Evaluating the Influence of Waste Cooking Oil Molecular Structure on Aged Asphalt Modification
Abstract
:1. Introduction
2. Asphalt Models and Simulation Details
3. Results and Discussions
3.1. Shear Viscosity
3.2. Radial Distribution Function
3.3. Mean Square Displacement and Self-Diffusion Coefficient
3.4. Chain Length Effects
3.5. Discussions on Needed Future Experiments
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
FFA | Free fatty acid |
FA | Fatty acid |
LAMMPS | Large-scale atomic/molecular massively parallel simulator |
MD | Molecular dynamics |
MW | Molecular weight |
MSD | Mean square displacement |
NVT | Canonical ensemble |
NPT | Isothermal-isobaric ensemble |
OPLS-AA | Optimized potentials for liquid simulations—all atom |
PPPM | Particle–particle–particle–mesh |
P/T | Pressure and temperature |
RDF | Radial distribution function |
SARA | Saturates, aromatics, resins, asphaltenes |
TG | Triglyceride |
WCO | Waste cooking oil |
WCOs | Waste cooking oils |
WVO | Waste vegetable oil |
WVOs | Waste vegetable oils |
References
- George, A.M.; Banerjee, A.; Puppala, A.J.; Saladhi, M. Performance evaluation of geocell-reinforced reclaimed asphalt pavement (RAP) bases in flexible pavements. Int. J. Pavement Eng. 2021, 22, 181–191. [Google Scholar] [CrossRef]
- Li, H.; Dong, B.; Wang, W.; Zhao, G.; Guo, P.; Ma, Q. Effect of waste engine oil and waste cooking oil on performance improvement of aged asphalt. Appl. Sci. 2019, 9, 1767. [Google Scholar] [CrossRef]
- Herrington, P.R.; Patrick, J.E.; Ball, G.F. Oxidation of roading asphalts. Ind. Eng. Chem. Res. 1994, 33, 2801–2809. [Google Scholar] [CrossRef]
- Petersen, J.C.; Glaser, R. Asphalt oxidation mechanisms and the role of oxidation products on age hardening revisited. Road Mater. Pavement Des. 2011, 12, 795–819. [Google Scholar] [CrossRef]
- Traxler, R. Relation between Asphalt Composition and Hardening by Volatilization and Oxidation. Assoc. Asphalt Paving Technol. Proc. 1961, 30, 359–372. [Google Scholar]
- Pan, J.; Tarefder, R.A. Investigation of asphalt aging behaviour due to oxidation using molecular dynamics simulation. Mol. Simul. 2016, 42, 667–678. [Google Scholar] [CrossRef]
- Elahi, Z.; Mohd Jakarni, F.; Muniandy, R.; Hassim, S.; Ab Razak, M.S.; Ansari, A.H.; Ben Zair, M.M. Waste cooking oil as a sustainable bio modifier for asphalt modification: A review. Sustainability 2021, 13, 11506. [Google Scholar] [CrossRef]
- Luo, Y.; Zhang, K. Review on performance of asphalt and asphalt mixture with waste cooking oil. Materials 2023, 16, 1341. [Google Scholar] [CrossRef] [PubMed]
- Zargar, M.; Ahmadinia, E.; Asli, H.; Karim, M.R. Investigation of the possibility of using waste cooking oil as a rejuvenating agent for aged bitumen. J. Hazard. Mater. 2012, 233, 254–258. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Yao, H.; Suo, Z.; You, Z.; Li, H.; Xu, S.; Sun, L. Effectiveness of vegetable oils as rejuvenators for aged asphalt binders. J. Mater. Civ. Eng. 2017, 29, D4016003. [Google Scholar] [CrossRef]
- Cao, X.; Wang, H.; Cao, X.; Sun, W.; Zhu, H.; Tang, B. Investigation of rheological and chemical properties asphalt binder rejuvenated with waste vegetable oil. Constr. Build. Mater. 2018, 180, 455–463. [Google Scholar] [CrossRef]
- Gökalp, İ.; Uz, V.E. Utilizing of Waste Vegetable Cooking Oil in bitumen: Zero tolerance aging approach. Constr. Build. Mater. 2019, 227, 116695. [Google Scholar] [CrossRef]
- Sonibare, K.; Rucker, G.; Zhang, L. Molecular dynamics simulation on vegetable oil modified model asphalt. Constr. Build. Mater. 2021, 270, 121687. [Google Scholar] [CrossRef]
- Li, L.; Xin, C.; Guan, M.; Guo, M. Using molecular dynamics simulation to analyze the feasibility of using waste cooking oil as an alternative rejuvenator for aged asphalt. Sustainability 2021, 13, 4373. [Google Scholar] [CrossRef]
