Clay as a Sustainable Binder for Concrete—A Review
Abstract
:1. Introduction
Scientific Databases Used
2. Properties of Clay
3. Fresh Properties of Clay-Based Concrete
3.1. Effect of Clays on Fluidity of Concrete
3.2. Effect of Clays on Viscosity of Concrete
3.3. Effect of Clays on Early-Age Shrinkage of Concrete
4. Hardened Properties of Clay-Based Concrete
4.1. Compressive Strength
4.1.1. Effect of Raw Clay (vs. Calcined Clay) on Compressive Strength
4.1.2. Effect of Metakaolin (MK) on Compressive Strength
4.1.3. Effect of Bentonite on Compressive Strength
4.1.4. Effect of Nano-Clay (NC) on Compressive Strength
4.1.5. Effect of Organo-Clay (OC) on Compressive Strength
4.2. Bond Strength
5. Effect of Clay on the Durability of Concrete
5.1. Effect of Clay on the Alkali–Aggregate Reaction (AAR) in Concrete
5.2. Effect of Clay on Deterioration Caused by Sulfate Attack
5.3. Effect of Clay on the Steel Corrosion
5.4. Effect of Clay on the Freeze–Thaw
6. Discussion
7. Limitations of the Present Study
8. Conclusions
- -
- The mixture with clay replacement has higher thixotropic and yield stress values, which results in the improvement of the shape stability. This characteristic is strongly suitable for using clay-based concrete in 3D printable concrete. This also results in lower shrinkage in the early-age life of the concrete. However, the high floc strength of clay-based concrete causes a reduction in flowability. Using a calcination method and nano-sized clay particles could not solve this issue. Hence, more experimental studies are necessary for future work to propose an efficient way of increasing the flowability of clay-based concrete mixtures. Moreover, there are significant research gaps for organo-clay in this field.
- -
- Mineral clay has an inverse effect on hardened properties, while calcined clay improves the compressive strength of concrete. The calcination or burning process of clay minerals and using nano-clay make a crucial contribution to improving the concrete compressive strength. Regarding bentonite and organo-clay, conflicting results were reported for hardened properties which need to be investigated by future efforts. Moreover, considerable research gaps exist for bond strength (reinforcing bar and fibers).
- -
- Overall results of the section related to durability reveal that all types of clay positively affect the resistance ability of concrete exposed to environmental attack. Results indicate that the dosage of clay replacement should be lower than 15%. However, the present review study shows that major works are still required in this field by future investigations. Current results comprehensively confirmed using metakaolin and nano-clay in concrete exposed to a harsh environment.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kouakou, C.; Morel, J.-C. Strength and elasto-plastic properties of non-industrial building materials manufactured with clay as a natural binder. Appl. Clay Sci. 2009, 44, 27–34. [Google Scholar] [CrossRef]
- Berriel, S.S.; Favier, A.; Domínguez, E.R.; Machado, I.S.; Heierli, U.; Scrivener, K.; Hernández, F.M.; Habert, G. Assessing the environmental and economic potential of Limestone Calcined Clay Cement in Cuba. J. Clean. Prod. 2016, 124, 361–369. [Google Scholar] [CrossRef]
- Andrew, R.M. Global CO2 emissions from cement production. Earth Syst. Sci. Data 2018, 10, 195–217. [Google Scholar] [CrossRef] [Green Version]
- Memon, S.A.; Arsalan, R.; Khan, S.; Lo, T.Y. Utilization of Pakistani bentonite as partial replacement of cement in concrete. Constr. Build. Mater. 2012, 30, 237–242. [Google Scholar] [CrossRef]
- Ahmad, S.; Barbhuiya, S.; Elahi, A.; Iqbal, J. Effect of Pakistani bentonite on properties of mortar and concrete. Clay Miner. 2011, 46, 85–92. [Google Scholar] [CrossRef]
- Tongbo, S.; Bin, W.; Lijun, Z.; Zhifeng, C. Meta-kaolin for high performance concrete. In Calcined Clays for Sustainable Concrete; Springer: Berlin/Heidelberg, Germany, 2015; pp. 467–477. [Google Scholar]
- Scrivener, K.L. Options for the future of cement. Indian Concr. J. 2014, 88, 11–21. [Google Scholar]
- Duxson, P.; Provis, J.L. Low CO2 concrete: Are we making any progress? In BEDP Environment Design Guide; PRO24, 24:1–7; Australian Institute of Architects: Melbourne, Australia, 2008. [Google Scholar]
- Schneider, M.; Romer, M.; Tschudin, M.; Bolio, H. Sustainable cement production—Present and future. Cem. Concr. Res. 2011, 41, 642–650. [Google Scholar] [CrossRef]
- Kajaste, R.; Hurme, M. Cement industry greenhouse gas emissions—Management options and abatement cost. J. Clean. Prod. 2016, 112, 4041–4052. [Google Scholar] [CrossRef]
- Deja, J.; Uliasz-Bochenczyk, A.; Mokrzycki, E. CO2 emissions from Polish cement industry. Int. J. Greenh. Gas. Control. 2010, 4, 583–588. [Google Scholar] [CrossRef]
- Flatt, R.J.; Roussel, N.; Cheeseman, C.R. Concrete: An eco material that needs to be improved. J. Eur. Ceram. Soc. 2012, 32, 2787–2798. [Google Scholar] [CrossRef]
- Narang, K.C. Portland and blended cement. In Proceedings of the Ninth International Congress on the Chemistry of Cement, National Council for Cement and Building Materials, New Delhi, India; 1992; pp. 213–257. Available online: https://iccc-online.org/fileadmin/gruppen/iccc/ICCC09_1992.pdf (accessed on 27 September 2021).
- Alujas, A.; Fernández, R.; Quintana, R.; Scrivener, K.L.; Martirena, F. Pozzolanic reactivity of low grade kaolinitic clays: Influence of calcination temperature and impact of calcination products on OPC hydration. Appl. Clay Sci. 2015, 108, 94–101. [Google Scholar] [CrossRef]
- Teklay, A.; Yin, C.; Rosendahl, L. Flash calcination of kaolinite rich clay and impact of process conditions on the quality of the calcines: A way to reduce CO2 footprint from cement industry. Appl. Energy 2016, 162, 1218–1224. [Google Scholar] [CrossRef]
- Damtoft, J.S.; Lukasik, J.; Herfort, D.; Sorrentino, D.; Gartner, E.M. Sustainable development and climate change initiatives. Cem. Concr. Res. 2008, 38, 115–127. [Google Scholar] [CrossRef]
- Olotuah, A. Recourse to earth for low-cost housing in Nigeria. Build. Environ. 2002, 37, 123–129. [Google Scholar] [CrossRef]
- Galán-Marín, C.; Rivera-Gómez, C.; Petric, J. Clay-based composite stabilized with natural polymer and fibre. Constr. Build. Mater. 2010, 24, 1462–1468. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Kaolinitic calcined clays: Factors affecting its performance as pozzolans. Constr. Build. Mater. 2012, 28, 276–281. [Google Scholar] [CrossRef]
- Scrivener, K.; Martirena, F.; Bishnoi, S.; Maity, S. Calcined clay limestone cements (LC3). Cem. Concr. Res. 2018, 114, 49–56. [Google Scholar] [CrossRef]
- Fernandez, R.; Martirena, F.; Scrivener, K.L. The origin of the pozzolanic activity of calcined clay minerals: A comparison between kaolinite, illite and montmorillonite. Cem. Concr. Res. 2011, 41, 113–122. [Google Scholar] [CrossRef]
- Minke, G. Building with Bamboo: Design and Technology of a Sustainable Architecture; Walter de Gruyter: Berlin, Germany, 2012. [Google Scholar]
- Mostafa, N.Y.; Mohsen, Q.; El-Maghraby, A. Characterization of low-purity clays for geopolymer binder formulation. Int. J. Miner. Metall. Mater. 2014, 21, 609–619. [Google Scholar] [CrossRef]
- Budelmann, H.; Hariri, K.; Krauss, H.-W.; Malonn, T. Effects of a clay additive on the properties of no-slump concrete. In Advances in Construction Materials; Springer: Berlin/Heidelberg, Germany, 2007; pp. 731–739. [Google Scholar]
- Jasmund, K.; Lagaly, G. Tonminerale und Tone: Struktur, Eigenschaften, Anwendungen und Einsatz in Industrie und Umwelt; Springer: Berlin/Heidelberg, Germany, 2013; Available online: https://link.springer.com/book/10.1007/978-3-540-72448-3 (accessed on 27 September 2021).
