Cyclic Behavior of FRP Strengthened Beam-Column Joints under Various Concrete Damage Levels
Abstract
:1. Introduction
2. Experimental Program Overview
3. NLFEA Description
3.1. Modelling of B-C Joint Using NLFEA
3.2. Material Modeling
3.3. Data Entry and Failure Criteria
3.4. Validation
3.4.1. Control B-C Connection
3.4.2. FRP Strengthened B-C Connection
4. Results and Discussion
4.1. Stress Contours
4.2. The Load Versus Displacement Hysteretic Loops
4.3. Horizontal Displacement Versus Steel and FRP Strain Envelopes
4.4. Displacement Ductility and Energy Dissipation
4.5. Secant Stiffness Degradation and Damping Factor
5. Conclusions
- Both the column’s axial loading and the concrete damage level considerably affect the joint’s behavior besides the utilized reinforcement scheme’s role in suppressing their effect. However, Stiffness degradation was slightly affected when the axial load was changed but considerably affected the other sensitive performance parameters.
- Using FRP to reinforce B-C joints externally allows the restoration of strength, and the failure mode of the joint-column area became ductile instead of brittle, making a plastic hinge in the beam only at column axial load levels higher than 25%. Applying axial column loads below 25% enhanced the ultimate axial load and deflection capacities.
- For FRP-strengthened joints, the energy dissipation is done through the joint before the system de-stabilizes. This is an indicator of the joint’s ultimate stress capacity till failure. In contrast, strengthened joint models encountered an overall failure when the beam’s maximum capacity was reached, where only 50% of the FRP ultimate strain was reached.
- Due to the resulting accurate simulation, the behavior of the unstrengthened and FRP-strengthened B-C joints could be effectively predicted using the NLFEA modeling approach. However, the resulting observations help specialized engineers retrofit appropriate B-C joints in already-standing buildings with deficient seismic regions, sparing lives, time, and money.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Akbarzadeh, H.; Maghsoudi, A.A. Experimental and analytical investigation of reinforced high strength concrete continuous beams strengthened with fiber reinforced polymer. Mater. Des. J. 2010, 31, 1130–1147. [Google Scholar] [CrossRef]
- Liu, Y.; Ma, H.; Li, Z.; Wang, W. Seismic behaviour of full-scale prefabricated RC beam–CFST column joints connected by reinforcement coupling sleeves. Structures 2020, 28, 2760–2771. [Google Scholar] [CrossRef]
- Bian, J.; Cao, W.; Zhang, Z.; Qiao, Q. Cyclic loading tests of thin-walled square steel tube beam-column joint with different joint details. Structures 2020, 25, 386–397. [Google Scholar] [CrossRef]
- Attari, N.; Youcef, Y.S.; Amziane, S. Seismic performance of reinforced concrete beam–column joint strengthening by FRP sheets. Structures 2019, 20, 353–364. [Google Scholar] [CrossRef]
- Najafgholipour, M.A.; Arabi, A.R. A non-linear model to apply beam-column joint shear failure in analysis of RC moment resisting frames. Structures 2019, 22, 13–27. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Alhassan, M.A.; AlShuqari, E.A. Shear Behavior of plain concrete beams with DSSF strengthened in flexure with anchored CFRP sheets—Effects of DSSF content on the bonding length of CFRP sheets. Case Stud. Constr. Mater. 2018, 9, e195. [Google Scholar]
