Assessing Ionizing Radiation and Chlorine Dioxide (ClO2) as Potential Aseptization Treatments for Yeast Recycling on Mixed Wort of Corn and Sugarcane in Brazil
Abstract
:1. Introduction
2. Results and Discussion
2.1. Treatment Efficiency in Contamination Control and Acidity
2.1.1. Chlorine Dioxide
2.1.2. Ionizing Radiation
2.2. Effects of Treatments on Yeast Viability and Reproduction
2.3. Effects of Contamination on Acidity and Yeast Viability
2.4. Fermentative Parameters
2.5. Effects of Contamination on Fermentative Parameters
2.6. Effects of Wort Composition on Very High Gravity Fermentation
2.7. Impacts in the Industrial Processes
3. Materials and Methods
3.1. Wort Preparation
3.2. Wort Contamination and Disinfection Treatments
3.3. Analyses
3.3.1. Bacterial and Total Mesophilic Counts
3.3.2. Yeast Viability
3.3.3. Ethanol Content
3.3.4. Total Acidity
3.3.5. Fermentable Sugar Content
3.3.6. Total Nitrogen
3.3.7. Minerals
3.3.8. Ethanol Productivity and Fermentation Efficiency
3.4. Statistical Analyses
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Renewable Fuel Association World Fuel Ethanol Production by Region. Available online: https://ethanolrfa.org/markets-and-statistics/annual-ethanol-production (accessed on 4 November 2023).
- Brazilian Sugarcane and Bioenergy Industry Association. Available online: https://unicadata.com.br/historico-de-producao-e-moagem (accessed on 4 November 2023).
- Barros, S.; Woody, K. Corn Ethanol Production Booms in Brazil; USDA: Brasília, Brazil, 2020.
- Brazilian National Agency for Petroleum, Natural Gas and Biofuels—ANP. Available online: https://www.gov.br/anp/en/access-information/what-is-anp/what-is-anp (accessed on 19 January 2024).
- United Nations–Department of Economic and Social Affairs: Sustainable Development. Available online: https://sdgs.un.org/goals (accessed on 19 January 2024).
- Douradinho, R.; Sica, P.; Tonoli, F.; Mattos, E.; Oliveira, M.; Pinto, A.; Mota, L.; Faria, T.; Costa, V.F.; Leite, G.; et al. Osmotic Stress Alleviation in Saccharomyces Cerevisiae for High Ethanol Fermentations with Different Wort Substrates. Stresses 2023, 3, 813–826. [Google Scholar] [CrossRef]
- Sica, P.; Prado, L.M.L.M.; Granja, P.; Carvalho, E.M.D.; Mattos, E.D.C.; Calegari, R.P.; Silverio, M.; Martins, B.C.; Baptista, A.S. Effects of Energy Cane (Saccharum spp.) Juice on Corn Ethanol (Zea mays) Fermentation Efficiency: Integration towards a More Sustainable Production. Fermentation 2021, 7, 30. [Google Scholar] [CrossRef]
- Silva, A.P.M.D.; Sica, P.; Pires, L.D.A.N.; Spironello, L.; Mota, L.A.; Peixoto, G.T.; Calegari, R.P.; Basso, T.O.; Tonso, A.; Gomes, M.P.; et al. Integration of Corn and Cane for Ethanol Production: Effects of Lactobacilli Contamination on Fermentative Parameters and Use of Ionizing Radiation Treatment for Disinfection. Fermentation 2023, 9, 89. [Google Scholar] [CrossRef]
- Skinner, K.A.; Leathers, T.D. Bacterial Contaminants of Fuel Ethanol Production. J. Ind. Microbiol. Biotechnol. 2004, 31, 401–408. [Google Scholar] [CrossRef]