- Birdi, K. Handbook of Surface and Colloid Chemistry; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- Bergaya, F.; Theng, B.K.G.; Lagaly, G. Handbook of Clay Science; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Garg, N.; Skibsted, J. Pozzolanic reactivity of a calcined interstratified illite/smectite (70/30) clay. Cem. Concr. Res. 2016, 79, 101–111. [Google Scholar] [CrossRef]
- Landrou, G.; Brumaud, C.; Winnefeld, F.; Flatt, R.J.; Habert, G. Lime as an anti-plasticizer for self-compacting clay concrete. Materials 2016, 9, 330. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guiliard, H.; Houben, H. Earth Construction, a Comprehensive Guide; Intermediate Technology Publications: London, UK, 1994; 112p. [Google Scholar]
- Rossen, J.E. Composition and Morphology of CASH in Pastes of Alite and Cement Blended with Supplementary Cementitious Materials; EPFL: Lausanne, Switzerland, 2014. [Google Scholar]
- Palomo, A.; Macias, A.; Blanco, M.; Puertas, F. Physical, Chemical and Mechanical Characterization of Geopolymers. In Proceedings of the 9th International Congress on the Chemistry of Cement, New Delhi, India; 1992; pp. 505–511. Available online: https://iccc-online.org/fileadmin/gruppen/iccc/ICCC09_1992.pdf (accessed on 27 September 2021).
- Zibouche, F.; Kerdjoudj, H.; de Lacaillerie, J.-B.d.E.; Van Damme, H. Geopolymers from Algerian metakaolin. Influence of secondary minerals. Appl. Clay Sci. 2009, 43, 453–458. [Google Scholar] [CrossRef]
- Chareerat, T.; Lee-Anansaksiri, A.; Chindaprasirt, P. Synthesis of High Calcium Fly Ash and Calcined Kaoline Geopolymer Mortar. In Proceedings of the International Conference on Pozzolan, Concrete and Geopolymer, Khon Kaen, Thailand, 24–25 May 2006; pp. 24–25. [Google Scholar]
- Elimbi, A.; Tchakoute, H.; Njopwouo, D. Effects of calcination temperature of kaolinite clays on the properties of geopolymer cements. Constr. Build. Mater. 2011, 25, 2805–2812. [Google Scholar] [CrossRef]
- He, C.; Osbaeck, B.; Makovicky, E. Pozzolanic reactions of six principal clay minerals: Activation, reactivity assessments and technological effects. Cem. Concr. Res. 1995, 25, 1691–1702. [Google Scholar] [CrossRef]
- Habert, G.; Choupay, N.; Escadeillas, G.; Guillaume, D.; Montel, J.M. Clay content of argillites: Influence on cement based mortars. Appl. Clay Sci. 2009, 43, 322–330. [Google Scholar] [CrossRef]
- Gao, X.; Kawashima, S.; Liu, X.; Shah, S.P. Influence of clays on the shrinkage and cracking tendency of SCC. Cem. Concr. Compos. 2012, 34, 478–485. [Google Scholar] [CrossRef] [Green Version]
- Lei, L.; Plank, J. A study on the impact of different clay minerals on the dispersing force of conventional and modified vinyl ether based polycarboxylate superplasticizers. Cem. Concr. Res. 2014, 60, 1–10. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Z.M.; Wu, H.; Li, H.Q. Effects of clay on flow properties of polycarboxylate superplasticizer and its control measure. In Advanced Materials Research; Trans Tech Publications: Bäch, Switzerland, 2013; pp. 682–685. [Google Scholar]
- Al-Akhras, N.M. Durability of metakaolin concrete to sulfate attack. Cem. Concr. Res. 2006, 36, 1727–1734. [Google Scholar] [CrossRef]
- Poon, C.-S.; Azhar, S.; Anson, M.; Wong, Y.-L. Performance of metakaolin concrete at elevated temperatures. Cem. Concr. Compos. 2003, 25, 83–89. [Google Scholar] [CrossRef]
- Qian, X.; Li, Z. The relationships between stress and strain for high-performance concrete with metakaolin. Cem. Concr. Res. 2001, 31, 1607–1611. [Google Scholar] [CrossRef]
- Khatib, J. Metakaolin concrete at a low water to binder ratio. Constr. Build. Mater. 2008, 22, 1691–1700. [Google Scholar] [CrossRef]
- Vejmelkova, E.; Pavlikova, M.; Keppert, M.; Keršner, Z.; Rovnaníková, P.; Ondráček, M.; Sedlmajer, M.; Černý, R. High performance concrete with Czech metakaolin: Experimental analysis of strength, toughness and durability characteristics. Constr. Build. Mater. 2010, 24, 1404–1411. [Google Scholar] [CrossRef]
- Brooks, J.; Johari, M.M. Effect of metakaolin on creep and shrinkage of concrete. Cem. Concr. Compos. 2001, 23, 495–502. [Google Scholar] [CrossRef]
- Güneyisi, E.; Mermerdaş, K. Comparative study on strength, sorptivity, and chloride ingress characteristics of air-cured and water-cured concretes modified with metakaolin. Mater. Struct. 2007, 40, 1161. [Google Scholar] [CrossRef]
- Khatib, J.; Hibbert, J. Selected engineering properties of concrete incorporating slag and metakaolin. Constr. Build. Mater. 2005, 19, 460–472. [Google Scholar] [CrossRef]
- Duan, P.; Shui, Z.; Chen, W.; Shen, C. Effects of metakaolin, silica fume and slag on pore structure, interfacial transition zone and compressive strength of concrete. Constr. Build. Mater. 2013, 44, 1–6. [Google Scholar] [CrossRef]
- Cheng, S.; Shui, Z.; Sun, T.; Yu, R.; Zhang, G.; Ding, S. Effects of fly ash, blast furnace slag and metakaolin on mechanical properties and durability of coral sand concrete. Appl. Clay Sci. 2017, 141, 111–117. [Google Scholar] [CrossRef]
- Reddy, M.A.K.; Rao, V.R. Utilization of Bentonite in concrete: A review. Int. J. Recent Technol. Eng. 2019, 7, 541–545. [Google Scholar]
- Mirza, J.; Riaz, M.; Naseer, A.; Rehman, F.; Khan, A.; Ali, Q. Pakistani bentonite in mortars and concrete as low cost construction material. Appl. Clay Sci. 2009, 45, 220–226. [Google Scholar] [CrossRef]
- Alaneme, G.U.; Mbadike, E.M. optimisation of strength development of bentonite and palm bunch ash concrete using fuzzy logic. Int. J. Sustain. Eng. 2021, 14, 1–17. [Google Scholar] [CrossRef]
- Khushnood, R.A.; Rizwan, S.A.; Memon, S.A.; Tulliani, J.-M.; Ferro, G.A. Experimental investigation on use of wheat straw ash and bentonite in self-compacting cementitious system. Adv. Mater. Sci. Eng. 2014, 2014, 832508. [Google Scholar] [CrossRef] [Green Version]
- Reddy, G.V.K.; Rao, V.R.; Reddy, M.A.K. Experimental Investigation of Strength Parameters of Cement and Concrete by Partial Replacement of Cement with Indian Calcium Bentonite. Int. J. Civ. Eng. Technol. 2017, 8, 512–518. [Google Scholar]
- Targan, Ş.; Olgun, A.; Erdogan, Y.; Sevinc, V. Effects of supplementary cementing materials on the properties of cement and concrete. Cem. Concr. Res. 2002, 32, 1551–1558. [Google Scholar] [CrossRef]
- Hamed, N.; El-Feky, M.; Kohail, M.; Nasr, E.-S.A. Effect of nano-clay de-agglomeration on mechanical properties of concrete. Constr. Build. Mater. 2019, 205, 245–256. [Google Scholar] [CrossRef]
- Langaroudi, M.A.M.; Mohammadi, Y. Effect of nano-clay on workability, mechanical, and durability properties of self-consolidating concrete containing mineral admixtures. Constr. Build. Mater. 2018, 191, 619–634. [Google Scholar] [CrossRef]
- Hamed, N.; El-Feky, M.; Kohail, M.; Nasr, E.-S.A. Investigating the Effect of Nano Clay on Concrete-Rebars Bond Strength Modes. Int. J. Sci. Eng. Res. 2017, 8, 1621–1628. [Google Scholar]
- Murat, M.; Comel, C. Hydration reaction and hardening of calcined clays and related minerals III. Influence of calcination process of kaolinite on mechanical strengths of hardened metakaolinite. Cem. Concr. Res. 1983, 13, 631–637. [Google Scholar] [CrossRef]