- Al-Rousan, R.Z. Shear behavior of RC beams externally strengthened and anchored with CFRP composites. Struct. Eng. Mech. 2017, 64, 447–456. [Google Scholar]
- Al-Rousan, R.Z.; Issa, M.A. The effect of beam depth on the shear behavior of reinforced concrete beams externally strengthened with carbon fiber–reinforced polymer composites. Adv. Struct. Eng. 2016, 19, 1769–1779. [Google Scholar] [CrossRef]
- Alhassan, M.A.; Al-Rousan, R.Z.; Abu-Elhija, A.M. Anchoring holes configured to enhance the bond-slip behavior between CFRP composites and concrete. Constr. Build. Mater. 2020, 250, 11890. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; AL-Tahat, M.F. Consequence of anchoring holes technique on the bond behavior between CFRP composites and heat-damaged concrete. Structures 2020, 27, 1903–1918. [Google Scholar] [CrossRef]
- Monteiroa, P.J.M.; Kurtis, K.E. Time to failure for concrete exposed to severe sulfate attack. Cem. Concr. Res. 2003, 33, 987–993. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; AL-Tahat, M.F. Consequence of surface preparation techniques on the bond behavior between concrete and CFRP composites. Constr. Build. Mater. 2019, 212, 62–374. [Google Scholar] [CrossRef]
- Al-Rousan, R.; Issa, M. Fatigue performance of reinforced concrete beams strengthened with CFRP sheets. Constr. Build. Mater. 2011, 25, 3520–3529. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Issa, M.A. Flexural behavior of RC beams externally strengthened with CFRP composites exposed to severe environment conditions. KSCE J. Civ. Eng. 2017, 21, 2300–2309. [Google Scholar] [CrossRef]
- Al-Rousan, R.Z.; Haddad, R.H.; Swesi, A.O. Repair of shear-deficient normal weight concrete beams damaged by thermal shock using advanced composite materials. Compos. Part B Eng. 2015, 70, 20–34. [Google Scholar] [CrossRef]
- Hekal, E.E.; Kishar, E.; Mostafa, H. Magnesium sulfate attack on hardened cement pastes under different circumstances. Cem. Concr. Res. 2002, 32, 1421–1427. [Google Scholar] [CrossRef]
- Al-Dulaijan, S.U.; Mashlehuddin, M.; Al-Zahran, M.M.; Sharif, A.M.; Shameen, M.; Ibrahim, M. Sulfate resistance of plain and blended cements exposed to varying concentration of sodium sulfate. Cem. Concr. Compos. 2003, 25, 429–437. [Google Scholar] [CrossRef]
- Qaderi, S.; Ebrahimi, F.; Vinyas, M. Dynamic analysis of multi-layered composite beams reinforced with graphene platelets resting on two-parameter viscoelastic foundation. Eur. Phys. J. Plus 2019, 134, 1–11. [Google Scholar] [CrossRef]
- Shariati, A.; Qaderi, S.; Ebrahimi, F.; Toghroli, A. On buckling characteristics of polymer composite plates reinforced with graphene platelets. Eng. Comput. 2020, 10, 1–2. [Google Scholar] [CrossRef]
- Lee, S.T.; Moon, H.Y.; Hooton, R.D.; Kim, J.P. Effect of solution concentrations and replacement levels of metakaolin on the resistance of mortar exposed to magnesium sulfate solution. Cem. Concr. Res. 2005, 35, 1314–1323. [Google Scholar] [CrossRef]
- Zia, P.; Ahmad, S.H.; Garg, R.K.; Hanes, K.M. Flexural and shear behavior of concrete beams reinforced with 3-D continuous carbon fiber fabric. Concr. Int. 1992, 14, 48–52. [Google Scholar]
- Ehsani, M.R.; Wight, J.K. Exterior reinforced concrete beam-to-column connections subjected to earthquake-type loading. ACI J. 1985, 82, 492–499. [Google Scholar]
