The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Test Procedure
2.3. Fatigue
2.3.1. Fatigue Protocol
2.3.2. Surface Electromyography (sEMG)
- External rotation: a combination of maximal pronation of the midfoot and dorsiflexion in the ankle joint for the m. fibularis longus.
- Internal rotation: a combination of maximal supination of the midfoot and dorsiflexion in the ankle joint for the m. tibialis anterior.
2.4. Pronation
2.4.1. Static Navicular Drop (statND)
2.4.2. Dynamic Navicular Drop (dynND)
2.5. Statistics
3. Results
3.1. Proof of Fatigue
Parameter | Left (Control) | Right (Fatigue) | ||||
---|---|---|---|---|---|---|
n = 20 | Pre | Post | Pre | Post | ||
FL IMVC MDF [hz, n = 20] | 86.39 ± 22.18 | 86.04 ± 22.44 | p = 0.451 | 85.65 ± 23.38 | 72.03 ± 19.81 | p = 0.003 d = 0.69 |
FL IMVC MNF [hz, n = 20] | 102.09 ± 22.21 | 102.33 ± 22.52 | p = 0.468 | 102.02 ± 24.55 | 88.02 ± 21.26 | p = 0.002 d = 0.73 |
TA IMVC MDF [hz, n = 20] | 115.58 ± 21.92 | 124.81 ± 27.69 | p = 0.021 d = −0.57 | 109.02 ± 24.32 | 94.91 ± 22.69 | p = 0.010 d = 0.56 |
TA IMVC MNF [hz, n = 20] | 130.05 ± 17.00 | 137.19 ± 22.66 | p = 0.012 d = −0.62 | 124.50 ± 22.42 | 107.67 ± 21.71 | p < 0.001 d = 0.81 |
FL ER MDF [hz, n = 20] | --- | --- | 80.40 ± 16.46 | 65.22 ± 15.29 | p < 0.001 d = 1.02 | |
FL ER MNF [hz, n = 20] | --- | --- | 98.92 ± 20.05 | 83.14 ± 22.18 | p < 0.001 d = 0.97 | |
TA IR MDF [hz, n = 20] | --- | --- | 88.21 ± 20.67 | 67.72 ± 18.91 | p < 0.001 d = 1.26 | |
TA IR MNF [hz, n = 20] | --- | --- | 101.56 ± 21.07 | 79.71 ± 19.90 | p < 0.001 d = 1.37 |
3.2. Pronation Measured with the Static Navicular Drop (statND; Hypothesis 1)
3.3. Pronation Measured with the Dynamic Navicular Drop (dynND; Hypothesis 2)
3.4. Relation between Dynamic (dynND) and Static Navicular Drop (statND) (Hypothesis 3)
4. Discussion
4.1. Dynamic Navicular Drop (dynND) and Fatigue (Hypothesis 2)
Author | N | Average ND | Subjects and Methods |
---|---|---|---|
Cornwall and McPoil [36] | 106 | 5.9 mm |
|
Dicharry, et al. [37] | 72 | 8.2 mm |
|
Kim and Park [38] | 24 | 5.1 mm |
|
Nielsen, Rathleff, Simonsen and Langberg [7] | 280 | 5.3 mm |
|
Nielsen, et al. [39] | 280 | 6.0 mm |
|
Nielsen, Rathleff, Simonsen and Langberg [7] | 79 | 5.4 mm |
|
4.2. Static Navicular Drop (statND) and Fatigue (Hypothesis 1)
4.3. Comparing Static (statND) and Dynamic (dynND) Navicular Drop Assessments (Hypothesis 3)
4.4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Perry, J.; Burnfield, J.M. Gait Analysis. Normal and Pathological Function, 2nd ed.; SLACK Incorporated: Thorofare, NJ, USA, 2010. [Google Scholar]
- Kirby, K. Biomechanics of the normal and abnormal foot. J. Am. Podiatr. Med. Assoc. 2000, 90, 30–34. [Google Scholar] [CrossRef] [PubMed]
- Headlee, D.L.; Leonard, J.L.; Hart, J.M.; Ingersoll, C.D.; Hertel, J. Fatigue of the plantar intrinsic foot muscles increases navicular drop. J. Electromyogr. Kinesiol. 2008, 18, 420–425. [Google Scholar] [CrossRef] [PubMed]
- Ghanem, I.; Massaad, A.; Assi, A.; Rizkallah, M.; Bizdikian, A.J.; El Abiad, R.; Seringe, R.; Mosca, V.; Wicart, P. Understanding the foot’s functional anatomy in physiological and pathological conditions: The calcaneopedal unit concept. J. Child. Orthop. 2019, 13, 134–146. [Google Scholar] [CrossRef] [PubMed]