- Badogiannis, E.; Kakali, G.; Tsivilis, S. Metakaolin as supplementary cementitious material. J. Therm. Anal. Calorim. 2005, 81, 457–462. [Google Scholar] [CrossRef]
- Mejía de Gutiérrez, R.; Torres, J.; Vizcayno, C.; Castello, R. Influence of the calcination temperature of kaolin on the mechanical properties of mortars and concretes containing metakaolin. Clay Miner. 2008, 43, 177–183. [Google Scholar] [CrossRef] [Green Version]
- Ilić, B.R.; Mitrović, A.A.; Miličić, L.R. Thermal treatment of kaolin clay to obtain metakaolin. Hem. Ind. 2010, 64, 351–356. [Google Scholar] [CrossRef] [Green Version]
- Moodi, F.; Ramezanianpour, A.; Safavizadeh, A.S. Evaluation of the optimal process of thermal activation of kaolins. Sci. Iran. 2011, 18, 906–912. [Google Scholar] [CrossRef] [Green Version]
- Salau, M.A.; Osemeke, O.J. Effects of Temperature on the Pozzolanic Characteristics of Metakaolin-Concrete. Phys. Sci. Int. J. 2015, 6, 131–143. [Google Scholar] [CrossRef]
- Albidah, A.; Altheeb, A.; Alrshoudi, F.; Abadel, A.; Abbas, H.; Al-Salloum, Y. Bond Performance of GFRP and Steel Rebars Embedded in Metakaolin Based Geopolymer Concrete, Structures; Elsevier: Amsterdam, The Netherlands, 2020; Volume 27, pp. 1582–1593. [Google Scholar]
- Pusch, R. Bentonite Clay: Environmental Properties and Applications; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Arslan, M.; Abdioğlu, E.; Kadir, S. Mineralogy, geochemistry, and origin of bentonite in Upper Cretaceous pyroclastic units of the Tirebolu area, Giresun, northeast Turkey. Clays Clay Miner. 2010, 58, 120–141. [Google Scholar] [CrossRef]
- Maxim, L.D.; Niebo, R.; McConnell, E.E. Bentonite toxicology and epidemiology—A review. Inhal. Toxicol. 2016, 28, 591–617. [Google Scholar] [CrossRef]
- Chakchouk, A.; Samet, B.; Mnif, T. Study on the potential use of Tunisian clays as pozzolanic material. Appl. Clay Sci. 2006, 33, 79–88. [Google Scholar] [CrossRef]
- Sakizci, M.; Erdoğan Alver, B.; Yörükoğullari, E. Thermal behavior and immersion heats of selected clays from Turkey. J. Therm. Anal. Calorim. 2009, 98, 429–436. [Google Scholar] [CrossRef]
- Taylor Lange, S.C. Advancements in Concrete Material Sustainability: Supplementary Cementitious Material Development and Pollutant Interaction. Ph.D. Thesis, University of Texas, Austin, TX, USA, May 2013. [Google Scholar]
- Taylor-Lange, S.C.; Rajabali, F.; Holsomback, N.A.; Riding, K.; Juenger, M.C. The effect of zinc oxide additions on the performance of calcined sodium montmorillonite and illite shale supplementary cementitious materials. Cem. Concr. Compos. 2014, 53, 127–135. [Google Scholar] [CrossRef]
- Tironi, A.; Trezza, M.A.; Scian, A.N.; Irassar, E.F. Assessment of pozzolanic activity of different calcined clays. Cem. Concr. Compos. 2013, 37, 319–327. [Google Scholar] [CrossRef]
- Laske, S. Polymer Nanoclay Composites; William Andrew: Norwich, NY, USA, 2015. [Google Scholar]
- Bojemueller, E.; Nennemann, A.; Lagaly, G. Enhanced pesticide adsorption by thermally modified bentonites. Appl. Clay Sci. 2001, 18, 277–284. [Google Scholar] [CrossRef]
- De Paiva, L.B.; Morales, A.R.; Díaz, F.R.V. Organoclays: Properties, preparation and applications. Appl. Clay Sci. 2008, 42, 8–24. [Google Scholar] [CrossRef]
- Kurecic, M.; Smole, M.S. Polymer nanocomposite hydrogels for water purification. Nanocomposites—New Trends Dev. 2012, 1, 161–185. [Google Scholar]
- Montgomery, D.M.; Sollars, C.J.; Perry, R. Optimization of cement-based stabilization/solidification of organic-containing industrial wastes using organophilic clays. Waste Manag. Res. 1991, 9, 21–34. [Google Scholar] [CrossRef]
- Kuo, W.-Y.; Huang, J.-S.; Lin, C.-H. Effects of organo-modified montmorillonite on strengths and permeability of cement mortars. Cem. Concr. Res. 2006, 36, 886–895. [Google Scholar] [CrossRef]
- Kuo, W.-Y.; Huang, J.-S.; Yu, B.-Y. Evaluation of strengthening through stress relaxation testing of organo-modified montmorillonite reinforced cement mortars. Constr. Build. Mater. 2011, 25, 2771–2776. [Google Scholar] [CrossRef]
- Papatzani, S.; Paine, K. Inorganic and organomodified nano-montmorillonite dispersions for use as supplementary cementitious materials—A novel theory based on nanostructural studies. Nanocomposites 2017, 3, 2–19. [Google Scholar] [CrossRef] [Green Version]
- Sedaghat, S.; Golbaz, F. In situ oxidative polymerization of aniline in the presence of manganese dioxide and preparation of polyaniline/MnO2 nanocomposite. J. Nanostruct. Chem. 2013, 3, 65. [Google Scholar] [CrossRef] [Green Version]
- Pavlidou, S.; Papaspyrides, C. A review on polymer–layered silicate nanocomposites. Prog. Polym. Sci. 2008, 33, 1119–1198. [Google Scholar] [CrossRef]
- Jawaid, M.; Qaiss, A.; Bouhfid, R. Nanoclay Reinforced Polymer Composites; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar]
- Kawashima, S.; Chaouche, M.; Corr, D.J.; Shah, S.P. Influence of purified attapulgite clays on the adhesive properties of cement pastes as measured by the tack test. Cem. Concr. Compos. 2014, 48, 35–41. [Google Scholar] [CrossRef] [Green Version]
- Quanji, Z. Thixotropic Behavior of Cement-Based Materials: Effect of Clay and Cement Types; Iowa State University: Ames, IA, USA, 2010. [Google Scholar]
- Mousavi, S.; Dehestani, M.; Mousavi, S. Bond strength and development length of glass fiber-reinforced polymer bar in unconfined self-consolidating concrete. J. Reinf. Plast. Compos. 2016, 35, 924–941. [Google Scholar] [CrossRef]
- Mousavi, S.; Dehestani, M.; Mousavi, K. Bond strength and development length of steel bar in unconfined self-consolidating concrete. Eng. Struct. 2017, 131, 587–598. [Google Scholar] [CrossRef]
- Mori, H. High fluidity concrete. J. Archit. Build. Soc. 1998, 113, 41–43. [Google Scholar]
- Haiqiang, J.; Fall, M.; Cui, L. Yield stress of cemented paste backfill in sub-zero environments: Experimental results. Miner. Eng. 2016, 92, 141–150. [Google Scholar] [CrossRef]
- Xiong, L.; Zheng, G.; Bi, Y.; Fu, C. Effect of Typical Clay Upon the Dispersion Performance of Polycarboxylate Superplasticizer. In Proceedings of the 2015 International Conference on Materials, Environmental and Biological Engineering, Guilin, China, 28–30 March 2015; Atlantis Press: Amsterdam, The Netherlands, 2015; pp. 226–229. [Google Scholar]
- Wang, L.; Wang, D. Effects of clay on properties of polycarboxylate superplasticizer and solutions. J. Wuhan Univ. Technol. Mater. Sci. Ed. 2015, 30, 1167–1171. [Google Scholar] [CrossRef]
- Tan, H.; Gu, B.; Ma, B.; Li, X.; Lin, C.; Li, X. Mechanism of intercalation of polycarboxylate superplasticizer into montmorillonite. Appl. Clay Sci. 2016, 129, 40–46. [Google Scholar] [CrossRef]
- Malekani, K.; Rice, J.A.; Lin, J.-S. Comparison of techniques for determining the fractal dimensions of clay minerals. Clays Clay Miner. 1996, 44, 677–685. [Google Scholar] [CrossRef]
- Lei, L.; Plank, J. A concept for a polycarboxylate superplasticizer possessing enhanced clay tolerance. Cem. Concr. Res. 2012, 42, 1299–1306. [Google Scholar] [CrossRef]
- Ng, S.; Plank, J. Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cem. Concr. Res. 2012, 42, 847–854. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.; Scherb, S.; Köberl, M.; Thienel, K.-C. Acceleration of cement blended with calcined clays. Constr. Build. Mater. 2020, 245, 118439. [Google Scholar] [CrossRef]