- Qu, X.; Liu, Q.; Wang, C.; Wang, D.; Oeser, M. Effect of co-production of renewable biomaterials on the performance of asphalt binder in macro and micro perspectives. Materials 2018, 11, 244. [Google Scholar] [CrossRef] [PubMed]
- Chang, Q.; Edgar, A., III; Ghos, S.; Zaman, M.; Huang, L.; Wu, X. An atomistic model of aged asphalt guided by the oxidation chemistry of benzylic carbon with application to asphalt rejuvenated with a triglyceride. Constr. Build. Mater. 2023, 400, 132743. [Google Scholar] [CrossRef]
- Xu, N.; Wang, H.; Wang, H.; Kazemi, M.; Fini, E. Research progress on resource utilization of waste cooking oil in asphalt materials: A state-of-the-art review. J. Clean. Prod. 2022, 385, 135427. [Google Scholar] [CrossRef]
- Cárdenas, J.; Orjuela, A.; Sánchez, D.L.; Narváez, P.C.; Katryniok, B.; Clark, J. Pre-treatment of used cooking oils for the production of green chemicals: A review. J. Clean. Prod. 2021, 289, 125129. [Google Scholar] [CrossRef]
- Raclot, T.; Groscolas, R. Differential mobilization of white adipose tissue fatty acids according to chain length, unsaturation, and positional isomerism. J. Lipid Res. 1993, 34, 1515–1526. [Google Scholar] [CrossRef]
- Brodholt, J.; Wood, B. Molecular dynamics of water at high temperatures and pressures. Geochim. Cosmochim. Acta 1990, 54, 2611–2616. [Google Scholar] [CrossRef]
- Zhou, Y.; Huang, J.; Yang, X.; Dong, Y.; Feng, T.; Liu, J. Enhancing the PVA fiber-matrix interface properties in ultra high performance concrete: An experimental and molecular dynamics study. Constr. Build. Mater. 2021, 285, 122862. [Google Scholar] [CrossRef]
- Jin, L.; He, Y.; Zhou, G.; Chang, Q.; Huang, L.; Wu, X. Natural gas density under extremely high pressure and high temperature: Comparison of molecular dynamics simulation with corresponding state model. Chin. J. Chem. Eng. 2021, 31, 2–9. [Google Scholar] [CrossRef]
- Chen, F.; Yang, R.; Wang, Z.; Zhang, G.; Yu, R. Rheological analysis and molecular dynamics modeling of Ultra-High Performance Concrete for wet-mix spraying. J. Build. Eng. 2023, 68, 106167. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, D. A review of phase behavior simulation of hydrocarbons in confined space: Implications for shale oil and shale gas. J. Nat. Gas Sci. Eng. 2019, 68, 102901. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, L.; Wu, X. Combination of simplified local density theory and molecular dynamics simulation to study the local density distribution of hydrocarbon gas in shale gas reservoir. In Proceedings of the SPE Eastern Regional Meeting, Charleston, WV, USA, 15–17 October 2019; p. D022S005R006. [Google Scholar]
- Foroutan, M.; Fatemi, S.M.; Esmaeilian, F. A review of the structure and dynamics of nanoconfined water and ionic liquids via molecular dynamics simulation. Eur. Phys. J. E 2017, 40, 1–14. [Google Scholar] [CrossRef]
- Liu, J.; Wu, Y.; Shen, J.; Gao, Y.; Zhang, L.; Cao, D. Polymer–nanoparticle interfacial behavior revisited: A molecular dynamics study. Phys. Chem. Chem. Phys. 2011, 13, 13058–13069. [Google Scholar] [CrossRef]
- Yang, Y.; Nair, A.K.N.; Ruslan, M.F.A.C.; Sun, S. Interfacial properties of the aromatic hydrocarbon+ water system in the presence of hydrophilic silica. J. Mol. Liq. 2022, 346, 118272. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, L.; Wu, X. A Molecular Dynamics Study on Low-Pressure Carbon Dioxide in the Water/Oil Interface for Enhanced Oil Recovery. SPE J. 2023, 28, 643–652. [Google Scholar] [CrossRef]
- Tien, C.-L.; Weng, J.-G. Molecular dynamics simulation of nanoscale interfacial phenomena in fluids. Adv. Appl. Mech. 2002, 38, 95–146. [Google Scholar]
- Hollingsworth, S.A.; Dror, R.O. Molecular dynamics simulation for all. Neuron 2018, 99, 1129–1143. [Google Scholar] [CrossRef]