- Nigg, B.; Behling, A.-V.; Hamill, J. Foot pronation. Footwear Sci. 2019, 11, 131–134. [Google Scholar] [CrossRef]
- Roth, S.; Roth, A.; Jotanovic, Z.; Madarevic, T. Navicular index for differentiation of flatfoot from normal foot. Int. Orthop. 2013, 37, 1107–1112. [Google Scholar] [CrossRef]
- Nielsen, R.G.; Rathleff, M.S.; Simonsen, O.H.; Langberg, H. Determination of normal values for navicular drop during walking: A new model correcting for foot length and gender. J. Foot Ankle Res. 2009, 2, 12. [Google Scholar] [CrossRef]
- Barton, C.J.; Bonanno, D.; Levinger, P.; Menz, H.B. Foot and ankle characteristics in patellofemoral pain syndrome: A case control and reliability study. J. Orthop. Sports Phys. Ther. 2010, 40, 286–296. [Google Scholar] [CrossRef]
- Brody, D.M. Techniques in the Evaluation and Treatment of the Injured Runner. Orthop. Clin. N. Am. 1982, 13, 541–558. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Translating Fatigue to Human Performance. Med. Sci. Sports Exerc. 2016, 48, 2228–2238. [Google Scholar] [CrossRef]
- Enoka, R.M.; Duchateau, J. Muscle fatigue: What, why and how it influences muscle function. J. Physiol. 2008, 586, 11–23. [Google Scholar] [CrossRef]
- Bailey, J.P.; Dufek, J.S.; Freedman Silvernail, J.; Navalta, J.; Mercer, J. Understanding the influence of perceived fatigue on coordination during endurance running. Sports Biomech. 2020, 19, 618–632. [Google Scholar] [CrossRef]
- Garland, S.J.; Garner, S.H.; McComas, A.J. Reduced voluntary electromyographic activity after fatiguing stimulation of human muscle. J. Physiol. 1988, 401, 547–556. [Google Scholar] [CrossRef]
- Becker, S.; Simon, S.; Dindorf, C.; Dully, J.; Bartaguiz, E.; Schmitz, L.; Kothe, N.; Fröhlich, M.; Ludwig, O. Fatigue as a key factor for testing knee stability with single leg drop landing for injury prevention and return to play tests. Front. Sports Act. Living 2023, 5, 1243732. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Sárosi, J.; Bíró, I. Characteristics of Lower Limb Running-Related Injuries in Trail Runners: A Systematic Review. Phys. Act. Health 2024, 8, 137–147. [Google Scholar] [CrossRef]
- Balakrishnan, A.; Medikonda, J.; Namboothiri, P.K. Analysis of the effect of muscle fatigue on gait characteristics using data acquired by wearable sensors. In Proceedings of the 2020 IEEE International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER), Udupi, India, 30–31 October 2020; pp. 137–140. [Google Scholar]
- Ameli, S.; Stirling, D.; Naghdy, F.; Naghdy, G.; Aghmesheh, M. Assessing the impact of fatigue on gait using inertial sensors. In Proceedings of the 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Wollongong, Australia, 9–12 July 2013; pp. 307–312. [Google Scholar]
- Qu, X.; Yeo, J.C. Effects of load carriage and fatigue on gait characteristics. J. Biomech. 2011, 44, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Lee, C.-R.; Kim, M.-K.; Cho, M.S. The Relationship between Balance and Foot Pressure in Fatigue of the Plantar Intrinsic Foot Muscles of Adults with Flexible Flatfoot. J. Phys. Ther. Sci. 2012, 24, 699–701. [Google Scholar] [CrossRef]