- Marthong, C.; Sangma, A.S.; Choudhury, S.A.; Pyrbot, R.N.; Tron, S.L.; Mawroh, L.; Bharti, G.S. Structural Behavior of Recycled Aggregate Concrete Beam-Column Connection in Presence of Micro Concrete at Joint Region. Structures 2017, 11, 243–251. [Google Scholar] [CrossRef]
- Masi, A.; Santarsiero, G.; Moroni, C.; Nigro, D.; Dolce, M.; Russo, G.; Pauletta, M.; Realfonzo, R.; Faella, C.; Lignola, G.P.; et al. Behaviour and strengthening of RC beam-column joints: Experimental Program and first results of the research activity in the framework of DPC- Reluis Project (Research Line 2). In Proceedings of the 14th World Conference on Earthquake Engineering, Beijing, China, 12–17 October 2008. [Google Scholar]
- Alhassan, M.A.; Al-Rousan, R.Z.; Amaireh, L.K.; Barfed, M.H. Nonlinear Finite Element Analysis of B-C Connections: Influence of the Column Axial Load, Jacket Thickness, and Fiber Dosage. Structures 2018, 16, 50–62. [Google Scholar] [CrossRef]
- Shiohar, H. Reinforced concrete beam-column joints: An overlooked failure mechanism. ACI Struct. J. 2012, 109, 65–74. [Google Scholar]
- Yang, J.; Sheehan, T.; Dai, X.; Lam, D. Structural Behaviour of Beam to Concrete-filled Elliptical Steel Tubular Column Connections. Structures 2017, 9, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Demonceau, J.-F.; Ciutina, A. Characterisation of Beam-to-column Steel-concrete Composite Joints Beyond Current Eurocode Provisions. Structures 2019, 21, 167–175. [Google Scholar] [CrossRef]
- Roy, B.; Laskar, A.I. Cyclic Performance of Beam-Column Subassemblies with Construction Joint in Column Retrofitted with GFRP. Structures 2018, 14, 290–300. [Google Scholar] [CrossRef]
- Xian, G.; Guo, R.; Li, C.; Wang, Y. Mechanical performance evolution and life prediction of prestressed cfrp plate exposed to hygrothermal and freeze-thaw environments. Compos. Struct. 2022, 293, 115719. [Google Scholar] [CrossRef]
- Li, C.; Guo, R.; Xian, G.; Li, H. Effects of elevated temperature, hydraulic pressure and fatigue loading on the property evolution of a carbon/glass fiber hybrid rod. Polym. Test. 2020, 90, 106761. [Google Scholar] [CrossRef]
- Elmesalami, N.; Abed, F.; Refai, A.E. Concrete columns reinforced with GFRP and BFRP bars under concentric and eccentric loads: Experimental testing and analytical investigation. J. Compos. Constr. 2021, 25, 04021003. [Google Scholar] [CrossRef]
- Al-shannag, M.; Alhassan, M. Upgrading the Structural Seismic Behavior of Gld-Frames with HPFRC-Jackets. ACI Struct. J. 2005, 102, 131–138. [Google Scholar]
- Realfonzo, R.; Napoli, A.; Pinilla, J.G. Cyclic behavior of RC beam-column joints strengthened with FRP systems. Constr. Build. Mater. 2014, 54, 282–297. [Google Scholar] [CrossRef]
- Engindeniz, M.; Kahn, L.F.; Zureick, A.H. Repair and strengthening of reinforced concrete beam-column joints: State of the art. ACI Struct. J. 2005, 102, 1–14. [Google Scholar]
- Beschi, C.; Meda, A.; Riva, P. Column and joint retrofitting with high performance fiber reinforced concrete jacketing. J. Earthq. Eng. 2011, 15, 989–1014. [Google Scholar] [CrossRef]
- Bousselham, A. State of research on seismic retrofit of RC beam-column joints with externally bonded FRP. J. Compos. Construct. 2010, 14, 49–61. [Google Scholar] [CrossRef]
- El-Amoury, T.; Ghobarah, A. Seismic rehabilitation of beam–column joint using GFRP sheets. Eng. Struct. 2002, 24, 1397–1407. [Google Scholar] [CrossRef]
- Ghobarah, A.; El-Amoury, T. Seismic rehabilitation of deficient exterior concrete frame joints. J. Compos. Construct. 2005, 9, 408–416. [Google Scholar] [CrossRef]