- Perilla, J.R.; Goh, B.C.; Cassidy, C.K.; Liu, B.; Bernardi, R.C.; Rudack, T.; Yu, H.; Wu, Z.; Schulten, K. Molecular dynamics simulations of large macromolecular complexes. Curr. Opin. Struct. Biol. 2015, 31, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Rapaport, D.C. The Art of Molecular Dynamics Simulation; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Chen, Z.; Pei, J.; Li, R.; Xiao, F. Performance characteristics of asphalt materials based on molecular dynamics simulation–A review. Constr. Build. Mater. 2018, 189, 695–710. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.; Xu, M.; Ji, J.; Dai, Q.; You, Z. Discussion on molecular dynamics (MD) simulations of the asphalt materials. Adv. Colloid Interface Sci. 2022, 299, 102565. [Google Scholar] [CrossRef] [PubMed]
- Corbett, L.W. Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization. Anal. Chem. 1969, 41, 576–579. [Google Scholar] [CrossRef]
- Zhang, L.; Greenfield, M.L. Molecular orientation in model asphalts using molecular simulation. Energy Fuels 2007, 21, 1102–1111. [Google Scholar] [CrossRef]
- Li, D.D.; Greenfield, M.L. Chemical compositions of improved model asphalt systems for molecular simulations. Fuel 2014, 115, 347–356. [Google Scholar] [CrossRef]
- Wang, P.; Dong, Z.-j.; Tan, Y.-q.; Liu, Z.-y. Investigating the interactions of the saturate, aromatic, resin, and asphaltene four fractions in asphalt binders by molecular simulations. Energy Fuels 2015, 29, 112–121. [Google Scholar] [CrossRef]
- Petersen, J.C. A review of the fundamentals of asphalt oxidation: Chemical, physicochemical, physical property, and durability relationships. Transp. Res. Circ. 2009.
- Azahar, W.N.A.W.; Jaya, R.P.; Hainin, M.R.; Bujang, M.; Ngadi, N. Chemical modification of waste cooking oil to improve the physical and rheological properties of asphalt binder. Constr. Build. Mater. 2016, 126, 218–226. [Google Scholar] [CrossRef]
- Asli, H.; Ahmadinia, E.; Zargar, M.; Karim, M.R. Investigation on physical properties of waste cooking oil–Rejuvenated bitumen binder. Constr. Build. Mater. 2012, 37, 398–405. [Google Scholar] [CrossRef]
- Thompson, A.P.; Aktulga, H.M.; Berger, R.; Bolintineanu, D.S.; Brown, W.M.; Crozier, P.S.; in’t Veld, P.J.; Kohlmeyer, A.; Moore, S.G.; Nguyen, T.D. LAMMPS-a flexible simulation tool for particle-based materials modeling at the atomic, meso, and continuum scales. Comput. Phys. Commun. 2022, 271, 108171. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; Maxwell, D.S.; Tirado-Rives, J. Development and testing of the OPLS all-atom force field on conformational energetics and properties of organic liquids. J. Am. Chem. Soc. 1996, 118, 11225–11236. [Google Scholar] [CrossRef]
- Jorgensen, W.L.; McDonald, N.A. Development of an all-atom force field for heterocycles. Properties of liquid pyridine and diazenes. J. Mol. Struct. Theochem. 1998, 424, 145–155. [Google Scholar] [CrossRef]
- McDonald, N.A.; Jorgensen, W.L. Development of an all-atom force field for heterocycles. Properties of liquid pyrrole, furan, diazoles, and oxazoles. J. Phys. Chem. B 1998, 102, 8049–8059. [Google Scholar] [CrossRef]
- Robertson, M.J.; Tirado-Rives, J.; Jorgensen, W.L. Improved peptide and protein torsional energetics with the OPLS-AA force field. J. Chem. Theory Comput. 2015, 11, 3499–3509. [Google Scholar] [CrossRef]
- Szewczyk, P. Study of the Phase Behavior of Triacylglycerols Using Molecular Dynamics Simulation. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, 2010. [Google Scholar] [CrossRef]
- Martínez, L.; Andrade, R.; Birgin, E.G.; Martínez, J.M. PACKMOL: A package for building initial configurations for molecular dynamics simulations. J. Comput. Chem. 2009, 30, 2157–2164. [Google Scholar] [CrossRef] [PubMed]
- Xu, G.; Wang, H. Molecular dynamics study of oxidative aging effect on asphalt binder properties. Fuel 2017, 188, 1–10. [Google Scholar] [CrossRef]
- Chang, Q.; Huang, L.; Wu, X. A Molecular-Level Study on the Interaction Behavior between Polyethylene and Aged Asphalt. In Proceedings of the International Conference on Transportation and Development, Seattle, WA, USA, 31 May–3 June 2022; pp. 179–189. Available online: https://hdl.handle.net/11244/336908 (accessed on 4 December 2023).
