A Novel Approach for Maintenance and Repair of Reinforced Concrete Using Building Information Modeling with Integrated Machine-Readable Diagnosis Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Implementation of Diagnosis Data
2.1.1. Requirements
2.1.2. One-Dimensional Data
2.1.3. Two-Dimensional Data
2.1.4. Three-Dimensional Data
2.2. Automation of Analysis
2.2.1. Data Preparation
2.2.2. Decision Trees for Maintenance Methods
- A
- Reinforcement locally or fully depassivated by carbonation;
- B
- Critical, corrosion-inducing chloride content locally or fully exceeded;
- C
- In case of carbonation depth exceeding the depth of the reinforcement layers, concrete removal up to 10 or 15 mm behind the reinforcement, for steel bar diameters < or ≥16 mm;
- D
- In case of large chloride penetration depths, remove concrete up to at least 30 mm behind the reinforcement in such a way that the chloride content does not exceed 1.5 wt% relative to the cement content
depth of concrete removal in mm | |
depth of carbonation in mm | |
depth of critical chloride content in mm | |
concrete cover in mm | |
rebar diameter in mm | |
depth of 1.5 wt% chloride content in mm |
3. Results
3.1. Multi-Layered Visualization of the As-Is-State
3.2. Spatially Resolved Condition Assessment
4. Discussion
5. Conclusions and Outlook
- BIM can be used effectively for maintenance and repair and is suited to increase the efficiency of both planning and execution;
- Datasets gained through building diagnoses can be analyzed clearly and quickly by implementing them machine-readably in BIM;
- The functionality of BIM can be extended significantly by combining BIM with Python and according wrappers using an API;
- Interoperability of enriched BIM models is vital and can be achieved using transparent file formats such as IFC and CSV;
- Properly combined, available technologies can be used to establish BIM for maintenance and repair as a profitable and resource-efficient way of working.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
API | Application Programming Interface |
AR | Augmented Reality |
BIM | Building Information Modeling |
BMS | Bridge Monitoring System |
DT | Digital Twin |
DTC | Digital Twin Construction |
GUI | Graphical User Interface |
HBIM | Heritage BIM |
ibac | Institute for Building Materials Research (RWTH Aachen University) |
IFC | Industry Foundation Classes |
IoT | Internet of Things |
LCA | Life Cycle Assessment |
shBIM | Structural Health BIM |
SHM | Structural Health Monitoring |
SME | Small and Medium Enterprises |
SSoT | Single Source of Truth |
TR IH | Technical Standard “Maintenance of Concrete Structures” |
VR | Virtual Reality |
References
- Liao, L.; Teo, E.A.L.; Chang, R.; Zhao, X. Diffusion of Building Information Modeling in Building Projects and Firms in Singapore. Sustainability 2020, 12, 7762. [Google Scholar] [CrossRef]
- Wen, Q.; Zhu, R.G. Automatic Generation of 3D Building Models Based on Line Segment Vectorization. Math. Probl. Eng. 2020, 2020, 8360706. [Google Scholar] [CrossRef]
- Wang, Q.; Sohn, H.; Cheng, J.C.P. Automatic As-Built BIM Creation of Precast Concrete Bridge Deck Panels Using Laser Scan Data. J. Comput. Civ. Eng. 2018, 32. [Google Scholar] [CrossRef]
- Tommasi, C.; Achille, C.; Fassi, F. From Point Cloud to Bim: A Modelling Challenge in the Cultural Heritage Field. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B5, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.H.; Park, J.J.; Yoon, H. Automatic Bridge Design Parameter Extraction for Scan-to-BIM. Appl. Sci. 2020, 10, 7346. [Google Scholar] [CrossRef]
- Panah, R.S.; Kioumarsi, M. Application of Building Information Modelling (BIM) in the Health Monitoring and Maintenance Process: A Systematic Review. Sensors 2021, 21, 837. [Google Scholar] [CrossRef]
- Uddin, M.N.; Wang, Q.; Wei, H.H.; Chi, H.L.; Ni, M. Building information modeling (BIM), System dynamics (SD), and Agent-based modeling (ABM): Towards an integrated approach. Ain Shams Eng. J. 2021, 12, 4261–4274. [Google Scholar] [CrossRef]
- Desogus, G.; Quaquero, E.; Rubiu, G.; Gatto, G.; Perra, C. BIM and IoT Sensors Integration: A Framework for Consumption and Indoor Conditions Data Monitoring of Existing Buildings. Sustainability 2021, 13, 4496. [Google Scholar] [CrossRef]