- Sasmal, S.; Ramanjaneyulu, K.; Novák, B.; Srinivas, V.; Kumar, K.S.; Korkowski, C.; Roehmb, C.; Lakshmanana, N.; Iyera, N.R. Seismic retrofitting of non-ductile beam-column sub-assemblage using FRP wrapping and steel plate jacketing. Construct. Build. Mater. 2011, 25, 175–182. [Google Scholar] [CrossRef]
- Antonopoulos, C.P.; Triantafillou, T.C. Experimental investigation of FRP- strengthened RC beam-column joints. J. Compos. Construct. 2003, 7, 39–49. [Google Scholar] [CrossRef]
- Al-Salloum, Y.A.; Siddiqui, N.A.; Elsanadedy, H.M.; Abadel, A.A.; Aqel, M.A. Textile- reinforced mortar versus FRP as strengthening material for seismically deficient RC beam-column joints. J. Compos. Construct. 2011, 15, 920–933. [Google Scholar] [CrossRef]
- Hamid, S.; Mohd, Z.J.; Mahdi, S. Numerical investigation on exterior reinforced concrete Beam-Column joint strengthened by composite fiber reinforced polymer (CFRP). Int. J. Phys. Sci. 2011, 6, 6572–6579. [Google Scholar]
- Del Vecchio, C.; Di Ludovico, M.; Prota, A.; Manfredi, G. Modelling beam-column joints and FRP strengthening in the seismic performance assessment of RC existing frames. Compos. Struct. 2016, 142, 107–116. [Google Scholar] [CrossRef]
- Mosallam, A.; Allam, K.; Salama, M. Analytical and numerical modeling of RC beam-column joints retrofitted with FRP laminates and hybrid composite connectors. Compos. Struct. 2019, 214, 486–503. [Google Scholar] [CrossRef]
- Eligehausen, R.; Genesio, G.; Ozbolt, J.; Pampanin, S. 3D analysis of seismic response of RC beam-column exterior joints before and after retrofit. In Concrete Repair, Rehabilitation and Retrofitting II; CRC Press: Boca Raton, FL, USA, 2008; pp. 407–408. [Google Scholar]
- Sasmal, S. Performance Evaluation and Strengthening of Deficient Beam-Column Sub-Assemblages under Cyclic Loading. Ph.D. Thesis, Universität Stuttgart, Stuttgart, Germany, 2009; 173p. [Google Scholar]
- Venkatesan, B.; Ilangovan, R.; Jayabalan, P.; Mahendran, N.; Sakthieswaran, N. Finite element analysis (FEA) for the beam-column joint subjected to cyclic loading was performed using ANSYS. Circuits Syst. 2016, 7, 1581–1597. [Google Scholar] [CrossRef] [Green Version]
- Sasmal, S.; Nath, D. Evaluation of performance of non-invasive upgrade strategy for beam–column sub-assemblages of poorly designed structures under seismic type loading. Earthq. Eng. Struct. Dyn. 2016, 45, 1817–1835. [Google Scholar] [CrossRef]
- Li, B. Seismic Performance of Reinforced Concrete Beam-Column Joints Strengthened by Ferrocement Jackets. Ph.D. Thesis, The Hong Polytechnic University, Hong Kong, China, 2014; 278p. [Google Scholar]
- Sasmal, S.; Ramanjaneyulu, K.; Novák, B.; Lakshmanan, N. Analytical and experimental investigations on seismic performance of exterior beam–column sub-assemblages of existing RC-framed building. Earthq. Eng. Struct. Dyn. 2013, 42, 1785–1805. [Google Scholar] [CrossRef]
- Ibrahim, G. Shaabana and Mohamed Said. Finite element modeling of exterior beam-column joints strengthened by ferrocement under cyclic loading. Case Stud. Constr. Mater. 2018, 8, 333–346. [Google Scholar]
- Al-Rousan, R.; Haddad, R.; Al-Sa’di, K. Effect of Sulfates on bond behavior between carbon fiber reinforced polymer sheets and concrete. Mater. Des. J. 2013, 43, 237–248. [Google Scholar] [CrossRef]