- Chang, Q. Study of Multicomponent of Hydrocarbon Systems with Molecular Dynamics Simulation. Ph.D. Thesis, University of Oklahoma, Norman, OK, USA, 2022. [Google Scholar]
- Zhang, L.; Greenfield, M.L. Relaxation time, diffusion, and viscosity analysis of model asphalt systems using molecular simulation. J. Chem. Phys. 2007, 127, 194502. [Google Scholar] [CrossRef]
- Vargas, M.A.; Vargas, M.A.; Sánchez-Sólis, A.; Manero, O. Asphalt/polyethylene blends: Rheological properties, microstructure and viscosity modeling. Constr. Build. Mater. 2013, 45, 243–250. [Google Scholar] [CrossRef]
- Cui, B.; Gu, X.; Hu, D.; Dong, Q. A multiphysics evaluation of the rejuvenator effects on aged asphalt using molecular dynamics simulations. J. Clean. Prod. 2020, 259, 120629. [Google Scholar] [CrossRef]
- Altgelt, K.; Harle, O. The effect of asphaltenes on asphalt viscosity. Ind. Eng. Chem. Prod. Res. Dev. 1975, 14, 240–246. [Google Scholar] [CrossRef]
- Li, X.; Chi, P.; Guo, X.; Sun, Q. Effects of asphaltene concentration and asphaltene agglomeration on viscosity. Fuel 2019, 255, 115825. [Google Scholar] [CrossRef]
- Lemarchand, C.A.; Schrøder, T.B.; Dyre, J.C.; Hansen, J.S. Cooee bitumen: Chemical aging. J. Chem. Phys. 2013, 139, 124506. [Google Scholar] [CrossRef]
- Khabaz, F.; Khare, R. Glass transition and molecular mobility in styrene–butadiene rubber modified asphalt. J. Phys. Chem. B 2015, 119, 14261–14269. [Google Scholar] [CrossRef] [PubMed]
- Heyes, D.M. Self-diffusion and shear viscosity of simple fluids. A molecular-dynamics study. J. Chem. Soc. Faraday Trans. 2 Mol. Chem. Phys. 1983, 79, 1741–1758. [Google Scholar] [CrossRef]
- Chen, S.; Yang, Q.; Qiu, X.; Liu, K.; Xiao, S.; Xu, W. Use of MD Simulation for Investigating Diffusion Behaviors between Virgin Asphalt and Recycled Asphalt Mastic. Buildings 2023, 13, 862. [Google Scholar] [CrossRef]
- Du, Z.; Zhu, X. Molecular dynamics simulation to investigate the adhesion and diffusion of asphalt binder on aggregate surfaces. Transp. Res. Rec. 2019, 2673, 500–512. [Google Scholar] [CrossRef]
- Hsu, W.-D.; Violi, A. Order—Disorder phase transformation of triacylglycerols: Effect of the structure of the aliphatic chains. J. Phys. Chem. B 2009, 113, 887–893. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, Q.; Huang, L.; Wu, Y. Evaluating the Influence of Waste Cooking Oil Molecular Structure on Aged Asphalt Modification. Constr. Mater. 2023, 3, 543-557. https://doi.org/10.3390/constrmater3040034
Chang Q, Huang L, Wu Y. Evaluating the Influence of Waste Cooking Oil Molecular Structure on Aged Asphalt Modification. Construction Materials. 2023; 3(4):543-557. https://doi.org/10.3390/constrmater3040034
Chicago/Turabian StyleChang, Qiuhao, Liangliang Huang, and Yuting Wu. 2023. "Evaluating the Influence of Waste Cooking Oil Molecular Structure on Aged Asphalt Modification" Construction Materials 3, no. 4: 543-557. https://doi.org/10.3390/constrmater3040034
APA StyleChang, Q., Huang, L., & Wu, Y. (2023). Evaluating the Influence of Waste Cooking Oil Molecular Structure on Aged Asphalt Modification. Construction Materials, 3(4), 543-557. https://doi.org/10.3390/constrmater3040034