- Bartaguiz, E.; Dindorf, C.; Dully, J.; Becker, S.; Fröhlich, M. Effects of increasing physical load and fatigue on the biomechanics of elite cyclists. Sci. J. Sport. Perform. 2022, 2, 59–69. [Google Scholar] [CrossRef]
- Gefen, A. Biomechanical analysis of fatigue-related foot injury mechanisms in athletes and recruits during intensive marching. Med. Biol. Eng. Comput. 2002, 40, 302–310. [Google Scholar] [CrossRef]
- Murgia, C. Overuse, fatigue, and injury: Neurological, psychological, physiological, and clinical aspects. J. Danc. Med. Sci. 2013, 17, 51–52. [Google Scholar] [CrossRef]
- Wang, H.; Frame, J.; Ozimek, E.; Leib, D.; Dugan, E.L. The Effects of Load Carriage and Muscle Fatigue on Lower-Extremity Joint Mechanics. Res. Q. Exerc. Sport. 2013, 84, 305–312. [Google Scholar] [CrossRef]
- Clansey, A.C.; Hanlon, M.; Wallace, E.S.; Lake, M.J. Effects of fatigue on running mechanics associated with tibial stress fracture risk. Med. Sci. Sports Exerc. 2012, 44, 1917–1923. [Google Scholar] [CrossRef]
- Gardin, F.A.; Middlemas, D.; Williams, J.L.; Leigh, S.; Horn, R.R. Navicular Drop Before and After Fatigue of the Ankle Invertor Muscles. Int. J. Athl. Ther. Train. 2013, 18, 36–39. [Google Scholar] [CrossRef]
- Murley, G.S.; Menz, H.B.; Landorf, K.B. A protocol for classifying normal- and flat-arched foot posture for research studies using clinical and radiographic measurements. J. Foot Ankle Res. 2009, 2, 22. [Google Scholar] [CrossRef] [PubMed]
- Borg, G. Borg’s Perceived Exertion and Pain Scales; Human Kinetics: Champaign, IL, USA, 1998. [Google Scholar]
- Hermens, H.J.; Freriks, B.; Merletti, R.; Hägg, G.G.; Stegeman, D.; Blok, J.; Rau, G.; Disselhorst-Klug, C. Seniam 8. European Recommendations for Surface Electromyography. In SENIAM, 2nd ed.; Hermens, H.J., Merletti, R., Freriks, B., Eds.; SENIAM; Roessingh Research and Development: Enschede, The Netherlands, 1999. [Google Scholar]
- Alam, F.; Raza, S.; Moiz, J.A.; Bhati, P.; Anwer, S.; Alghadir, A. Effects of selective strengthening of tibialis posterior and stretching of iliopsoas on navicular drop, dynamic balance, and lower limb muscle activity in pronated feet: A randomized clinical trial. Phys. Sportsmed. 2019, 47, 301–311. [Google Scholar] [CrossRef]
- Leardini, A.; Sawacha, Z.; Paolini, G.; Ingrosso, S.; Nativo, R.; Benedetti, M.G. A new anatomically based protocol for gait analysis in children. Gait Posture 2007, 26, 560–571. [Google Scholar] [CrossRef] [PubMed]
- Barre, A.; Armand, S. Biomechanical ToolKit: Open-source framework to visualize and process biomechanical data. Comput. Methods Programs Biomed. 2014, 114, 80–87. [Google Scholar] [CrossRef] [PubMed]
- Kobayashi, T.; Tanaka, M.; Shida, M. Intrinsic Risk Factors of Lateral Ankle Sprain:A Systematic Review and Meta-analysis. Sports Health 2016, 8, 190–193. [Google Scholar] [CrossRef]
- Neal, B.S.; Griffiths, I.B.; Dowling, G.J.; Murley, G.S.; Munteanu, S.E.; Franettovich Smith, M.M.; Collins, N.J.; Barton, C.J. Foot posture as a risk factor for lower limb overuse injury: A systematic review and meta-analysis. J. Foot Ankle Res. 2014, 7, 55. [Google Scholar] [CrossRef]
- Messier, S.P.; Pittala, K.A. Etiologic factors associated with selected running injuries. Med. Sci. Sports Exerc. 1988, 20, 501–505. [Google Scholar] [CrossRef]