- ANSYS. ANSYS User’s Manual Revision 16.0; ANSYS, Inc.: Kanonsburg, PA, USA, 2015. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Reinforced Concrete (ACI 318-08) and Commentary (318R-08); American Concrete Institute: Farmington Hills, MI, USA, 2008; p. 443. [Google Scholar]
- Kent, D.C.; Park, R. Flexural members with confined concrete. J. Struct. Div. 1971, 7, 85–94. [Google Scholar] [CrossRef]
- Khaled, A.K.; Mosallam, A.S.; Salama, M.A. Experimental evaluation of seismic performance of interior RC beam-column joints strengthened with FRP composites. Eng. Struct. 2019, 196, 109308. [Google Scholar]
- ASCE Task Committee on Concrete and Masonry Structure. State of the Art Report on Finite Element Analysis of Reinforced Concrete; ASCE: Reston, VA, USA, 1982. [Google Scholar]
- ACI Committee 318. Building Code Requirements for Structural Concrete (ACI 318–014) and Commentary (ACI 318R–14); American Concrete Institute: Farmington Hills, MI, USA, 2014. [Google Scholar]
- Hemmaty, Y. Modeling of the shear force transferred between cracks in reinforced and fiber reinforced concrete structures. In Proceedings of the ANSYS Conference, Pittsburgh, PA, USA, 30 September 1998; Volume 1, pp. 1–13. [Google Scholar]
- Huyse, L.; Hemmaty, Y.; Vandewalle, L. Finite element modeling of fiber reinforced concrete beams. In Proceedings of the ANSYS Conference, Pittsburgh, PA, USA, 30 September 1994; Volume 2. [Google Scholar]
- Haddad, R.H.; Al-Rousan, R.Z.; Al-Sedyiri, B.K. Repair of shear-deficient and sulfate-damaged reinforced concrete beams using FRP composites. Eng. Struct. J. 2013, 56, 228–238. [Google Scholar] [CrossRef]
- Kabir, M.Z.; Hojatkashani, A. A comparison between finite element and analytical solutions of interfacial stress distribution in a RC beam retrofitted with FRP composites. Int. J. Sci. Technol. 2008, 19, 55–63. [Google Scholar]
- Priestley, M.; Seible, F.; Calvi, G.M. Seismic Design and Retrofit of Bridges; John Wiley & Sons: New York, NY, USA, 1996. [Google Scholar]
Specimens | FRP | Damage Level | Maximum Load in Pulling, kN | Maximum Net Drift in Pulling, mm | Maximum Load in Pushing, kN | Maximum Net Drift in Pushing, mm | |
---|---|---|---|---|---|---|---|
J0FRP0D0 | 0 | None | 0% | 14.40 | 7.61 | 14.40 | 7.61 |
J25FRP0D0 | 25 | 21.60 | 14.85 | 21.60 | 14.85 | ||
J50FRP0D0 | 50 | 25.92 | 22.53 | 25.92 | 22.53 | ||
J75FRP0D0 | 75 | 27.36 | 26.77 | 27.36 | 26.77 | ||
J0FRP0D25 | 0 | None | 25% | 10.86 | 5.90 | 10.86 | 5.90 |
J25FRP0D25 | 25 | 16.75 | 12.29 | 16.75 | 12.29 | ||
J50FRP0D25 | 50 | 20.29 | 17.20 | 20.29 | 17.20 | ||
J75FRP0D25 | 75 | 21.60 | 20.48 | 21.60 | 20.48 | ||
J0FRP0D50 | 0 | None | 50% | 7.91 | 5.11 | 7.91 | 5.11 |
J25FRP0D50 | 25 | 12.61 | 9.90 | 12.61 | 9.90 | ||
J50FRP0D50 | 50 | 15.58 | 14.66 | 15.58 | 14.66 | ||
J75FRP0D50 | 75 | 17.55 | 17.65 | 17.55 | 17.65 | ||
J0FRP1D0 | 0 | 1 Layer | 0% | 27.82 | 14.81 | 27.82 | 14.81 |
J25FRP1D0 | 25 | 43.84 | 29.18 | 43.84 | 29.18 | ||
J50FRP1D0 | 50 | 55.07 | 38.04 | 55.07 | 38.04 | ||
J75FRP1D0 | 75 | 58.96 | 45.73 | 58.96 | 45.73 | ||
J0FRP1D25 | 0 | 1 Layer | 25% | 22.18 | 9.82 | 22.18 | 9.82 |
J25FRP1D25 | 25 | 34.56 | 19.75 | 34.56 | 19.75 | ||
J50FRP1D25 | 50 | 44.68 | 26.12 | 44.68 | 26.12 | ||
J75FRP1D25 | 75 | 49.89 | 32.39 | 49.89 | 32.39 | ||
J0FRP1D50 | 0 | 1 Layer | 50% | 16.85 | 7.78 | 16.85 | 7.78 |
J25FRP1D50 | 25 | 26.94 | 17.28 | 26.94 | 17.28 | ||
J50FRP1D50 | 50 | 35.21 | 22.91 | 35.21 | 22.91 | ||
J75FRP1D50 | 75 | 40.96 | 28.12 | 40.96 | 28.12 |
