Measuring Data Quality from Building Registers: A Case Study in Italy
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Data Sources
2.3. Logical Framework and Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cosgrove, D. Geography and Vision: Seeing, Imagining and Representing the World; Bloomsbury: London, UK, 2012. [Google Scholar]
- Muller, J.-C. The Concept of Error in Cartography. Cartographica 1987, 24, 1–15. [Google Scholar] [CrossRef]
- Jun, C. Design of an Intelligent Geographic Information System for Multi-Criteria Site Analysis. URISA J. 2000, 12, 5–17. [Google Scholar]
- Girres, J.F.; Touya, G. Quality assessment of the French OpenStreetMap dataset. Trans. GIS 2010, 14, 435–459. [Google Scholar] [CrossRef]
- Mondzech, J.; Sester, M. Quality analysis of OpenStreetMap data based on application needs. Cartogr. Int. J. Geogr. Inf. Geovisualization 2011, 46, 115–125. [Google Scholar] [CrossRef]
- Bluemke, M.; Resch, B.; Lechner, C.; Westerholt, R.; Kolb, J.-P. Integrating Geographic Information into Survey Research: Current Applications, Challenges and Future Avenues. Surv. Res. Methods 2017, 11, 307–327. [Google Scholar]
- Fan, H.; Zipf, A.; Fu, Q.; Neis, P. Quality assessment for building footprints data on OpenStreetMap. Int. J. Geogr. Inf. Sci. 2014, 28, 700–719. [Google Scholar] [CrossRef]
- Basiouka, S.; Potsiou, C.; Bakogiannis, E. OpenStreetMap for cadastral purposes: An application using VGI for official processes in urban areas. Surv. Rev. 2015, 47, 333–341. [Google Scholar] [CrossRef]
- Turner, A. Introduction to Neogeography; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2006; Available online: https://books.google.com.hk/books?id=oHgDv4feV-8C&printsec=frontcover&redir_esc=y#v=onepage&q&f=false (accessed on 1 September 2024).
- Haklay, M.; Weber, P. OpenStreetMap: User-Generated Street Maps. IEEE Pervasive Comput. 2008, 7, 12–18. [Google Scholar] [CrossRef]
- Spielman, S.E.; Logan, J.R. Using High-Resolution Population Data to Identify Neighborhoods and Establish Their Boundaries. Ann. Assoc. Am. Geogr. 2013, 103, 67–84. [Google Scholar] [CrossRef]
- Kazemzadeh-Zow, A.; Zanganeh Shahraki, S.; Salvati, L.; Samani, N.N. A spatial zoning approach to calibrate and validate urban growth models. Int. J. Geogr. Inf. Sci. 2017, 31, 763–782. [Google Scholar] [CrossRef]
- Pili, S.; Grigoriadis, E.; Carlucci, M.; Clemente, M.; Salvati, L. Towards sustainable growth? A multi-criteria assessment of (changing) urban forms. Ecol. Indic. 2017, 76, 71–80. [Google Scholar] [CrossRef]
- Duvernoy, I.; Zambon, I.; Sateriano, A.; Salvati, L. Pictures from the other side of the fringe: Urban growth and peri-urban agriculture in a post-industrial city (Toulouse, France). J. Rural Stud. 2018, 57, 25–35. [Google Scholar] [CrossRef]
- Zambon, I.; Colantoni, A.; Salvati, L. Horizontal vs vertical growth: Understanding latent patterns of urban expansion in large metropolitan regions. Sci. Total Environ. 2019, 654, 778–785. [Google Scholar] [CrossRef]
