechanical disruption of human patellar cartilage by repetitive loading in vitro. Clin. Orthop. Relat. Res. 1988, 229, 302–307. [Google Scholar] [CrossRef]
- Besier, T.F.; Pal, S.; Draper, C.E.; Fredericson, M.; Gold, G.E.; Delp, S.L.; Beaupré, G.S. The role of cartilage stress in patellofemoral pain. Med. Sci. Sports Exerc. 2015, 47, 2416–2422. [Google Scholar] [CrossRef]
- Reed, G.F.; Lynn, F.; Meade, B.D. Use of coefficient of variation in assessing variability of quantitative assays. Clin. Vaccine Immunol. 2002, 9, 1235–1239. [Google Scholar] [CrossRef] [PubMed]
- Martin, K.L.; Blizzard, L.; Wood, A.G.; Srikanth, V.; Thomson, R.; Sanders, L.M.; Callisaya, M.L. Cognitive function; gait, and gait variability in older people: A population-based study. J. Gerontol. Ser. A 2013, 68, 726–732. [Google Scholar] [CrossRef] [PubMed]
- Holcomb, A.E.; Hunt, N.L.; Ivy, A.K.; Cormier, A.G.; Brown, T.N.; Fitzpatrick, C.K. Musculoskeletal adaptation of young and older adults in response to challenging surface conditions. J. Biomech. 2022, 144, 111270. [Google Scholar] [CrossRef]
- McNitt-Gray, J.L. Kinematics and Impulse Characteristics of Drop Landings from Three Heights. J. Appl. Biomech. 1991, 7, 201–224. [Google Scholar] [CrossRef]
- Matthews, L.S.; Sonstegard, D.A.; Henke, J.A. Load bearing characteristics of the patello-femoral joint. Acta Orthop. 1977, 48, 511–516. [Google Scholar] [CrossRef] [PubMed]
- Ward, T.R.; Pandit, H.; Hollinghurst, D.; Moolgavkar, P.; Zavatsky, A.B.; Gill, H.S.; Thomas, N.P.; Murray, D.W. Improved quadriceps’ mechanical advantage in single radius TKRs is not due to an increased patellar tendon moment arm. Knee 2012, 19, 564–570. [Google Scholar] [CrossRef] [PubMed]
N | Age (yrs) * | Height (m) | Weight (kg) | Walk Speed (m/s) | |
---|---|---|---|---|---|
Young | 12 | 21.08 (1.93) | 1.75 (0.10) | 68.91 (16.86) | 1.06 (0.83) |
Older | 12 | 69.92 (3.15) | 1.73 (0.13) | 75.05 (17.71 | 1.04 (0.17) |
Normal | Uneven | Slick | ||||
---|---|---|---|---|---|---|
Young | Older | Young | Older | Young | Older | |
Peak PFJ Stress (MPa) | 1.09 (0.35) | 1.21 (0.43) | 1.06 (0.36) | 1.26 (0.38) | 1.06 (0.31) | 1.20 (0.42) |
PFJ Stress–time Integral (MPa * % stance) *† | 29.51 (21.38) | 62.36 (22.89) | 37.55 (26.86) | 67.64 (22.04) | 29.53 (26.80) | 61.33 (23.43) |
PFJ Stress Time of Peak (% stance) *# | 26.33 (3.26) | 44.00 (24.38) | 28.00 (3.54) | 60.00 (25.60) | 27.58 (3.48) | 41.83 (21.97) |
Peak PFJ Reaction Force (N) | 166.13 (52.76) | 184.40 (64.68) | 162.03 (54.47) | 192.18 (57.53) | 160.90 (46.89) | 182.58 (63.23) |
PFJ Reaction Force Impulse (N * % stance) *† | 4496.51 (3249.06) | 9488.27 (3481.29) | 5720.80 (4081.43) | 10,294.22 (3352.46) | 4498.86 (4072.37) | 9330.84 (3561.67) |
PFJ Contact Area Range (mm2) † | 0.54 (0.057) | 0.52 (0.058) | 0.63 (0.075) | 0.60 (0.062) | 0.52 (0.047) | 0.50 (0.070) |
PFJ Contact Area Mean (mm2) † | 152.11 (0.071) | 152.12 (0.12) | 152.16 (0.084) | 152.18 (0.10) | 152.12 (0.076) | 152.12 (0.91) |