- Lei, L.; Plank, J. Synthesis and properties of a vinyl ether-based polycarboxylate superplasticizer for concrete possessing clay tolerance. Ind. Eng. Chem. Res. 2014, 53, 1048–1055. [Google Scholar] [CrossRef]
- Ouellet-Plamondon, C.M.; Stasiak, J.; Al-Tabbaa, A. The effect of cationic, non-ionic and amphiphilic surfactants on the intercalation of bentonite. Colloids Surf. A Physicochem. Eng. Asp. 2014, 444, 330–337. [Google Scholar] [CrossRef]
- Pekmezci, B.Y.; Voigt, T.; Wang, K.; Shah, S.P. Low compaction energy concrete for improved slipform casting of concrete pavements. ACI Mater. J. 2007, 104, 251. [Google Scholar]
- Kawashima, S.; Kim, J.H.; Corr, D.J.; Shah, S.P. Study of the mechanisms underlying the fresh-state response of cementitious materials modified with nanoclays. Constr. Build. Mater. 2012, 36, 749–757. [Google Scholar] [CrossRef] [Green Version]
- Jarvis, P.; Jefferson, B.; Gregory, J.; Parsons, S.A. A review of floc strength and breakage. Water Res. 2005, 39, 3121–3137. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.B.; Franks, G.V.; Scales, P.J.; Boger, D.V.; Healy, T.W. Surface chemistry–rheology relationships in concentrated mineral suspensions. Int. J. Miner. Process. 2000, 58, 267–304. [Google Scholar] [CrossRef]
- Shaughnessy, R., III; Clark, P.E. The rheological behavior of fresh cement pastes. Cem. Concr. Res. 1988, 18, 327–341. [Google Scholar] [CrossRef]
- Tregger, N.A.; Pakula, M.E.; Shah, S.P. Influence of clays on the rheology of cement pastes. Cem. Concr. Res. 2010, 40, 384–391. [Google Scholar] [CrossRef]
- Ferron, R.D.; Shah, S.; Fuente, E.; Negro, C. Aggregation and breakage kinetics of fresh cement paste. Cem. Concr. Res. 2013, 50, 1–10. [Google Scholar] [CrossRef]
- Kawashima, S.; Hou, P.; Corr, D.J.; Shah, S.P. Modification of cement-based materials with nanoparticles. Cem. Concr. Compos. 2013, 36, 8–15. [Google Scholar] [CrossRef] [Green Version]
- Ronsoux, L.; Moevus, M.; Jorand, Y.; Maximilien, S.; Olagnon, C.; Anger, R.; Fontaine, L. Poured Earth as Concrete. In Terra 2012; Theme 6: Research Inm Aterials and Technology for Conservation and Contemporary Architecture; HAL: Lyon, France, 2012. [Google Scholar]
- Ouellet-Plamondon, C.M.; Habert, G. Self-Compacted Clay based Concrete (SCCC): Proof-of-concept. J. Clean. Prod. 2016, 117, 160–168. [Google Scholar] [CrossRef] [Green Version]
- Liu, M.; Hu, Y.; Lai, Z.; Yan, T.; He, X.; Wu, J.; Lu, Z.; Lv, S. Influence of various bentonites on the mechanical properties and impermeability of cement mortars. Constr. Build. Mater. 2020, 241, 118015. [Google Scholar] [CrossRef]
- Møller, P.C.; Mewis, J.; Bonn, D. Yield stress and thixotropy: On the difficulty of measuring yield stresses in practice. Soft Matter 2006, 2, 274–283. [Google Scholar] [CrossRef] [PubMed]
- Roussel, N. A thixotropy model for fresh fluid concretes: Theory, validation and applications. Cem. Concr. Res. 2006, 36, 1797–1806. [Google Scholar] [CrossRef]
- Quanji, Z.; Lomboy, G.R.; Wang, K. Influence of nano-sized highly purified magnesium alumino silicate clay on thixotropic behavior of fresh cement pastes. Constr. Build. Mater. 2014, 69, 295–300. [Google Scholar] [CrossRef]
- Voigt, T.; Malonn, T.; Shah, S.P. Green and early age compressive strength of extruded cement mortar monitored with compression tests and ultrasonic techniques. Cem. Concr. Res. 2006, 36, 858–867. [Google Scholar] [CrossRef]
- Kuder, K.G.; Shah, S.P. Rheology of extruded cement-based materials. ACI Mater. J. 2007, 104, 283. [Google Scholar]
- Krauss, H.W. Optimierung von Betonwaren Mittels Rheologischer Untersuchungen an Zusatzstoffen. Diploma Thesis, Institute of Molecular Biology of Barcelona (IBMB), Braunschweig, Germany, 2005. [Google Scholar]
- Dejaeghere, I.; Sonebi, M.; De Schutter, G. Influence of nano-clay on rheology, fresh properties, heat of hydration and strength of cement-based mortars. Constr. Build. Mater. 2019, 222, 73–85. [Google Scholar] [CrossRef]
- Wang, Y.; Jiang, Y.; Pan, T.; Yin, K. The Synergistic Effect of Ester-Ether Copolymerization Thixo-Tropic Superplasticizer and Nano-Clay on the Buildability of 3D Printable Cementitious Materials. Materials 2021, 14, 4622. [Google Scholar] [CrossRef]
- Liu, Y.; Han, J.; Li, M.; Yan, P. Effect of a nanoscale viscosity modifier on rheological properties of cement pastes and mechanical properties of mortars. Constr. Build. Mater. 2018, 190, 255–264. [Google Scholar] [CrossRef]
- Varela, H.; Barluenga, G.; Palomar, I. Influence of nanoclays on flowability and rheology of SCC pastes. Constr. Build. Mater. 2020, 243, 118285. [Google Scholar] [CrossRef]
- Chen, M.; Yang, L.; Zheng, Y.; Huang, Y.; Li, L.; Zhao, P.; Wang, S.; Lu, L.; Cheng, X. Yield stress and thixotropy control of 3D-printed calcium sulfoaluminate cement composites with metakaolin related to structural build-up. Constr. Build. Mater. 2020, 252, 119090. [Google Scholar] [CrossRef]
- Neto, J.d.S.A.; Santos, T.A.; de Andrade Pinto, S.; Dias, C.M.R.; Ribeiro, D.V. Effect of the combined use of carbon nanotubes (CNT) and metakaolin on the properties of cementitious matrices. Constr. Build. Mater. 2021, 271, 121903. [Google Scholar] [CrossRef]
- Ferron, R.P.D. Formwork Pressure of Self-Consolidating Concrete: Influence of Flocculation Mechanisms, Structural Rebuilding, Thixotropy and Rheology. Ph.D. Thesis, Northwestern University, Evanston, IL, USA, December 2008. [Google Scholar]
- Chang, T.-P.; Shih, J.-Y.; Yang, K.-M.; Hsiao, T.-C. Material properties of Portland cement paste with nano-montmorillonite. J. Mater. Sci. 2007, 42, 7478–7487. [Google Scholar] [CrossRef]
- Holt, E.E. Early Age Autogenous Shrinkage of Concrete; University of Washington: Washington, DC, USA, 2001. [Google Scholar]
- Wongtanakitcharoen, T.; Naaman, A.E. Unrestrained early age shrinkage of concrete with polypropylene, PVA, and carbon fibers. Mater. Struct. 2007, 40, 289–300. [Google Scholar] [CrossRef]
- Nehdi, M.; Soliman, A.M. Early-age properties of concrete: Overview of fundamental concepts and state-of-the-art research. Proc. Inst. Civ. Eng. Constr. Mater. 2011, 164, 57–77. [Google Scholar] [CrossRef]
- Holt, E.; Leivo, M. Cracking risks associated with early age shrinkage. Cem. Concr. Compos. 2004, 26, 521–530. [Google Scholar] [CrossRef]
- Mihashi, H.; Leite, J.P.D.B. State-of-the-art report on control of cracking in early age concrete. J. Adv. Concr. Technol. 2004, 2, 141–154. [Google Scholar] [CrossRef] [Green Version]
- Esping, O. Early Age Properties of Self-Compacting Concrete-Effects of Fine Aggregate and Limestone Filler; Chalmers University of Technology: Gothenburg, Sweden, 2007. [Google Scholar]
- Tazawa, E.-I. Autogenous Shrinkage of Concrete; CRC Press: Boca Raton, FL, USA, 1999. [Google Scholar]
- Bentur, A. Early Age Cracking in Cementitious Systems: Report of RILEM Technical Committee 181-EAS’Early Age Shrinkage Induced Stresses and Cracking in Cementitious Systems; RILEM: Paris, France, 2003. [Google Scholar]