- Sui, D.Z. The Wwikification of GIS and its consequences: Or Angelina Jolie’s new tattoo and the future of GIS. Comput. Environ. Urban Syst. 2008, 32, 29. [Google Scholar] [CrossRef]
- Ciommi, M.; Chelli, F.M.; Salvati, L. Integrating parametric and non-parametric multivariate analysis of urban growth and commuting patterns in a European metropolitan area. Qual. Quant. 2019, 53, 957–979. [Google Scholar] [CrossRef]
- Guo, J.Y.; Bhat, C.R. Modifiable Areal Units: Problem or Perception in Modeling of Residential Location Choice? Transp. Res. Rec. 2004, 1898, 138–147. [Google Scholar] [CrossRef]
- Burrough, P.A.; McDonnell, R.A.; Lloyd, C.D. Principles of Geographical Information Systems; Oxford University Press: Oxford, MS, USA, 2015. [Google Scholar]
- Salvucci, G.; Salvati, L. Official Statistics, Building Censuses, and Open Street Map Completeness in Italy. ISPRS Int. J. Geo-Inf. 2021, 11, 29. [Google Scholar] [CrossRef]
- Salvati, L. Towards a Polycentric Region? The Socio-economic Trajectory of Rome, an ‘Eternally Mediterranean’ City. Tijdschr. Voor Econ. En Soc. Geogr. 2014, 105, 268–284. [Google Scholar] [CrossRef]
- Thompson, M.M. Maps for America: Cartographic Products of the U.S. Geological Survey and Others; U.S. Government Print. Office: Washington, DC, USA, 1988. [Google Scholar]
- Guzzo, F. Italian Land Cadastral Cartographic Representation of Public Waters for a Contribution to Territorial Governance: Learning from History. UPLanD—J. Urban Plan. Landsc. Environ. Des. 2018, 3, 45–68. [Google Scholar]
- Brovelli, M.A.; Minghini, M.; Giori, G.; Beretta, M. Web Geoservices and Ancient Cadastral Maps: The Web C.A.R.T.E. Project. Trans. GIS 2012, 16, 125–142. [Google Scholar] [CrossRef]
- Cina, A.; Manzino, A.M.; Manzino, G. Recovery of Cadastral Boundaries with GNSS Equipment. Surv. Rev. 2016, 48, 338–346. [Google Scholar] [CrossRef]
- Bajocco, S.; Ceccarelli, T.; Smiraglia, D.; Salvati, L.; Ricotta, C. Modeling the ecological niche of long-term land use changes: The role of biophysical factors. Ecol. Indic. 2016, 60, 231–236. [Google Scholar] [CrossRef]
- Salvati, L.; Ciommi, M.T.; Serra, P.; Chelli, F.M. Exploring the spatial structure of housing prices under economic expansion and stagnation: The role of socio-demographic factors in metropolitan Rome, Italy. Land Use Policy 2019, 81, 143–152. [Google Scholar] [CrossRef]
- Carlucci, M.; Chelli, F.M.; Salvati, L. Toward a new cycle: Short-term population dynamics, gentrification, and re-urbanization of Milan (Italy). Sustainability 2018, 10, 3014. [Google Scholar] [CrossRef]
- Ciommi, M.; Chelli, F.M.; Carlucci, M.; Salvati, L. Urban growth and demographic dynamics in southern Europe: Toward a new statistical approach to regional science. Sustainability 2018, 10, 2765. [Google Scholar] [CrossRef]