- Ceccato-Antonini, S.R. Conventional and Nonconventional Strategies for Controlling Bacterial Contamination in Fuel Ethanol Fermentations. World J. Microbiol. Biotechnol. 2018, 34, 80. [Google Scholar] [CrossRef]
- Duncan, C.L.; Colmer, A.R. Coliforms Associated with Sugarcane Plants and Juices. Appl. Microbiol. 1964, 12, 173–177. [Google Scholar] [CrossRef]
- Solomon, S. Post-Harvest Deterioration of Sugarcane. Sugar Tech 2009, 11, 109–123. [Google Scholar] [CrossRef]
- Carvalho, R.S.; Cruz, I.A.; Américo-Pinheiro, J.H.P.; Soriano, R.N.; de Souza, R.L.; Bilal, M.; Iqbal, H.M.N.; Bharagava, R.N.; Romanholo Ferreira, L.F. Interaction between Saccharomyces cerevisiae and Lactobacillus fermentum during Co-Culture Fermentation. Biocatal. Agric. Biotechnol. 2020, 29, 101756. [Google Scholar] [CrossRef]
- Dellias, M.d.T.F.; Borges, C.D.; Lopes, M.L.; da Cruz, S.H.; de Amorim, H.V.; Tsai, S.M. Biofilm Formation and Antimicrobial Sensitivity of Lactobacilli Contaminants from Sugarcane-Based Fuel Ethanol Fermentation. Antonie Van Leeuwenhoek 2018, 111, 1631–1644. [Google Scholar] [CrossRef]
- Saunders, L.P.; Bischoff, K.M.; Bowman, M.J.; Leathers, T.D. Inhibition of Lactobacillus Biofilm Growth in Fuel Ethanol Fermentations by Bacillus. Bioresour. Technol. 2019, 272, 156–161. [Google Scholar] [CrossRef] [PubMed]
- Bischoff, K.M.; Zhang, Y.; Rich, J.O. Fate of Virginiamycin through the Fuel Ethanol Production Process. World J. Microbiol. Biotechnol. 2016, 32, 76. [Google Scholar] [CrossRef]
- Attri, S.; Goel, G. Sterilization in Bioprocesses. In Basic Biotechniques for Bioprocess and Bioentrepreneurship; Elsevier: Amsterdam, The Netherlands, 2023; pp. 329–339. ISBN 978-0-12-816109-8. [Google Scholar]
- Alcarde, A.R.; Walder, J.M.M.; Horii, J. Comparison Between Gamma Radiation and Kamoran HJ in the Decontamination of Sugarcane Must. J. Food Process. Preserv. 2001, 25, 137–147. [Google Scholar] [CrossRef]
- Roach, D.R.; Khatibi, P.A.; Bischoff, K.M.; Hughes, S.R.; Donovan, D.M. Bacteriophage-Encoded Lytic Enzymes Control Growth of Contaminating Lactobacillus Found in Fuel Ethanol Fermentations. Biotechnol. Biofuels 2013, 6, 20. [Google Scholar] [CrossRef]
- Brexó, R.P.; Sant’Ana, A.S. Impact and Significance of Microbial Contamination during Fermentation for Bioethanol Production. Renew. Sustain. Energy Rev. 2017, 73, 423–434. [Google Scholar] [CrossRef]
- De Paula Nobre, T. Viabilidade Celular de Saccharomyces cerevisiae Cultivada em Associação com Bactérias Contaminantes da Fermentação Alcoólica. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2005. [Google Scholar]
- Yang, G.; Yin, Y.; Wang, J. Microbial Community Diversity during Fermentative Hydrogen Production Inoculating Various Pretreated Cultures. Int. J. Hydrogen Energy 2019, 44, 13147–13156. [Google Scholar] [CrossRef]
- Beckner, M.; Ivey, M.L.; Phister, T.G. Microbial Contamination of Fuel Ethanol Fermentations: Bioethanol Contamination. Lett. Appl. Microbiol. 2011, 53, 387–394. [Google Scholar] [CrossRef]
- Senne de Oliveira Lino, F.; Bajic, D.; Vila, J.C.C.; Sánchez, A.; Sommer, M.O.A. Complex Yeast–Bacteria Interactions Affect the Yield of Industrial Ethanol Fermentation. Nat. Commun. 2021, 12, 1498. [Google Scholar] [CrossRef]