- Guzzetti, F.; Anyabolu, K.L.N.; Biolo, F.; D’Ambrosio, L. BIM for Existing Construction: A Different Logic Scheme and an Alternative Semantic to Enhance the Interoperabilty. Appl. Sci. 2021, 11, 1855. [Google Scholar] [CrossRef]
- Byun, N.; Han, W.S.; Kwon, Y.W.; Kang, Y.J. Development of BIM-Based Bridge Maintenance System Considering Maintenance Data Schema and Information System. Sustainability 2021, 13, 4858. [Google Scholar] [CrossRef]
- Hartung, R.; Schönbach, R.; Liepe, D.; Klemt-Albert, K. Automatized Parametric Modeling to Enhance a data-based Maintenance Process for Infrastructure Buildings. In Proceedings of the 2020 Proceedings of the 37th ISARC, Kitakyushu, Japan, 27–28 October 2020. [Google Scholar] [CrossRef]
- Hamooni, M.; Maghrebi, M.; Majrouhi Sardroud, J.; Kim, S. Extending BIM Interoperability for Real-Time Concrete Formwork Process Monitoring. Appl. Sci. 2020, 10, 1085. [Google Scholar] [CrossRef] [Green Version]
- Boje, C.; Guerriero, A.; Kubicki, S.; Rezgui, Y. Towards a semantic Construction Digital Twin: Directions for future research. Autom. Constr. 2020, 114, 103179. [Google Scholar] [CrossRef]
- Sacks, R.; Brilakis, I.; Pikas, E.; Xie, H.S.; Girolami, M. Construction with digital twin information systems. Data-Centric Eng. 2020, 1, e14. [Google Scholar] [CrossRef]
- Karaaslan, E.; Bagci, U.; Catbas, F.N. Artificial Intelligence Assisted Infrastructure Assessment using Mixed Reality Systems. Transp. Res. Rec. J. Transp. Res. Board 2019, 2673, 413–424. [Google Scholar] [CrossRef] [Green Version]
- Coupry, C.; Noblecourt, S.; Richard, P.; Baudry, D.; Bigaud, D. BIM-Based Digital Twin and XR Devices to Improve Maintenance Procedures in Smart Buildings: A Literature Review. Appl. Sci. 2021, 11, 6810. [Google Scholar] [CrossRef]
- Yang, A.; Han, M.; Zeng, Q.; Sun, Y.; Liu, H. Adopting Building Information Modeling (BIM) for the Development of Smart Buildings: A Review of Enabling Applications and Challenges. Adv. Civ. Eng. 2021, 2021, 8811476. [Google Scholar] [CrossRef]
- Morgenstern, H.; Raupach, M. BIM-centred building diagnoses as a decision support tool for maintenance and repair. In Proceedings of the International Symposium on Non-Destructive Testing in Civil Engineering, Zurich, Switzerland, 16–18 August 2022; Available online: http://www.ndt.net/?id=27287 (accessed on 9 December 2022).
- Morgenstern, H.; Raupach, M. Quantified point clouds and enriched BIM-Models for digitalised maintenance planning. Matec Web Conf. 2022, 364. [Google Scholar] [CrossRef]
- Collao, J.; Lozano-Galant, F.; Lozano-Galant, J.A.; Turmo, J. BIM Visual Programming Tools Applications in Infrastructure Projects: A State-of-the-Art Review. Appl. Sci. 2021, 11, 8343. [Google Scholar] [CrossRef]
- Mold, L.; Auer, M.; Strauss, A.; Hoffmann, M.; Täubling, B. Thermografie zur Erfassung von Schäden an Brückenbauwerken. Bautechnik 2020, 97, 789–801. [Google Scholar] [CrossRef]
- Mohan, A.; Poobal, S. Crack detection using image processing: A critical review and analysis. Alex. Eng. J. 2018, 57, 787–798. [Google Scholar] [CrossRef]
- Lachowicz, J.; Rucka, M. 3D finite-difference time-domain modelling of ground penetrating radar for identification of rebars in complex reinforced concrete structures. Arch. Civ. Mech. Eng. 2018, 18, 1228–1240. [Google Scholar] [CrossRef]
- Seo, H.; Zhao, Y.; Chen, C. Displacement Estimation Error in Laser Scanning Monitoring of Retaining Structures Considering Roughness. Sensors 2021, 21, 7370. [Google Scholar] [CrossRef] [PubMed]
- Lague, D.; Brodu, N.; Leroux, J. Accurate 3D comparison of complex topography with terrestrial laser scanner: Application to the Rangitikei canyon (N-Z). ISPRS J. Photogramm. Remote Sens. 2013, 82, 10–26. [Google Scholar] [CrossRef] [Green Version]
- Birdal, T.; Busam, B.; Navab, N.; Ilic, S.; Sturm, P. Generic Primitive Detection in Point Clouds Using Novel Minimal Quadric Fits. IEEE Trans. Pattern Anal. Mach. Intell. 2020, 42, 1333–1347. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hackel, T.; Wegner, J.D.; Schindler, K. Contour Detection in Unstructured 3D Point Clouds. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016. [Google Scholar] [CrossRef]
- ISO 16311-3; Maintenance and repair of concrete structures—Part 3: Design of repairs and prevention. Beuth: Berlin, Germany, 2014.