- Zambon, I.; Benedetti, A.; Ferrara, C.; Salvati, L. Soil matters? A multivariate analysis of socioeconomic constraints to urban expansion in Mediterranean Europe. Ecol. Econ. 2018, 146, 173–183. [Google Scholar] [CrossRef]
- Bajocco, S.; Dragoz, E.; Gitas, I.; Smiraglia, D.; Salvati, L.; Ricotta, C. Mapping forest fuels through vegetation phenology: The role of coarse-resolution satellite time-series. PLoS ONE 2015, 10, e0119811. [Google Scholar] [CrossRef]
- Salvati, L.; Zitti, M.; Sateriano, A. Changes in city vertical profile as an indicator of sprawl: Evidence from a Mediterranean urban region. Habitat Int. 2013, 38, 119–125. [Google Scholar] [CrossRef]
- Salvati, L.; Guandalini, A.; Carlucci, M.; Chelli, F.M. An empirical assessment of human development through remote sensing: Evidences from Italy. Ecol. Indic. 2017, 78, 167–172. [Google Scholar] [CrossRef]
- Lü, G.; Batty, M.; Strobl, J.; Lin, H.; Zhu, A.-X.; Chen, M. Reflections and Speculations on the Progress in Geographic Information Systems (GIS): A Geographic Perspective. Int. J. Geogr. Inf. Sci. 2019, 33, 346–367. [Google Scholar] [CrossRef]
- Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices; CRC: London, UK, 2019. [Google Scholar]
- Guptill, S.C.; Morrison, J.L. Elements of Spatial Data Quality; Elsevier: Amsterdam, The Netherlands, 2013; ISBN 978-1-4832-8794-2. [Google Scholar]
- Alexandroff, P. Elementary Concepts of Topology; Courier Corporation: New York, NY, USA, 2012. [Google Scholar]
- Shi, W.; Fisher, P.; Goodchild, M.F. Spatial Data Quality; Elsevier: Amsterdam, The Netherlands, 2019; ISBN 978-1-134-51440-3. [Google Scholar]
- Gieryn, T.F. What Buildings Do. Theory Soc. 2002, 31, 35–74. [Google Scholar] [CrossRef]
- Conzen, M.R. Thinking about Urban Form: Papers on Urban Morphology, 1932–1998; Peter Lang: Frankfurt, Germany, 2004. [Google Scholar]
- Hart, Q.J. GeoStreams: An Online Geospatial Image Database. Diss. Abstr. Int. 2006, 68. [Google Scholar]
- Chrisman, N.R. The Error Component in Spatial Data. Geogr. Inf. Syst. 1991, 1, 165–174. [Google Scholar]
- Hecht, R. Measuring Completeness of Building Footprints in OpenStreetMap over Space and Time. ISPRS Int. J. Geo-Inf. 2013, 2, 1066–1091. [Google Scholar] [CrossRef]
- Ratcliffe, J.H. On the Accuracy of TIGER-Type Geocoded Address Data in Relation to Cadastral and Census Areal Units. Int. J. Geogr. Inf. Sci. 2001, 15, 473–485. [Google Scholar] [CrossRef]
- Andersson, R.; Musterd, S. What Scale Matters? Exploring the Relationships between Individuals’ Social Position, Neighbourhood Context and the Scale of Neighbourhood. Geogr. Ann. Ser. B Hum. Geogr. 2010, 92, 23–43. [Google Scholar] [CrossRef]
- Wang, R.Y.; Reddy, M.P.; Kon, H.B. Toward Quality Data: An Attribute-Based Approach. Decis. Support Syst. 1995, 13, 349–372. [Google Scholar] [CrossRef]
- Salvati, L.; Ferrara, A.; Chelli, F. Long-term growth and metropolitan spatial structures: An analysis of factors influencing urban patch size under different economic cycles. Geogr. Tidsskr.—Dan. J. Geogr. 2018, 118, 56–71. [Google Scholar] [CrossRef]