- Caetano, A.C.G.; Madaleno, L.L. Controle de Contaminantes Bacterianos Na Fermentação Alcoólica Com a Aplicação de Biocidas Naturais. Ciênc. Tecnol. 2011, 2, 27–37. [Google Scholar]
- Goldemberg, J.; Macedo, I.C. Brazilian Alcohol Program: An Overview. Energy Sustain. Dev. 1994, 1, 17–22. [Google Scholar] [CrossRef]
- Lopes, M.L.; Paulillo, S.C.d.L.; Godoy, A.; Cherubin, R.A.; Lorenzi, M.S.; Giometti, F.H.C.; Bernardino, C.D.; de Amorim Neto, H.B.; de Amorim, H.V. Ethanol Production in Brazil: A Bridge between Science and Industry. Braz. J. Microbiol. 2016, 47, 64–76. [Google Scholar] [CrossRef] [PubMed]
- Neitzel, T.; Lima, C.S.; Biazi, L.E.; Collograi, K.C.; Carvalho Da Costa, A.; Vieira Dos Santos, L.; Ienczak, J.L. Impact of the Melle-Boinot Process on the Enhancement of Second-Generation Ethanol Production by Spathaspora Passalidarum. Renew. Energy 2020, 160, 1206–1216. [Google Scholar] [CrossRef]
- Chen, J.; Zhang, B.; Luo, L.; Zhang, F.; Yi, Y.; Shan, Y.; Liu, B.; Zhou, Y.; Wang, X.; Lü, X. A Review on Recycling Techniques for Bioethanol Production from Lignocellulosic Biomass. Renew. Sustain. Energy Rev. 2021, 149, 111370. [Google Scholar] [CrossRef]
- Meneghin, S.P.; Reis, F.C.; de Almeida, P.G.; Ceccato-Antonini, S.R. Chlorine Dioxide against Bacteria and Yeasts from the Alcoholic Fermentation. Braz. J. Microbiol. 2008, 39, 337–343. [Google Scholar] [CrossRef]
- Muthaiyan, A.; Limayem, A.; Ricke, S.C. Antimicrobial Strategies for Limiting Bacterial Contaminants in Fuel Bioethanol Fermentations. Prog. Energy Combust. Sci. 2011, 37, 351–370. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, Z.; Yu, G. Fungicidal Mechanism of Chlorine Dioxide on Saccharomyces Cerevisiae. Ann. Microbiol. 2013, 63, 495–502. [Google Scholar] [CrossRef]
- Chamber of Electric Energy Commercialization. Available online: https://www.ccee.org.br/web/guest/precos/painel-precos (accessed on 19 January 2024).
- Banco Central Do Brasil. Available online: https://www.bcb.gov.br/estabilidadefinanceira/historicocotacoes (accessed on 4 November 2023).
- Amorim, H.V.; Oliveira, A.J.; Campos, H. Infecção, Problema Sério Na Produção de Álcool. Congr. Nac. Soc. Téc. Açucar. Bras. 1981, 2, 158–168. [Google Scholar]
- Alterthum, F.; Cruz, M.R.M.; Vairo, M.L.R.; Gambassi, D.M. Efeito Dos Microrganismos Contaminantes Da Fermentação Alcoólica Nas Microdestilarias. Açúcar Álcool Subproduto 1984, 3, 42–49. [Google Scholar]
- Khan, A.R.; Hoq, M.M. Lactic Acid Bacteria as Contaminant in Alcohol Fermentation. Bangladesh J. Microbiol. 1990, 7, 119–121. [Google Scholar]
- Iizuka, H.; Shibabe, S.; Ito, H. Gamma Irradiation on Fermentation Mashes Consisting Mainly of Cane Molasses. Agric. Biol. Chem. 1969, 33, 473–479. [Google Scholar] [CrossRef]
- Calegari, R.P.; Silva, E.A.D.; Silva, A.P.M.D.; Gomes, M.P.; Mota, L.A.; Arthur, V.; Baptista, A.S. Wort Disinfection Treatment with Electron Beam for Bioethanol Production. Sci. Agric. 2023, 80, e20210260. [Google Scholar] [CrossRef]
- Li, Q.; Heist, E.P.; Moe, L.A. Bacterial Community Structure and Dynamics during Corn-Based Bioethanol Fermentation. Microb. Ecol. 2016, 71, 409–421. [Google Scholar] [CrossRef]