- Kinuthia, J.; Wild, S.; Sabir, B.; Bai, J. Self-compensating autogenous shrinkage in Portland cement—Metakaolin—Fly ash pastes. Adv. Cem. Res. 2000, 12, 35–43. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Ware, J.; Sabir, B. Using neural networks to predict workability of concrete incorporating metakaolin and fly ash. Adv. Eng. Softw. 2003, 34, 663–669. [Google Scholar] [CrossRef]
- Akcay, B.; Tasdemir, M.A. Investigation of microstructure properties and early age behavior of cementitious materials containing metakaolin. In CONCREEP 10; American Society of Civil Engineers: Reston, VA, USA, 2015; pp. 1468–1475. [Google Scholar]
- Akcay, B.; Tasdemir, M.A. In Investigation of Microstructure Properties and Early Age Behavior of Cementitious Materials Containing Metakaolin. In Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures, Vienna, Austria, 21–23 September 2015. [Google Scholar]
- Gleize, P.J.; Cyr, M.; Escadeillas, G. Effects of metakaolin on autogenous shrinkage of cement pastes. Cem. Concr. Compos. 2007, 29, 80–87. [Google Scholar] [CrossRef]
- Norvell, J.K.; Stewart, J.G.; Juenger, M.C.; Fowler, D.W. Influence of clays and clay-sized particles on concrete performance. J. Mater. Civ. Eng. 2007, 19, 1053–1059. [Google Scholar] [CrossRef]
- Sabir, B.; Wild, S.; Bai, J. Metakaolin and calcined clays as pozzolans for concrete: A review. Cem. Concr. Compos. 2001, 23, 441–454. [Google Scholar] [CrossRef]
- Budelmann, H.; Hariri, K.; Malonn, T. Ton als Betonzusatzstoff Produktqualität neu definiert. Betonw. Fert. Tech. 2006, 72, 92–94. [Google Scholar]
- Buth, E.; Ivey, D.L.; Hirsch, T.J. Correlation of Concrete Properties with Tests for Clay Content of Aggregate; Texas Transportation Institute: San Antonio, TX, USA, 1964. [Google Scholar]
- Yool, A.; Lees, T.; Fried, A. Improvements to the methylene blue dye test for harmful clay in aggregates for concrete and mortar. Cem. Concr. Res. 1998, 28, 1417–1428. [Google Scholar] [CrossRef]
- Poon, C.-S.; Kou, S.; Lam, L. Compressive strength, chloride diffusivity and pore structure of high performance metakaolin and silica fume concrete. Constr. Build. Mater. 2006, 20, 858–865. [Google Scholar] [CrossRef]
- Guneyisi, E.; Gesoglu, M.; Ozbay, E. Permeation properties of self-consolidating concretes with mineral admixtures. ACI Mater. J. 2011, 108, 150–158. [Google Scholar]
- Ambroise, J.; Murat, M.; Pera, J. Hydration reaction and hardening of calcined clays and related minerals V. Extension of the research and general conclusions. Cem. Concr. Res. 1985, 15, 261–268. [Google Scholar] [CrossRef]
- Pera, T.M.J.; Ambroise, J. Action of some aggressive solutions on Portland and calcined laterite blended cement concretes. Spec. Publ. 1992, 132, 763–780. [Google Scholar]
- El-Din, H.K.S.; Eisa, A.S.; Aziz, B.H.A.; Ibrahim, A. Mechanical performance of high strength concrete made from high volume of Metakaolin and hybrid fibers. Constr. Build. Mater. 2017, 140, 203–209. [Google Scholar] [CrossRef]
- Ding, J.-T.; Li, Z. Effects of metakaolin and silica fume on properties of concrete. ACI Mater. J. 2002, 99, 393–398. [Google Scholar]
- Xie, J.; Zhang, H.; Duan, L.; Yang, Y.; Yan, J.; Shan, D.; Liu, X.; Pang, J.; Chen, Y.; Li, X.; et al. Effect of nano metakaolin on compressive strength of recycled concrete. Constr. Build. Mater. 2020, 256, 119393. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Improving strength, drying shrinkage, and pore structure of concrete using metakaolin. Mater. Struct. 2008, 41, 937–949. [Google Scholar] [CrossRef]
- Li, Z.; Ding, Z. Property improvement of Portland cement by incorporating with metakaolin and slag. Cem. Concr. Res. 2003, 33, 579–584. [Google Scholar] [CrossRef]
- Masood, B.; Elahi, A.; Barbhuiya, S.; Ali, B. Mechanical and durability performance of recycled aggregate concrete incorporating low calcium bentonite. Constr. Build. Mater. 2020, 237, 117760. [Google Scholar] [CrossRef]
- Trümer, A.; Ludwig, H.-M.; Schellhorn, M.; Diedel, R. Effect of a calcined Westerwald bentonite as supplementary cementitious material on the long-term performance of concrete. Appl. Clay Sci. 2019, 168, 36–42. [Google Scholar] [CrossRef]
- Laidani, Z.E.-A.; Benabed, B.; Abousnina, R.; Gueddouda, M.K.; Kadri, E.-H. Experimental investigation on effects of calcined bentonite on fresh, strength and durability properties of sustainable self-compacting concrete. Constr. Build. Mater. 2020, 230, 117062. [Google Scholar] [CrossRef]
- Xie, Y.; Li, J.; Lu, Z.; Jiang, J.; Niu, Y. Preparation and properties of ultra-lightweight EPS concrete based on pre-saturated bentonite. Constr. Build. Mater. 2019, 195, 505–514. [Google Scholar] [CrossRef]
- Yang, H.; Long, D.; Zhenyu, L.; Yuanjin, H.; Tao, Y.; Xin, H.; Jie, W.; Zhongyuan, L.; Shuzhen, L. Effects of bentonite on pore structure and permeability of cement mortar. Constr. Build. Mater. 2019, 224, 276–283. [Google Scholar] [CrossRef]
- Hakamy, A.; Shaikh, F.; Low, I.M. Characteristics of nanoclay and calcined nanoclay-cement nanocomposites. Compos. Part. B Eng. 2015, 78, 174–184. [Google Scholar] [CrossRef] [Green Version]
- Wei, J.; Meyer, C. Sisal fiber-reinforced cement composite with Portland cement substitution by a combination of metakaolin and nanoclay. J. Mater. Sci. 2014, 49, 7604–7619. [Google Scholar] [CrossRef]
- Rooj, S.; Das, A.; Heinrich, G. Tube-like natural halloysite/fluoroelastomer nanocomposites with simultaneous enhanced mechanical, dynamic mechanical and thermal properties. Eur. Polym. J. 2011, 47, 1746–1755. [Google Scholar] [CrossRef]
- Farzadnia, N.; Ali, A.A.A.; Demirboga, R.; Anwar, M.P. Effect of halloysite nanoclay on mechanical properties, thermal behavior and microstructure of cement mortars. Cem. Concr. Res. 2013, 48, 97–104. [Google Scholar] [CrossRef]
- Rao, C.N.R.; Kulkarni, G.U.; Thomas, P.J.; Edwards, P.P. Size-Dependent Chemistry: Properties of Nanocrystals. Chem. A Eur. J. 2001, 8, 28–35. [Google Scholar] [CrossRef]
- Kamruzzaman, A.; Chew, S.; Lee, F. Microstructure of cement-treated Singapore marine clay. Proc. Inst. Civ. Eng. Ground Improv. 2006, 10, 113–123. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Y.; Huang, J.; Shah, S.P. Effect of nano-metakaolinite clay on hydration behavior of cement-based materials at early curing age. Constr. Build. Mater. 2021, 291, 123107. [Google Scholar] [CrossRef]
- Morsy, M.; Alsayed, S.; Aqel, M. Effect of nano-clay on mechanical properties and microstructure of ordinary Portland cement mortar. Int. J. Civ. Environ. Eng. 2010, 10, 21–25. [Google Scholar]
- Hosseini, P.; Afshar, A.; Vafaei, B.; Booshehrian, A.; Molaei Raisi, E.; Esrafili, A. Effects of nano-clay particles on the short-term properties of self-compacting concrete. Eur. J. Environ. Civ. Eng. 2015, 21, 127–147. [Google Scholar] [CrossRef]
- Norhasri, M.M.; Hamidah, M.; Fadzil, A.M. Inclusion of nano metaclayed as additive in ultra high performance concrete (UHPC). Constr. Build. Mater. 2019, 201, 590–598. [Google Scholar] [CrossRef]
- Mehrabi, P.; Shariati, M.; Kabirifar, K.; Jarrah, M.; Rasekh, H.; Trung, N.T.; Shariati, A.; Jahandari, S. Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate. Constr. Build. Mater. 2021, 287, 122652. [Google Scholar] [CrossRef]