- Craig, B.A.; Wahl, J.L. Cadastral Survey Accuracy Standards. Surv. Land Inf. Sci. 2003, 63, 87–106. [Google Scholar]
- Hill, L.L. Georeferencing: The Geographic Associations of Information; Mit Press: Boston, MA, USA, 2009. [Google Scholar]
- Femenia-Ribera, C.; Mora-Navarro, G.; Martinez-Llario, J.C. Advances in the Coordination between the Cadastre and Land Registry. Land 2021, 10, 81. [Google Scholar] [CrossRef]
- Apostolopoulos, K.; Geli, M.; Petrelli, P.; Potsiou, C.; Ioannidis, C. A New Model for Cadastral Surveying Using Crowdsourcing. Surv. Rev. 2018, 50, 122–133. [Google Scholar] [CrossRef]
- Ma, D.; Sandberg, M.; Jiang, B. Characterizing the heterogeneity of the OpenStreetMap data and community. ISPRS Int. J. Geo-Inf. 2015, 4, 535–550. [Google Scholar] [CrossRef]
- Goodchild, M. Citizens as sensors: The world of volunteered geography. GeoJournal 2007, 69, 211–221. [Google Scholar] [CrossRef]
- Ahmouda, A.; Hochmair, H.H.; Cvetojevic, S. Analyzing the effect of earthquakes on OpenStreetMap contribution patterns and tweeting activities. Geo-Spat. Inf. Sci. 2018, 21, 195–212. [Google Scholar] [CrossRef]
Land Code | Administrative Region | Boda (m2) Surface Area | Cadaster (m2) Surface Area | No. Buildings (Boda) | No. Buildings (Cadaster) | Intersection Area (m2) | Difference (m2) between Boda and Cadaster | Difference (no. Build.) Boda vs. Cadaster | Accuracy |
---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | ((a − b)/b) × 100 | ((c − d)/d) × 100 | (e/b) × 100 | ||
20 | Sardinia | 117,997,448 | 98,066,496 | 513,365 | 684,868 | 62,274,348 | 20.32 | −25.04 | 63.50 |
19 | Sicily | 528,491,616 | 290,210,848 | 3,236,704 | 2,473,018 | 172,431,760 | 82.11 | 30.88 | 59.42 |
18 | Calabria | 168,693,520 | 129,288,872 | 1,052,487 | 1,097,207 | 86,677,328 | 30.48 | −4.08 | 67.04 |
17 | Basilicata | 65,117,308 | 45,351,400 | 373,077 | 368,758 | 28,675,412 | 43.58 | 1.17 | 63.23 |
16 | Apulia | 286,672,992 | 240,625,168 | 1,523,100 | 1,522,340 | 165,759,712 | 19.14 | 0.05 | 68.89 |
15 | Campania | 389,408,320 | 260,497,424 | 1,467,142 | 1,565,318 | 157,948,608 | 49.49 | −6.27 | 60.63 |
14 | Molise | 27,931,490 | 26,675,126 | 159,655 | 234,373 | 20,337,080 | 4.71 | −31.88 | 76.24 |
13 | Abruzzi | 110,239,912 | 101,602,072 | 586,517 | 682,748 | 76,177,552 | 8.50 | −14.09 | 74.98 |
12 | Latium | 385,837,920 | 253,106,224 | 1,779,197 | 1,593,053 | 164,478,176 | 52.44 | 11.68 | 64.98 |
11 | Marche | 132,732,496 | 114,961,736 | 560,871 | 691,995 | 78,655,576 | 15.46 | −18.95 | 68.42 |
10 | Umbria | 76,429,072 | 73,302,024 | 496,034 | 500,483 | 56,605,780 | 4.27 | −0.89 | 77.22 |
9 | Tuscany | 259,194,496 | 247,479,792 | 2,058,064 | 1,665,684 | 169,979,328 | 4.73 | 23.56 | 68.68 |
8 | Emilia Romagna | 398,939,968 | 356,597,184 | 2,158,413 | 1,768,253 | 276,977,856 | 11.87 | 22.06 | 77.67 |
7 | Liguria | 79,973,288 | 70,779,688 | 541,241 | 599,796 | 52,516,100 | 12.99 | −9.76 | 74.20 |