- Jacques, K.A.; Lyons, T.P.; Kelsall, D.R. The Alcohol Textbook: A Reference for the Beverage, Fuel and Industrial Alcohol Industries, 4th ed.; Nottingham University Press: Nottingham, UK, 2003; ISBN 978-1-897676-13-4. [Google Scholar]
- Dong, S.-J.; Lin, X.-H.; Li, H. Regulation of Lactobacillus Plantarum Contamination on the Carbohydrate and Energy Related Metabolisms of Saccharomyces cerevisiae during Bioethanol Fermentation. Int. J. Biochem. Cell Biol. 2015, 68, 33–41. [Google Scholar] [CrossRef]
- Seo, S.O.; Park, S.K.; Jung, S.C.; Ryu, C.M.; Kim, J.S. Anti-Contamination Strategies for Yeast Fermentations. Microorganisms 2020, 8, 274. [Google Scholar] [CrossRef]
- Bayrock, D.P.; Ingledew, W.M. Inhibition of Yeast by Lactic Acid Bacteria in Continuous Culture: Nutrient Depletion and/or Acid Toxicity? J. Ind. Microbiol. Biotechnol. 2004, 31, 362–368. [Google Scholar] [CrossRef]
- Graves, T.; Narendranath, N.V.; Dawson, K.; Power, R. Effect of pH and Lactic or Acetic Acid on Ethanol Productivity by Saccharomyces Cerevisiae in Corn Mash. J. Ind. Microbiol. Biotechnol. 2006, 33, 469–474. [Google Scholar] [CrossRef]
- Alves, D.M.G. Fatores Que Afetam a Formação de Ácidos Orgânicos Bem Como Outros Parâmetros da Fermentação Alcoólica. Master’s Thesis, Universidade de São Paulo, Piracicaba, Brazil, 1994. [Google Scholar]
- Casal, M.; Cardoso, H.; Leao, C. Mechanisms Regulating the Transport of Acetic Acid in Saccharomyces Cerevisiae. Microbiology 1996, 142, 1385–1390. [Google Scholar] [CrossRef]
- Baptista, S.L.; Costa, C.E.; Cunha, J.T.; Soares, P.O.; Domingues, L. Metabolic Engineering of Saccharomyces cerevisiae for the Production of Top Value Chemicals from Biorefinery Carbohydrates. Biotechnol. Adv. 2021, 47, 107697. [Google Scholar] [CrossRef]
- Albers, E.; Johansson, E.; Franzén, C.J.; Larsson, C. Selective Suppression of Bacterial Contaminants by Process Conditions during Lignocellulose Based Yeast Fermentations. Biotechnol. Biofuels 2011, 4, 59. [Google Scholar] [CrossRef]
- Basso, L.C.; Alves, D.M.G.; de Amorim, H.V. The Antibacterial Action of Succinic Acid Produced by Yeast during Fermentation. Rev. Microbiol. 1997, 28, 77–82. [Google Scholar]
- Chidi, B.S.; Bauer, F.F.; Rossouw, D. Organic Acid Metabolism and the Impact of Fermentation Practices on Wine Acidity: A Review. S. Afr. J. Enol. Vitic. 2018, 39, 1–15. [Google Scholar] [CrossRef]
- Cherubin, R.A. Efeitos da Viabilidade da Levedura e da Contaminação Bacteriana na Fermentação Alcoólica. Ph.D. Thesis, Universidade de São Paulo, Piracicaba, Brazil, 2003. [Google Scholar]
- Oliva-Neto, P.; Yokoya, F. Evaluation of Bacterial Contamination in a Fed-Batch Alcoholic Fermentation Process. World J. Microbiol. Biotechnol. 1994, 10, 697–699. [Google Scholar] [CrossRef]
- Makanjuola, D.B.; Tymon, A.; Springham, D.G. Some Effects of Lactic Acid Bacteria on Laboratory-Scale Yeast Fermentations. Enzyme Microb. Technol. 1992, 14, 350–357. [Google Scholar] [CrossRef]
- Bischoff, K.M.; Liu, S.; Leathers, T.D.; Worthington, R.E.; Rich, J.O. Modeling Bacterial Contamination of Fuel Ethanol Fermentation. Biotechnol. Bioeng. 2009, 103, 117–122. [Google Scholar] [CrossRef]