Normal | Uneven | Slick | ||||
---|---|---|---|---|---|---|
Young | Older | Young | Older | Young | Older | |
Stair Ascent | ||||||
Peak Knee Flexion Angle (deg) † | 51.82 (4.81) | 49.88 (8.71) | 58.71 (5.20) | 55.63 (6.89) | 51.37 (5.13) | 48.65 (8.69) |
Knee Flexion at Peak PFJ Stress (deg) *# | 44.99 (4.86) | 39.18 (7.15) | 49.79 (5.63) | 37.42 (8.93) | 44.88 (4.76) | 38.82 (7.22) |
Peak Knee Extension Moment (Nm/kg·m) † | 0.77 (0.13) | 0.70 (0.15) | 0.81 (0.14) | 0.73 (0.12) | 0.75 (0.13) | 0.68 (0.12) |
Stair Descent | ||||||
Peak Knee Flexion Angle (deg) * | 82.57 (5.04) | 76.32 (5.67) | 83.09 (7.96) | 76.28 (7.45) | 80.28 (7.36) | 75.17 (5.22) |
Knee Flexion at Peak PFJ Stress (deg) † | 39.14 (11.49) | 37.52 (11.17) | 43.91 (12.91) | 41.80 (12.40) | 38.89 (11.41) | 44.51 (8.87) |
Peak Knee Extension Moment (Nm/kg·m) † | 0.73 (0.17) | 0.72 (0.15) | 0.81 (0.16) | 0.80 (0.17) | 0.73 (0.14) | 0.76 (0.13) |
Normal | Uneven | Slick | ||||
---|---|---|---|---|---|---|
Young | Older | Young | Older | Young | Older | |
Peak PFJ Stress (MPa) | 1.08 (0.30) | 1.32 (0.59) | 1.07 (0.27) | 1.28 (0.60) | 1.12 (0.36) | 1.22 (0.51) |
PFJ Stress–time Integral (MPa * % stance) † | 48.83 (12.56) | 62.68 (30.59) | 53.28 (18.93) | 72.02 (40.54) | 46.46 (15.85) | 60.53 (28.51) |
PFJ Stress Time of Peak (% stance) | 46.75 (30.32) | 46.50 (29.08) | 51.75 (31.37) | 54.08 (27.00) | 48.58 (30.34) | 61.00 (27.82) |
Peak PFJ Reaction Force (N) | 164.88 (46.29) | 201.32 (89.96) | 162.38 (41.64) | 194.19 (90.95) | 171.12 (55.12) | 185.88 (77.55) |
PFJ Reaction Force Impulse (N * % stance) † | 7435.62 (1909.59) | 9538.78 (4649.09) | 8112.80 (2879.85) | 10,962.25 (6163.99) | 7074.70 (2412.22) | 9213.35 (4335.42) |
PFJ Contact Area Range (mm2) * | 1.07 (0.067) | 1.01 (0.060) | 1.07 (0.11) | 0.96 (0.11) | 1.03 (0.11) | 0.98 (0.056) |
PFJ Contact Area Mean (mm2) † | 152.20 (0.065) | 152.15 (0.10) | 152.22 (0.077) | 152.20 (0.11) | 152.19 (0.084) | 152.16 (0.085) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hunt, N.L.; Holcomb, A.E.; Fitzpatrick, C.K.; Brown, T.N. Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Biomechanics 2024, 4, 507-519. https://doi.org/10.3390/biomechanics4030036
Hunt NL, Holcomb AE, Fitzpatrick CK, Brown TN. Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Biomechanics. 2024; 4(3):507-519. https://doi.org/10.3390/biomechanics4030036
Chicago/Turabian StyleHunt, Nicholas L., Amy E. Holcomb, Clare K. Fitzpatrick, and Tyler N. Brown. 2024. "Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces" Biomechanics 4, no. 3: 507-519. https://doi.org/10.3390/biomechanics4030036
APA StyleHunt, N. L., Holcomb, A. E., Fitzpatrick, C. K., & Brown, T. N. (2024). Effects of Aging on Patellofemoral Joint Stress during Stair Negotiation on Challenging Surfaces. Biomechanics, 4(3), 507-519. https://doi.org/10.3390/biomechanics4030036