6 | Friuli Ven. Giulia | 138,695,824 | 111,529,800 | 951,570 | 658,198 | 79,282,136 | 24.36 | 44.57 | 71.09 |
5 | Veneto | 469,670,144 | 420,581,472 | 2,557,998 | 2,083,220 | 299,694,272 | 11.67 | 22.79 | 71.26 |
3 | Lombardy | 740,176,128 | 656,650,752 | 3,509,140 | 3,098,234 | 481,084,544 | 12.72 | 13.26 | 73.26 |
2 | Aosta Valley | 13,508,645 | 11,243,489 | 81,784 | 115,017 | 7,561,153 | 20.15 | −28.89 | 67.25 |
1 | Piedmont | 446,466,592 | 364,934,048 | 1,571,266 | 2,205,359 | 265,508,544 | 22.34 | −28.75 | 72.76 |
Italy | 4,836,177,382 | 3,873,485,703 | 25,177,627 | 23,607,928 | 2,702,625,265 | 24.85 | 6.65 | 69.77 |
Land Code | City | Boda (m2) Surface Area | Cadaster (m2) Surface Area | No. Buildings (Boda) | No. Buildings (Cadaster) | Intersection Area (m2) | Difference (m2) between Boda and Cadaster | Difference (no. Build.) Boda vs. Cadaster | Accuracy |
---|---|---|---|---|---|---|---|---|---|
(a) | (b) | (c) | (d) | (e) | ((a − b)/b) × 100 | ((c − d)/d) × 100 | (e/b) × 100 | ||
1272 | Turin | 28,518,100 | 24,276,800 | 38,132 | 68,885 | 20.041.000 | 17.47 | −44.64 | 82.55 |
10025 | Genoa | 14,209,800 | 14,070,800 | 64,755 | 68,216 | 11.500.600 | 0.99 | −5.07 | 81.73 |
15146 | Milan | 33,504,700 | 31,250,800 | 96,123 | 82,330 | 27.301.400 | 7.21 | 16.75 | 87.36 |
27042 | Venice | 15,991,005 | 13,527,925 | 72,423 | 64,009 | 10.583.839 | 18.21 | 13.15 | 78.24 |
37006 | Bologna | 13,432,200 | 12,819,000 | 69,137 | 38,610 | 10.753.100 | 4.78 | 79.07 | 83.88 |
48017 | Florence | 13,385,500 | 12,819,400 | 95,448 | 64,591 | 10.352.000 | 4.42 | 47.77 | 80.75 |
58091 | Rome | 81,620,496 | 69,409,904 | 270,865 | 276,920 | 47.480.900 | 17.59 | −2.19 | 68.41 |
63049 | Naples | 22,551,300 | 17,540,600 | 47,731 | 56,767 | 13.126.900 | 28.57 | −15.92 | 74.84 |
72006 | Bari | 11,107,200 | 10,225,500 | 41,735 | 39,440 | 8.066.830 | 8.62 | 5.82 | 78.89 |
80063 | Reggio Calabria | 8,962,440 | 7,376,890 | 52,122 | 50,882 | 4.694.370 | 21.49 | 2.44 | 63.64 |
82053 | Palermo | 17,736,200 | 15,302,400 | 72,820 | 74,031 | 10.851.000 | 15.90 | −1.64 | 70.91 |
83048 | Messina | 9,685,540 | 8,565,330 | 67,319 | 63,399 | 5.552.840 | 13.08 | 6.18 | 64.83 |
87015 | Catania | 13,168,700 | 11,664,900 | 93,996 | 45,942 | 8.031.680 | 12.89 | 104.60 | 68.85 |
92009 | Cagliari | 6,101,030 | 5,082,270 | 13,512 | 19,979 | 3.541.880 | 20.05 | −32.37 | 69.69 |
Total Municipalities | 289,974,211 | 253,932,519 | 1,096,118 | 1,014,001 | 191,878,339 | 14.19 | 8.10 | 75.56 |
Land Code | Administrative Region | Land Cadaster | Ministry of Environment | Regions | OpenStreetMap | Civil Protection | Total |
---|---|---|---|---|---|---|---|
1 | Piedmont | 92.61 | 0.39 | 5.50 | 0.88 | 0.62 | 100 |
2 | Aosta Valley | 91.50 | 0.09 | 6.31 | 1.82 | 0.28 | 100 |
3 | Lombardy | 89.16 | 0.20 | 7.62 | 0.90 | 2.12 | 100 |
5 | Veneto | 90.55 | 0.10 | 5.88 | 3.48 | 0.00 | 100 |
6 | Friuli Venezia Giulia | 86.26 | 0.03 | 12.45 | 0.51 | 0.74 | 100 |