- Panda, B.; Lim, J.H.; Tan, M.J. Mechanical properties and deformation behaviour of early age concrete in the context of digital construction. Compos. Part. B Eng. 2019, 165, 563–571. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Ajarostaghi, S.S.M.; Bhojaraju, C. A critical review of the effect of concrete composition on rebar–concrete interface (RCI) bond strength: A case study of nanoparticles. SN Appl. Sci. 2020, 2, 893. [Google Scholar] [CrossRef] [Green Version]
- Mousavi, S.S.; Guizani, L.; Bhojaraju, C.; Ouellet-Plamondon, C. The effect of air-entraining admixture and superabsorbent polymer on bond behaviour of steel rebar in pre-cracked and self-healed concrete. Constr. Build. Mater. 2021, 281, 122568. [Google Scholar] [CrossRef]
- Karahan, O.; Hossain, K.M.; Ozbay, E.; Lachemi, M.; Sancak, E. Effect of metakaolin content on the properties self-consolidating lightweight concrete. Constr. Build. Mater. 2012, 31, 320–325. [Google Scholar] [CrossRef]
- Sancak, E.; Hossain, K.M.A.; Lachemi, M. Bond loss between metakaolin-incorporated structural lightweight self-consolidating concrete and corroded steel reinforcement. J. Mater. Civ. Eng. 2017, 29, 4016283. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Akoi, A.O.M.; Mermerdaş, K. Combined effect of steel fiber and metakaolin incorporation on mechanical properties of concrete. Compos. Part. B Eng. 2014, 56, 83–91. [Google Scholar] [CrossRef]
- Zhang, S.; Fan, Y.; Li, N. Bonding behavior between steel bars and concrete modified with nano-kaolinite clay. J. Southeast. Univ. Nat. Sci. Ed. 2015, 45, 382–386. [Google Scholar]
- Fan, Y.F.; Zhang, S.Y.; Shah, S.P. Influence of Nanoclay on Concrete. In Key Engineering Materials; Trans Tech Publications: Zurich, Switzerland, 2016; pp. 256–262. [Google Scholar]
- Zhang, S.; Fan, Y.; Jia, Z.; Ren, J. Effect of nano-kaolinite clay on rebar corrosion and bond behavior between rebar and concrete. J. Mater. Civ. Eng. 2021, 33, 4020416. [Google Scholar] [CrossRef]
- Banthia, N.; Yan, C. Bond-slip characteristics of steel fibers in high reactivity metakaolin (HRM) modified cement-based matrices. Cem. Concr. Res. 1996, 26, 657–662. [Google Scholar] [CrossRef]
- Lee, J.-W.; Park, C.-G. Bond properties of structural poly vinyl alcohol fiber in cement based composites with metakaolin and silica fume contents. J. Korean Soc. Agric. Eng. 2012, 54, 9–16. [Google Scholar]
- Yalçinkaya, Ç.; Beglarigale, A.; Yazici, H. The effect of metakaolin and end type of steel fiber on fiber-SIFCON matrix bond characteristics. Usak Univ. J. Mater. Sci. 2014, 3, 97. [Google Scholar] [CrossRef] [Green Version]
- Oh, R.-O.; Park, C.G. Pullout performance of reinforcing fiber embedded in nano materials cement mortar with nano clay contents. J. Korean Soc. Agric. Eng. 2013, 55, 113–121. [Google Scholar]
- ACI. Guide to Durable Concrete; 201.2R-01; American Concrete Institute: Farmington Hills, MI, USA, 2001. [Google Scholar]
- Tang, S.W.; Yao, Y.; Andrade, C.; Li, Z. Recent durability studies on concrete structure. Cem. Concr. Res. 2015, 78, 143–154. [Google Scholar] [CrossRef]
- Turanli, L.; Bektas, F.; Monteiro, P. Use of ground clay brick as a pozzolanic material to reduce the alkali—Silica reaction. Cem. Concr. Res. 2003, 33, 1539–1542. [Google Scholar] [CrossRef]
- Siddique, R.; Klaus, J. Influence of metakaolin on the properties of mortar and concrete: A review. Appl. Clay Sci. 2009, 43, 392–400. [Google Scholar] [CrossRef]
- Li, C.; Ideker, J.H.; Drimalas, T. The efficacy of calcined clays on mitigating alakli-silica reaction (ASR) in mortar and its influence on microstructure. In Calcined Clays for Sustainable Concrete; Springer: Berlin/Heidelberg, Germany, 2015; pp. 211–217. [Google Scholar]
- Waters, G.V.; Jones, T.R. Effect of metakaolin on ASR in concrete manufactured with reactive aggregates. In Proceedings of the 2nd International Conference on the Durability of Concrete, Montreal, QC, Canada, 4–9 August 1992; Volume 2, pp. 941–947. [Google Scholar]
- Jones, T.; Walters, G.; Kostuch, J. Role of metakaolin in suppressing ASR in concrete containing reactive aggregate and exposed to saturated NaCl solution. In Proceedings of the 9th International Conference Alkali-Aggregate Reaction Concrete, London, UK, 27–31 July 1992; pp. 485–496. [Google Scholar]
- Moser, R.D.; Jayapalan, A.R.; Garas, V.Y.; Kurtis, K.E. Assessment of binary and ternary blends of metakaolin and Class C fly ash for alkali-silica reaction mitigation in concrete. Cem. Concr. Res. 2010, 40, 1664–1672. [Google Scholar] [CrossRef]
- Ramlochan, T.; Thomas, M.; Gruber, K.A. The effect of metakaolin on alkali–silica reaction in concrete. Cem. Concr. Res. 2000, 30, 339–344. [Google Scholar] [CrossRef]
- Chappex, T. The Role of Aluminium from Supplementary Cementitious Materials in Controlling Alkali-Silica Reaction; EPFL: Lausanne, Switzerland, 2012. [Google Scholar]
- Chappex, T.; Scrivener, K.L. The effect of aluminum in solution on the dissolution of amorphous silica and its relation to cementitious systems. J. Am. Ceram. Soc. 2013, 96, 592–597. [Google Scholar] [CrossRef]
- Trümer, A.; Ludwig, H.-M. Sulphate and ASR resistance of concrete made with calcined clay blended cements. In Calcined Clays for Sustainable Concrete; Springer: Berlin/Heidelberg, Germany, 2015; pp. 3–9. [Google Scholar]
- Lothenbach, B.; Scrivener, K.; Hooton, R. Supplementary cementitious materials. Cem. Concr. Res. 2011, 41, 1244–1256. [Google Scholar] [CrossRef]
- Irshidat, M.R.; Al-Saleh, M.H.; Sanad, S. Effect of nanoclay on the expansive potential of cement mortar due to Alkali-Silica Reaction. ACI Mater. J. 2015, 112, 801. [Google Scholar] [CrossRef]
- Gruber, K.; Ramlochan, T.; Boddy, A.; Hooton, R.; Thomas, M. Increasing concrete durability with high-reactivity metakaolin. Cem. Concr. Compos. 2001, 23, 479–484. [Google Scholar] [CrossRef]
- Courard, L.; Darimont, A.; Schouterden, M.; Ferauche, F.; Willem, X.; Degeimbre, R. Durability of mortars modified with metakaolin. Cem. Concr. Res. 2003, 33, 1473–1479. [Google Scholar] [CrossRef]
- Güneyisi, E.; Gesoğlu, M.; Mermerdaş, K. Strength deterioration of plain and metakaolin concretes in aggressive sulfate environments. J. Mater. Civ. Eng. 2010, 22, 403–407. [Google Scholar] [CrossRef]
- Duan, P.; Yan, C.; Zhou, W. Influence of partial replacement of fly ash by metakaolin on mechanical properties and microstructure of fly ash geopolymer paste exposed to sulfate attack. Ceram. Int. 2016, 42, 3504–3517. [Google Scholar] [CrossRef]
- Poursaee, A. Corrosion of steel in concrete structures. In Corrosion of Steel in Concrete Structures; Elsevier: Amsterdam, The Netherlands, 2016; pp. 19–33. [Google Scholar]
- Güneyisi, E.; Gesoğlu, M.; Karaboğa, F.; Mermerdaş, K. Corrosion behavior of reinforcing steel embedded in chloride contaminated concretes with and without metakaolin. Compos. Part. B Eng. 2013, 45, 1288–1295. [Google Scholar] [CrossRef]
- Keleştemur, O.; Demirel, B. Effect of metakaolin on the corrosion resistance of structural lightweight concrete. Constr. Build. Mater. 2015, 81, 172–178. [Google Scholar] [CrossRef]
- Batis, G.; Pantazopoulou, P.; Tsivilis, S.; Badogiannis, E. The effect of metakaolin on the corrosion behavior of cement mortars. Cem. Concr. Compos. 2005, 27, 125–130. [Google Scholar] [CrossRef]