- DIN EN 1504-9; Produkte und Systeme für den Schutz und die Instandsetzung von Betontragwerken—Definitionen, Anforderungen, Qualitätsüberwachung und Beurteilung der Konformität—Teil 9: Allgemeine Grundsätze für die Anwendung von Produkten und Systemen. Beuth: Berlin, Germany, 2008. [CrossRef]
- Deutsches Institut für Bautechnik (DIBt). Technische Regel—Instandhaltung von Betonbauwerken (TR Instandhaltung); Deutsches Institut für Bautechnik (DIBt): Berlin, Germany, 2020. [Google Scholar]
- Potrč Obrecht, T.; Röck, M.; Hoxha, E.; Passer, A. BIM and LCA Integration: A Systematic Literature Review. Sustainability 2020, 12, 5534. [Google Scholar] [CrossRef]
- Theißen, S.; Höper, J.; Drzymalla, J.; Wimmer, R.; Markova, S.; Meins-Becker, A.; Lambertz, M. Using Open BIM and IFC to Enable a Comprehensive Consideration of Building Services within a Whole-Building LCA. Sustainability 2020, 12, 5644. [Google Scholar] [CrossRef]
- Zhou, X.; Xie, Q.; Guo, M.; Zhao, J.; Wang, J. Accurate and Efficient Indoor Pathfinding Based on Building Information Modeling Data. IEEE Trans. Ind. Inform. 2020, 16, 7459–7468. [Google Scholar] [CrossRef]
- Liu, X.; He, C.; Zhao, H.; Jia, J.; Liu, C. Building information modeling indoor path planning: A lightweight approach for complex BIM building. Comput. Animat. Virtual Worlds 2021, 32, e2014. [Google Scholar] [CrossRef]
- Follini, C.; Magnago, V.; Freitag, K.; Terzer, M.; Marcher, C.; Riedl, M.; Giusti, A.; Matt, D.T. BIM-Integrated Collaborative Robotics for Application in Building Construction and Maintenance. Robotics 2020, 10, 2. [Google Scholar] [CrossRef]
Software | Version | Developer | Location |
---|---|---|---|
Revit | 22.0.2.392 | Autodesk | San Rafael, USA |
Dynamo | 2.10.1.4002 | Autodesk | San Rafael, USA |
BIMvision | 2.25.2 | Datacomp | Cracow, Poland |
Python | 3.8.3 | Python Software Foundation | Wilmington, USA |
PySMILE | 2.0.8 | BayesFusion | Pittsburgh, USA |
CloudComPy | 2.12 | Paul Rascle and Daniel Girardeau-Montaut | Grenoble, France |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morgenstern, H.; Raupach, M. A Novel Approach for Maintenance and Repair of Reinforced Concrete Using Building Information Modeling with Integrated Machine-Readable Diagnosis Data. Constr. Mater. 2022, 2, 314-327. https://doi.org/10.3390/constrmater2040020
Morgenstern H, Raupach M. A Novel Approach for Maintenance and Repair of Reinforced Concrete Using Building Information Modeling with Integrated Machine-Readable Diagnosis Data. Construction Materials. 2022; 2(4):314-327. https://doi.org/10.3390/constrmater2040020
Chicago/Turabian StyleMorgenstern, Hendrik, and Michael Raupach. 2022. "A Novel Approach for Maintenance and Repair of Reinforced Concrete Using Building Information Modeling with Integrated Machine-Readable Diagnosis Data" Construction Materials 2, no. 4: 314-327. https://doi.org/10.3390/constrmater2040020
APA StyleMorgenstern, H., & Raupach, M. (2022). A Novel Approach for Maintenance and Repair of Reinforced Concrete Using Building Information Modeling with Integrated Machine-Readable Diagnosis Data. Construction Materials, 2(4), 314-327. https://doi.org/10.3390/constrmater2040020