Specimen | Maximum Horizontal Load, kN | Maximum Horizontal Net Drift, mm | Yield Displacement, mm | Maximum Displacement, mm | Displacement Ductility | Energy Dissipation, kN.mm |
---|---|---|---|---|---|---|
Tested Results | ||||||
S2 | 15.02 | 9.09 | 6.50 | 9.09 | 1.40 | 673 |
S5 | 16.50 | 9.25 | 6.80 | 9.25 | 1.36 | 843 |
S8 | 10.10 | 6.96 | 6.30 | 6.96 | 1.10 | 288 |
NLFEA Results | ||||||
S2 | 16.25 | 7.84 | 5.60 | 7.84 | 1.36 | 628 |
S5 | 16.50 | 10.64 | 7.67 | 10.64 | 1.34 | 950 |
S8 | 10.00 | 7.94 | 7.17 | 7.94 | 1.09 | 325 |
Error % | ||||||
S2 | −8.2 | 13.8 | 13.9 | 13.8 | 2.4 | 6.7 |
S5 | 0.0 | −15.0 | −12.7 | −15.0 | 1.8 | −12.7 |
S8 | 1.0 | −14.1 | −13.8 | −14.1 | 1.1 | −13.0 |
Specimen | Steel Strain, | FRP Strain, | Yield Displacement dy, mm | Maximum Displacement dm, mm | Displacement Ductility dm/dy | Energy Dissipation, kN.mm |
---|---|---|---|---|---|---|
J0FRP0D0 | 946 | ---- | Not yielded | 7.60 | NA | 165 |
J25FRP0D0 | 1419 | ---- | Not yielded | 14.90 | NA | 498 |
J50FRP0D0 | 1703 | ---- | 2.58 | 22.29 | 8.6 | 918 |
J75FRP0D0 | 1797 | ---- | 2.12 | 26.26 | 12.4 | 1150 |
J0FRP0D25 | 804 | ---- | Not yielded | 6.05 | NA | 115 |
J25FRP0D25 | 1239 | ---- | Not yielded | 12.28 | NA | 374 |
J50FRP0D25 | 1499 | ---- | Not yielded | 17.19 | NA | 657 |
J75FRP0D25 | 1596 | ---- | 2.87 | 20.00 | 7.0 | 836 |
J0FRP0D50 | 620 | ---- | Not yielded | 5.24 | NA | 75 |
J25FRP0D50 | 989 | ---- | Not yielded | 10.16 | NA | 250 |
J50FRP0D50 | 1221 | ---- | Not yielded | 14.71 | NA | 481 |
J75FRP0D50 | 1376 | ---- | Not yielded | 17.65 | NA | 654 |
J0FRP1D0 | 1929 | 6524 | 3.03 | 14.81 | 4.9 | 356 |
J25FRP1D0 | 3270 | 10282 | 2.97 | 29.18 | 9.8 | 1139 |
J50FRP1D0 | 4301 | 12916 | 2.67 | 38.04 | 14.2 | 1907 |
J75FRP1D0 | 4760 | 13828 | 2.07 | 45.73 | 22.1 | 2403 |
J0FRP1D25 | 1750 | 5509 | 4.12 | 9.82 | 2.4 | 211 |
J25FRP1D25 | 2816 | 8917 | 3.75 | 19.75 | 5.3 | 648 |
J50FRP1D25 | 3849 | 11528 | 3.61 | 26.12 | 7.2 | 1128 |
J75FRP1D25 | 4486 | 12870 | 3.06 | 32.39 | 10.6 | 1549 |
J0FRP1D50 | 1436 | 4031 | 4.71 | 7.78 | 1.7 | 135 |
J25FRP1D50 | 2358 | 7360 | 4.67 | 17.28 | 3.7 | 503 |
J50FRP1D50 | 3243 | 9617 | 4.59 | 22.91 | 5.0 | 858 |
J75FRP1D50 | 3919 | 11189 | 4.05 | 28.12 | 6.9 | 1248 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Rousan, R.; Nusier, O.; Abdalla, K.; Alhassan, M.; Vougioukas, E.A.; Stamos, A.A.; Lagaros, N.D. Cyclic Behavior of FRP Strengthened Beam-Column Joints under Various Concrete Damage Levels. Constr. Mater. 2023, 3, 38-61. https://doi.org/10.3390/constrmater3010004
Al-Rousan R, Nusier O, Abdalla K, Alhassan M, Vougioukas EA, Stamos AA, Lagaros ND. Cyclic Behavior of FRP Strengthened Beam-Column Joints under Various Concrete Damage Levels. Construction Materials. 2023; 3(1):38-61. https://doi.org/10.3390/constrmater3010004
Chicago/Turabian StyleAl-Rousan, Rajai, Osama Nusier, Khairedin Abdalla, Mohammad Alhassan, Emmanouil A. Vougioukas, Athanassios A. Stamos, and Nikos D. Lagaros. 2023. "Cyclic Behavior of FRP Strengthened Beam-Column Joints under Various Concrete Damage Levels" Construction Materials 3, no. 1: 38-61. https://doi.org/10.3390/constrmater3010004
APA StyleAl-Rousan, R., Nusier, O., Abdalla, K., Alhassan, M., Vougioukas, E. A., Stamos, A. A., & Lagaros, N. D. (2023). Cyclic Behavior of FRP Strengthened Beam-Column Joints under Various Concrete Damage Levels. Construction Materials, 3(1), 38-61. https://doi.org/10.3390/constrmater3010004