- Amin, N.-U.; Alam, S.; Gul, S. Effect of thermally activated clay on corrosion and chloride resistivity of cement mortar. J. Clean. Prod. 2016, 111, 155–160. [Google Scholar] [CrossRef]
- Aguirre-Guerrero, A.M.; Mejía-de-Gutiérrez, R.; Montês-Correia, M.J.R. Corrosion performance of blended concretes exposed to different aggressive environments. Constr. Build. Mater. 2016, 121, 704–716. [Google Scholar] [CrossRef]
- Parande, A.K.; Babu, B.R.; Karthik, M.A.; Kumaar, K.D.; Palaniswamy, N. Study on strength and corrosion performance for steel embedded in metakaolin blended concrete/mortar. Constr. Build. Mater. 2008, 22, 127–134. [Google Scholar] [CrossRef]
- Standard, Korea. KS F 2456: Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing; KS Korea: Seongnam-si, Korea, 2013. [Google Scholar]
- Zhang, M.; Malhotra, V.M. Characteristics of a thermally activated alumino-silicate pozzolanic material and its use in concrete. Cem. Concr. Res. 1995, 25, 1713–1725. [Google Scholar] [CrossRef]
- Kim, H.-S.; Lee, S.-H.; Moon, H.-Y. Strength properties and durability aspects of high strength concrete using Korean metakaolin. Constr. Build. Mater. 2007, 21, 1229–1237. [Google Scholar] [CrossRef]
- Hassan, A.A.; Lachemi, M.; Hossain, K.M. Effect of metakaolin and silica fume on the durability of self-consolidating concrete. Cem. Concr. Compos. 2012, 34, 801–807. [Google Scholar] [CrossRef]
- Fan, Y.; Zhang, S.; Wang, Q.; Shah, S.P. Effects of nano-kaolinite clay on the freeze–thaw resistance of concrete. Cem. Concr. Compos. 2015, 62, 1–12. [Google Scholar] [CrossRef]
- Niu, X.J.; Li, Q.B.; Hu, Y.; Tan, Y.S.; Liu, C.F. Properties of cement-based materials incorporating nano-clay and calcined nano-clay: A review. Constr. Build. Mater. 2021, 284, 122820. [Google Scholar] [CrossRef]
- Kawashima, S.; Wang, K.; Ferron, R.D.; Kim, J.H.; Tregger, N.; Shah, S. A review of the effect of nanoclays on the fresh and hardened properties of cement-based materials. Cem. Concr. Res. 2021, 147, 106502. [Google Scholar] [CrossRef]
- Taklymi, S.M.Q.; Rezaifar, O.; Gholhaki, M. Investigating the properties of bentonite and kaolin modified concrete as a partial substitute to cement. SN Appl. Sci. 2020, 2, 2023. [Google Scholar] [CrossRef]
- Haque, M. No-slump concrete with fine sand and clay. Cem. Concr. Res. 1981, 11, 531–539. [Google Scholar] [CrossRef]
- Pike, D. Methodologies for Assessing the Variability of Fines in Sands Used for Concretes and Mortars. Ph.D. Thesis, University of Reading, Reading, UK, 1992. [Google Scholar]
- Moukwa, M.; Lewis, B.; Shah, S.; Ouyang, C. Effects of clays on fracture properties of cement-based materials. Cem. Concr. Res. 1993, 23, 711–723. [Google Scholar] [CrossRef]
- Karatas, M.; Benli, A.; Arslan, F. The effects of kaolin and calcined kaolin on the durability and mechanical properties of self-compacting mortars subjected to high temperatures. Constr. Build. Mater. 2020, 265, 120300. [Google Scholar] [CrossRef]
- Sabir, B.; Wild, S.; Khatib, J. On the workability and strength development of metakaolin concrete. Concr. Environ. Enhanc. Prot. 1996, 651–656. [Google Scholar]
- Wild, S.; Khatib, J.; Jones, A. Relative strength, pozzolanic activity and cement hydration in superplasticised metakaolin con-crete. Cem. Concr. Res. 1996, 26, 1537–1544. [Google Scholar] [CrossRef]
- Bai, J.; Sabir, B.; Wild, S.; Kinuthia, J. Strength development in concrete incorporating PFA and metakaolin. Mag. Concr. Res. 2000, 52, 153–162. [Google Scholar] [CrossRef]
- Bai, J.; Wild, S.; Gailius, A. Accelerating Early Strength Development of Concrete Using Metakaolin as an admixture. Mater. Sci. 2004, 10, 338–344. [Google Scholar]
- Homayoonmehr, R.; Ramezanianpour, A.A.; Mirdarsoltany, M. Influence of metakaolin on fresh properties, mechanical prop-erties and corrosion resistance of concrete and its sustainability issues: A review. J. Build. Eng. 2021, 44, 103011. [Google Scholar] [CrossRef]
- Botassi dos Santos, S.; Pinto da Silva Filho, L.C.; Calmon, J.L. Early-Age Creep of Mass Concrete: Effects of Chemical and Min-eral Admixtures. ACI Mater. J. 2012, 109, 1. [Google Scholar]
- Zuo, J.; Li, H.; Dong, B.; Wang, L. Effects of metakaolin on the mechanical and anticorrosion properties of epoxy emulsion cement mortar. Appl. Clay Sci. 2020, 186, 105431. [Google Scholar] [CrossRef]
- Walters, G.V.; Jones, T.R. Effect of metakaolin on alkali-silica reaction (asr) in concrete manufactured with reactive aggregate. In Proceedings of the Durability of Concrete Second International Conference, Montreal, QC, Canada, 4–9 August 1991; Volume II. [Google Scholar]
- Faizal, M.M.; Hamidah, M.; Norhasri, M.M.; Noorli, I.; Hafez, M.M.E. Chloride permeability of nanoclayed ultra-high perfor-mance concrete. In InCIEC 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 613–623. [Google Scholar]
- Shalby, O.B.; Elkady, H.M.; Nasr, E.A.R.; Kohail, M. Assessment of mechanical and fire resistance for hybrid nano-clay and steel fibres concrete at different curing ages. J. Struct. Fire Eng. 2019, 11, 189–203. [Google Scholar] [CrossRef]
- Mahboubi, B.; Guo, Z.; Wu, H. Evaluation of durability behavior of geopolymer concrete containing Nano-silica and Nano-clay additives in acidic media. J. Civ. Eng. Mater. Appl. 2019, 3, 163–171. [Google Scholar]
- Jafari, M.; Mozhdehi, A.M.; Ganjali, A.; Bamoharram, F.F. Nanoclay-Supported Preyssler Heteropolyacid (NCP): An Effective Nanocomposite to Improve the Compressive Strength of Concrete. J. Sci. Eng. Elites 2020, 5, 99–103. [Google Scholar]
- Alani, N.Y.; Al-Jumaily, I.A.; Hilal, N. Effect of nanoclay and burnt limestone powder on fresh and hardened properties of self-compacting concrete. Nanotechnol. Environ. Eng. 2021, 6, 20. [Google Scholar]
- Mirgozar Langaroudi, M.A.; Mohammadi, Y. Effect of nano-clay on the freeze–thaw resistance of self-compacting concrete con-taining mineral admixtures. Eur. J. Environ. Civ. Eng. 2019, 1–20. [Google Scholar] [CrossRef]
- Naji, H.F.; Khalid, N.N.; Alsaraj, W.K. Influence of Nanoclay on the Behavior of Reinforced Concrete Slabs. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2020; p. 12107. [Google Scholar]
- Aly, M.; Hashmi, M.; Olabi, A.; Messeiry, M.; Hussain, A. Effect of nano clay particles on mechanical, thermal and physical behaviours of waste-glass cement mortars. Mater. Sci. Eng. A 2011, 528, 7991–7998. [Google Scholar] [CrossRef]
- Kalpokaitė-Dičkuvienė, R.; Lukošiūtė, S.I.; Baltušnikas, A.; Čėsnienė, J. Structural observation of cement paste modified with hydrophobic organoclay. Constr. Build. Mater. 2021, 272, 121931. [Google Scholar] [CrossRef]
- Gholinezhad, F.; Moghbeli, M.R.; Aghaei, A.; Allahverdi, A. Effect of organoclay reinforced acrylate latex particles on the ce-ment paste performance. J. Dispers. Sci. Technol. 2021, 42, 416–431. [Google Scholar] [CrossRef]
- Kalpokaitė-Dičkuvienė, R.; Lukošiūtė, I.; Čėsnienė, J.; Brinkienė, K.; Baltušnikas, A. Cement substitution by organoclay—The role of organoclay type. Cem. Concr. Compos. 2015, 62, 90–96. [Google Scholar] [CrossRef]
- Chamundeeswari, J. Experimental Study on Partial Replacement of Cement by Bentonite in Paverblock. Int. J. Eng. Trends Technol. 2012, 3, 41–47. [Google Scholar]