- Rodrigues, P.; TenBroek, T.; Van Emmerik, R.; Hamill, J. Evaluating runners with and without anterior knee pain using the time to contact the ankle joint complexes’ range of motion boundary. Gait Posture 2014, 39, 48–53. [Google Scholar] [CrossRef]
- Cornwall, M.W.; McPoil, T.G. Relative movement of the navicular bone during normal walking. Foot Ankle Int. 1999, 20, 507–512. [Google Scholar] [CrossRef] [PubMed]
- Dicharry, J.M.; Franz, J.R.; Della Croce, U.; Wilder, R.P.; Riley, P.O.; Kerrigan, D.C. Differences in static and dynamic measures in evaluation of talonavicular mobility in gait. J. Orthop. Sports Phys. Ther. 2009, 39, 628–634. [Google Scholar] [CrossRef]
- Kim, T.; Park, J.C. Short-term effects of sports taping on navicular height, navicular drop and peak plantar pressure in healthy elite athletes: A within-subject comparison. Medicine 2017, 96, e8714. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, R.G.; Rathleff, M.S.; Moelgaard, C.M.; Simonsen, O.; Kaalund, S.; Olesen, C.G.; Christensen, F.B.; Kersting, U.G. Video based analysis of dynamic midfoot function and its relationship with Foot Posture Index scores. Gait Posture 2010, 31, 126–130. [Google Scholar] [CrossRef]
- Eichelberger, P.; Ferraro, M.; Minder, U.; Denton, T.; Blasimann, A.; Krause, F.; Baur, H. Analysis of accuracy in optical motion capture—A protocol for laboratory setup evaluation. J. Biomech. 2016, 49, 2085–2088. [Google Scholar] [CrossRef] [PubMed]
- Fiolkowski, P.; Brunt, D.; Bishop, M.; Woo, R.; Horodyski, M. Intrinsic pedal musculature support of the medial longitudinal arch: An electromyography study. J. Foot Ankle Surg. 2003, 42, 327–333. [Google Scholar] [CrossRef]
- Willems, T.M.; De Ridder, R.; Roosen, P. The effect of a long-distance run on plantar pressure distribution during running. Gait Posture 2012, 35, 405–409. [Google Scholar] [CrossRef]
- Weist, R.; Eils, E.; Rosenbaum, D. The influence of muscle fatigue on electromyogram and plantar pressure patterns as an explanation for the incidence of metatarsal stress fractures. Am. J. Sports Med. 2004, 32, 1893–1898. [Google Scholar] [CrossRef]
- Zadpoor, A.A.; Nikooyan, A.A. The effects of lower extremity muscle fatigue on the vertical ground reaction force: A meta-analysis. Proc. Inst. Mech. Eng. H 2012, 226, 579–588. [Google Scholar] [CrossRef]
- Okamura, K.; Kanai, S.; Oki, S.; Tanaka, S.; Hirata, N.; Sakamura, Y.; Idemoto, N.; Wada, H.; Otsuka, A. Does the weakening of intrinsic foot muscles cause the decrease of medial longitudinal arch height? J. Phys. Ther. Sci. 2017, 29, 1001–1005. [Google Scholar] [CrossRef]
- Hazzaa, W.A.; Hottenrott, L.; Kamal, M.A.; Mattes, K. The Influence of General and Local Muscle Fatigue on Kinematics and Plantar Pressure Distribution during Running: A Systematic Review and Meta-Analysis. Sports 2023, 11, 241. [Google Scholar] [CrossRef] [PubMed]
- Rathleff, M.S.; Nielsen, R.G.; Kersting, U.G. Navicula drop test ad modum Brody: Does it show how the foot moves under dynamic conditions? J. Am. Podiatr. Med. Assoc. 2012, 102, 34–38. [Google Scholar] [CrossRef] [PubMed]
- Christensen, B.H.; Andersen, K.S.; Pedersen, K.S.; Bengtsen, B.S.; Simonsen, O.; Kappel, S.L.; Rathleff, M.S. Reliability and concurrent validity of a novel method allowing for in-shoe measurement of navicular drop. J. Foot Ankle Res. 2014, 7, 12. [Google Scholar] [CrossRef]