7 | Liguria | 86.55 | 0.60 | 3.91 | 3.25 | 5.69 | 100 |
8 | Emilia Romagna | 91.32 | 0.24 | 2.05 | 1.00 | 5.38 | 100 |
9 | Tuscany | 90.62 | 0.19 | 3.34 | 3.98 | 1.86 | 100 |
10 | Umbria | 94.67 | 0.12 | 5.07 | 0.00 | 0.14 | 100 |
11 | Marche | 90.03 | 0.23 | 7.11 | 0.00 | 2.63 | 100 |
12 | Latium | 69.46 | 1.03 | 8.27 | 0.00 | 21.23 | 100 |
13 | Abruzzi | 92.97 | 0.27 | 6.76 | 0.00 | 0.00 | 100 |
14 | Molise | 94.53 | 0.70 | 4.77 | 0.00 | 0.00 | 100 |
15 | Campania | 69.71 | 0.39 | 3.91 | 0.00 | 25.99 | 100 |
16 | Apulia | 83.16 | 0.51 | 16.33 | 0.00 | 0.00 | 100 |
17 | Basilicata | 69.72 | 0.16 | 30.11 | 0.00 | 0.00 | 100 |
18 | Calabria | 79.03 | 0.48 | 20.49 | 0.00 | 0.00 | 100 |
19 | Sicily | 56.06 | 0.37 | 43.57 | 0.00 | 0.00 | 100 |
20 | Sardinia | 80.31 | 0.14 | 19.54 | 0.00 | 0.00 | 100 |
Italy | 81.81 | 0.34 | 12.14 | 0.94 | 4.77 | 100 |
Land Code | City | Land Cadaster | Ministry of Environment | Region | OpenStreetMap | Civil Protection | Total |
---|---|---|---|---|---|---|---|
1272 | Turin | 95.03 | 2.04 | 2.52 | 0.35 | 0.05 | 100 |
10025 | Genoa | 94.95 | 1.06 | 2.86 | 0.80 | 0.32 | 100 |
15146 | Milan | 93.32 | 1.71 | 4.14 | 0.72 | 0.10 | 100 |
27042 | Venice | 93.52 | 0.25 | 4.82 | 1.41 | 0.00 | 100 |
37006 | Bologna | 93.86 | 1.42 | 1.97 | 0.61 | 2.15 | 100 |
48017 | Florence | 93.39 | 0.76 | 1.99 | 2.70 | 1.16 | 100 |
58091 | Rome | 88.12 | 3.88 | 8.00 | 0.00 | 0.00 | 100 |
63049 | Naples | 83.54 | 2.49 | 9.64 | 0.00 | 4.33 | 100 |
72006 | Bari | 90.05 | 2.77 | 7.18 | 0.00 | 0.00 | 100 |
80063 | Reggio Calabria | 82.44 | 5.76 | 11.79 | 0.00 | 0.00 | 100 |
82053 | Palermo | 87.21 | 5.29 | 7.51 | 0.00 | 0.00 | 100 |
83048 | Messina | 87.60 | 5.16 | 7.24 | 0.00 | 0.00 | 100 |
87015 | Catania | 86.81 | 0.73 | 12.46 | 0.00 | 0.00 | 100 |
92009 | Cagliari | 86.32 | 1.14 | 12.54 | 0.00 | 0.00 | 100 |
Total | 89.91 | 2.69 | 6.49 | 0.39 | 0.52 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salvucci, G.; Scarpitta, D.; Maialetti, M.; Rontos, K.; Bigiotti, S.; Sateriano, A.; Muolo, A. Measuring Data Quality from Building Registers: A Case Study in Italy. Geographies 2024, 4, 596-611. https://doi.org/10.3390/geographies4030032
Salvucci G, Scarpitta D, Maialetti M, Rontos K, Bigiotti S, Sateriano A, Muolo A. Measuring Data Quality from Building Registers: A Case Study in Italy. Geographies. 2024; 4(3):596-611. https://doi.org/10.3390/geographies4030032
Chicago/Turabian StyleSalvucci, Gianluigi, Donato Scarpitta, Marco Maialetti, Kostas Rontos, Stefano Bigiotti, Adele Sateriano, and Alessandro Muolo. 2024. "Measuring Data Quality from Building Registers: A Case Study in Italy" Geographies 4, no. 3: 596-611. https://doi.org/10.3390/geographies4030032
APA StyleSalvucci, G., Scarpitta, D., Maialetti, M., Rontos, K., Bigiotti, S., Sateriano, A., & Muolo, A. (2024). Measuring Data Quality from Building Registers: A Case Study in Italy. Geographies, 4(3), 596-611. https://doi.org/10.3390/geographies4030032