- Ahmad, J.; Tufail, R.F.; Aslam, F.; Mosavi, A.; Alyousef, R.; Faisal Javed, M.; Zaid, O.; Khan Niazi, M.S. A step towards sustainable self-compacting concrete by using partial substitution of wheat straw ash and bentonite clay instead of cement. Sustainability 2021, 13, 824. [Google Scholar] [CrossRef]
- Lee, H.H.; Wang, C.-W.; Chung, P.-Y. Experimental Study on the Strength and Durability for Slag Cement Mortar with Benton-ite. Appl. Sci. 2021, 11, 1176. [Google Scholar] [CrossRef]
- Qiyami Taklymi, S.M.; Rezaifar, O.; Gholhaki, M. Utilization of bentonite as partial replacement of cement in low-strength concrete. J. Concr. Struct. Mater. 2020, 5, 25–40. [Google Scholar]
- Ahad, M.Z.; Ashraf, M.; Kumar, R.; Ullah, M. Thermal, physico-chemical, and mechanical behaviour of mass concrete with hybrid blends of bentonite and fly ash. Materials 2019, 12, 60. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Akbar, J.; Alam, B.; Ashraf, M.; Afzal, S.; Ahmad, A.; Shahzada, K. Evaluating the Effect of Bentonite on Strength and Durability of High Performance Concrete. Int. J. Adv. Struct. Geotech. Eng. 2013, 2, 3347. [Google Scholar]
- Luo, J.; Li, C.; Ma, Y.; Wang, L. Bentonite replacing part of cement concrete for resistance to chloride ion attack. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2019; p. 3011. [Google Scholar]
- Nagar, P.A.; Gupta, N.; Kishore, K.; Parashar, A.K. Coupled effect of B. Sphaericus bacteria and calcined clay mineral on OPC concrete. Mater. Today Proc. 2021, 44, 113–117. [Google Scholar] [CrossRef]
- Lopez, R.F. Calcined Clayey Soils as a Potential Replacement for Cement in Developing Countries. Ph.D. Thesis, Ecole Poly-technique Fédérale de Lausanne, Lausanne, Switzerland, 2009. [Google Scholar]
- Al-Hammood, A.A.; Frayyeh, Q.J.; Abbas, W.A. Iraqi Bentonite as a Natural Pozzolan for Sustainable Concrete; University of Technology: Baghdad, Iraq, 2021. [Google Scholar]
- Rehman, S.U.; Yaqub, M.; Noman, M.; Ali, B.; Ayaz Khan, M.N.; Fahad, M.; Muneeb Abid, M.; Gul, A. The influence of thermo-mechanical activation of bentonite on the mechanical and durability performance of concrete. Appl. Sci. 2019, 9, 5549. [Google Scholar] [CrossRef] [Green Version]
- Thienel, K.-C.; Beuntner, N. Effects of Calcined Clay as Low Carbon Cementing Materials on the Properties of Concrete; University of Dundee—Concrete Technology: Dundee, UK, 2012. [Google Scholar]
- Panda, B.; Ruan, S.; Unluer, C.; Tan, M.J. Improving the 3D printability of high volume fly ash mixtures via the use of nano attapulgite clay. Compos. B Eng. 2019, 165, 75–83. [Google Scholar] [CrossRef]
- Chen, M.; Liu, B.; Li, L.; Cao, L.; Huang, Y.; Wang, S.; Zhao, P.; Lu, L.; Cheng, X. Rheological parameters, thixotropy and creep of 3D-printed calcium sulfoaluminate cement composites modified by bentonite. Compos. B Eng. 2020, 186, 107821. [Google Scholar] [CrossRef]
- Chen, Y.; Chaves Figueiredo, S.; Yalçinkaya, Ç.; Çopuroğlu, O.; Veer, F.; Schlangen, E. The effect of viscosity-modifying admixture on the extrudability of limestone and calcined clay-based cementitious material for extrusion-based 3D concrete printing. Materials 2019, 12, 1374. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Li, Z.; Chaves Figueiredo, S.; Çopuroğlu, O.; Veer, F.; Schlangen, E. Limestone and calcined clay-based sustainable cementitious materials for 3D concrete printing: A fundamental study of extrudability and early-age strength development. Appl. Sci. 2019, 9, 1809. [Google Scholar] [CrossRef] [Green Version]
- Malaeb, Z.; Hachem, H.; Tourbah, A.; Maalouf, T.; El Zarwi, N.; Hamzeh, F. 3D Concrete printing: Machine and mix design. Int. J. Civ. Eng. Technol. 2015, 6, 14–22. [Google Scholar]
Compound (%) | Raw Clay | Metakaolin | Bentonite | Nano-Clay |
---|---|---|---|---|
SiO2 | 53.24 | 52.32 | 53.91 | 57.81 |
Al2O3 | 28.27 | 43.06 | 16.90 | 20.46 |
Fe2O3 | 2.10 | 1.70 | 7.19 | 2.58 |
MgO | 1.11 | 0.14 | 4.22 | 1.243 |
CaO | 1.88 | 0.09 | 7.14 | 0.763 |
Na2O | 1.07 | 0.17 | 0.60 | 0.8 |
K2O | 1.56 | 0.38 | 2.33 | 0.86 |
SO3 | 0.13 | 0.1 | 0.12 | - |
TiO2 | 0.38 | 0.67 | 1.12 | 1.28 |
P205 | - | 0.11 | 0.51 | - |
MnO | - | - | 0.11 | - |
Cr2O3 | - | - | 0.01 | - |
ZnO | - | - | 0.17 | - |
V2O5 | - | - | 0.07 | - |
H2O | - | - | - | - |
CO2 | - | - | - | - |
Loss on ignition (LOI) | 12.74 | 0.80 | 10.42 | 14.23 |
References used | [37,38,39,40] | [41,42,43,44,45,46,47,48,49,50] | [4,5,51,52,53,54,55,56] | [57,58,59] |
Reference | Calcination Temperature (°C) | Heating Time (min) | More Explanation |
---|---|---|---|
Murat and Comel (1983) [60] | 700–850 | 360 | - |
Badogiannis et al. (2005) [61] | 650 | 180 | poor kaolins with a low alunite content |
850 | 180 | kaolin with high alunite content | |
Mejía et al. (2008) [62] | 700–800 | 2.0 °C/min | metakaolin with a high pozzolanic index |
Ilić et al. (2010) [63] | 650 | 90 | - |
Moodi et al. (2011) [64] | 750–850 | 60 | - |
Salau and Osemeke (2015) [65] | 750 | 60 | metakaolin concrete |
Albidah et al. (2020) [66] | 750 | 180 | metakaolin-based geopolymer concrete |
Clay Type | Fresh | Hardened | Durability | ||||||
---|---|---|---|---|---|---|---|---|---|
Flowability | Viscosity | Early-Age Shrinkage | Compressive Strength | Bond | AAR | Sulfate Attack | Steel Corrosion | Freeze-Thaw | |
Raw Clays | |||||||||
I | [101] | [106,107,116,117] | RG | [184] | RG | RG | RG | ||
D | [39,40,92,93,99,214] | [38] | [36,139,142,143,215,216,217,218] | ||||||
U | [94] | ||||||||
Metakaolin | |||||||||
I | [107] | [46,134,135,137,138] | [6,47,48,144,145,149,151,152,167,208,219,220,221,222,223,224,225] | [174] | [187,188,189,190,196,226] | [41,196,197,198,199] | [201,202,203,204,205,206,225] | [208,209,210] | |
D | [101,167] | [38] | [66,172,173] | ||||||
U | [38] | [148] | |||||||
Nano-Clay | |||||||||
I | [101] | [86,102,106,108,115,125] | [125,158,161,164,165,166,167,168,227,228,229,230,231,232,233] | [175,176,177] | [195] | RG | [175,177,227] | [176,232] | |
D | [102,167,227,228,231,232] | [38] | |||||||
U | [38] | ||||||||
Organo-Clay | |||||||||
I | RG | [234,235] | RG | RG | |||||
D | [236] | ||||||||
U | [80,81,237] | ||||||||
Bentonite | |||||||||
I | RG | RG | [111,238,239] | RG | RG | [240] | RG | RG | |
D | [40,93,96,111,214,239,241] | [242] | |||||||
U | [4,56,156,157,214,240,241,243,244] | ||||||||
Other Calcined Clays | |||||||||
I | RG | [106,116] | RG | [36,154,155,245,246,247,248] | RG | [186] | RG | RG | RG |
D | [218] | ||||||||
U | [249] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mousavi, S.S.; Bhojaraju, C.; Ouellet-Plamondon, C. Clay as a Sustainable Binder for Concrete—A Review. Constr. Mater. 2021, 1, 134-168. https://doi.org/10.3390/constrmater1030010
Mousavi SS, Bhojaraju C, Ouellet-Plamondon C. Clay as a Sustainable Binder for Concrete—A Review. Construction Materials. 2021; 1(3):134-168. https://doi.org/10.3390/constrmater1030010
Chicago/Turabian StyleMousavi, Seyed Sina, Chandrasekhar Bhojaraju, and Claudiane Ouellet-Plamondon. 2021. "Clay as a Sustainable Binder for Concrete—A Review" Construction Materials 1, no. 3: 134-168. https://doi.org/10.3390/constrmater1030010
APA StyleMousavi, S. S., Bhojaraju, C., & Ouellet-Plamondon, C. (2021). Clay as a Sustainable Binder for Concrete—A Review. Construction Materials, 1(3), 134-168. https://doi.org/10.3390/constrmater1030010