- Rücker, L.; Brombach, J.; Bengler, K. Experimental study of standing and walking at work—What is compatible with physiological characteristics and human needs?Experimentelle Studie zum Stehen und Gehen bei der Arbeit—Was ist kompatibel mit physiologischen Eigengesetzlichkeiten und menschlichen Bedürfnissen? Z. Für Arbeitswissenschaft 2021, 76, 333–343. [Google Scholar] [CrossRef]
- Mcpoil, T.G.; Cornwall, M.W.; Abeler, M.G.; Devereaux, K.J.; Flood, L.J.; Merriman, S.E.; Sullivan, S.R.; Laan, M.J.v.D.; Villadiego, T.A.; Wilson, K. The Optimal Method to Assess the Vertical Mobility of the Midfoot: Navicular Drop versus Dorsal Arch Height Difference? Clin. Res. Foot Ankle 2013, 2013, 1–7. [Google Scholar] [CrossRef]
- Deng, J.; Joseph, R.; Wong, C.K. Reliability and validity of the sit-to-stand navicular drop test: Do static measures of navicular height relate to the dynamic navicular motion during gait. J. Stud. Phys. Ther. Res. 2010, 2, 21–28. [Google Scholar]
- Raissi, G.R.; Cherati, A.D.; Mansoori, K.D.; Razi, M.D. The relationship between lower extremity alignment and Medial Tibial Stress Syndrome among non-professional athletes. Sports Med. Arthrosc. Rehabil. Ther. Technol. 2009, 1, 11. [Google Scholar] [CrossRef] [PubMed]
- Billis, E.; Katsakiori, E.; Kapodistrias, C.; Kapreli, E. Assessment of foot posture: Correlation between different clinical techniques. Foot 2007, 17, 65–72. [Google Scholar] [CrossRef]
- Rathleff, M.S.; Olesen, C.G.; Moelgaard, C.M.; Jensen, K.; Madeleine, P.; Olesen, J.L. Non-linear analysis of the structure of variability in midfoot kinematics. Gait Posture 2010, 31, 385–390. [Google Scholar] [CrossRef]
- Benca, E.; Listabarth, S.; Flock, F.K.J.; Pablik, E.; Fischer, C.; Walzer, S.M.; Dorotka, R.; Windhager, R.; Ziai, P. Analysis of Running-Related Injuries: The Vienna Study. J. Clin. Med. 2020, 9, 438. [Google Scholar] [CrossRef]
Exercise | Characteristics | Imaging |
---|---|---|
1. Standing on unstable ground on a single leg |
| |
2. Plantar flexion |
| |
3. Pronation |
| |
4. Supination |
| |
5. Standing on unstable ground on a single leg |
| |
6. External rotation |
| |
7. Internal rotation |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Becker, S.; Göddel, R.; Dindorf, C.; Littig, D.; Fröhlich, M.; Ludwig, O. The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments. Biomechanics 2024, 4, 551-565. https://doi.org/10.3390/biomechanics4030039
Becker S, Göddel R, Dindorf C, Littig D, Fröhlich M, Ludwig O. The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments. Biomechanics. 2024; 4(3):551-565. https://doi.org/10.3390/biomechanics4030039
Chicago/Turabian StyleBecker, Stephan, Robin Göddel, Carlo Dindorf, David Littig, Michael Fröhlich, and Oliver Ludwig. 2024. "The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments" Biomechanics 4, no. 3: 551-565. https://doi.org/10.3390/biomechanics4030039
APA StyleBecker, S., Göddel, R., Dindorf, C., Littig, D., Fröhlich, M., & Ludwig, O. (2024). The Impact of Fatigue in Foot-Stabilizing Muscles on Foot Pronation during Gait and a Comparison of Static and Dynamic Navicular Drop Assessments. Biomechanics, 4(3), 551-565. https://doi.org/10.3390/biomechanics4030039