- Thomas, K.C.; Hynes, S.H.; Ingledew, W.M. Effect of Lactobacilli on Yeast Growth, Viability and Batch and Semi-Continuous Alcoholic Fermentation of Corn Mash. J. Appl. Microbiol. 2001, 90, 819–828. [Google Scholar] [CrossRef]
- Oliva-Neto, P.; Ferreira, M.A.; Yokoya, F. Screening for Yeast with Antibacterial Properties from an Ethanol Distillery. Bioresour. Technol. 2004, 92, 1–6. [Google Scholar] [CrossRef]
- Meneghin, M.C.; Reis, V.R.; Ceccato-Antonini, S.R. Inhibition of Bacteria Contaminating Alcoholic Fermentations by Killer Yeasts. Braz. Arch. Biol. Technol. 2010, 53, 1043–1050. [Google Scholar] [CrossRef]
- Amorim, H.V.; Lopes, M.L.; de Castro Oliveira, J.V.; Buckeridge, M.S.; Goldman, G.H. Scientific Challenges of Bioethanol Production in Brazil. Appl. Microbiol. Biotechnol. 2011, 91, 1267–1275. [Google Scholar] [CrossRef]
- Walker, G.M. Yeast Physiology and Biotechnology; John Wiley & Sons: Chichester, UK, 1998; ISBN 978-1-61583-241-5. [Google Scholar]
- Jones, A.M.; Thomas, K.C.; Ingledew, W.M. Ethanolic Fermentation of Blackstrap Molasses and SugarCane Juice Using Very High Gravity Technology. J. Agric. Food Chem. 1994, 42, 1242–1246. [Google Scholar] [CrossRef]
- Villen, R.A.; Borzani, W.; Netto, A.S. Influence of the Accumulation of Phosphate and Magnesium Ions in the Yeast Cells on the Ethanol Productivity in Batch Ethanol Fermentation. Braz. Arch. Biol. Technol. 2009, 52, 153–155. [Google Scholar] [CrossRef]
- Walker, G.M.; Walker, R.S.K. Enhancing Yeast Alcoholic Fermentations. In Advances in Applied Microbiology; Elsevier: Amsterdam, The Netherlands, 2018; Volume 105, pp. 87–129. ISBN 978-0-12-815181-5. [Google Scholar]
- Petti, A.A.; Crutchfield, C.A.; Rabinowitz, J.D.; Botstein, D. Survival of Starving Yeast Is Correlated with Oxidative Stress Response and Nonrespiratory Mitochondrial Function. Proc. Natl. Acad. Sci. USA 2011, 108, E1089–E1098. [Google Scholar] [CrossRef]
- Najafpour, G.D. Biochemical Engineering and Biotechnology, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2015; ISBN 978-0-444-63357-6. [Google Scholar]
- Ljungdahl, P.O.; Daignan-Fornier, B. Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiae. Genetics 2012, 190, 885–929. [Google Scholar] [CrossRef]
- Zamora, F. Biochemistry of Alcoholic Fermentation. In Wine Chemistry and Biochemistry; Moreno-Arribas, M.V., Polo, M.C., Eds.; Springer: New York, NY, USA, 2009; pp. 3–26. ISBN 978-0-387-74116-1. [Google Scholar]
- Hill, A.; Stewart, G. Free Amino Nitrogen in Brewing. Fermentation 2019, 5, 22. [Google Scholar] [CrossRef]
- Shiyan, P.; Mudrak, T.; Kyrylenko, R.; Kovalchuk, S. Effect of Nitrogen and Mineral Composition of the High-Concentrated Wort Made from Starch-Containing Raw Materials on the Cultivation of Yeast. East.-Eur. J. Enterp. Technol. 2017, 6, 72–77. [Google Scholar] [CrossRef]
- Da Silva-Neto, J.M.; Covre, E.A.; Rosa, B.C.; Ceccato-Antonini, S.R. Can Ethanol Partially or Fully Replace Sulfuric Acid in the Acid Wash Step of Bioethanol Production to Fight Contamination by Lactobacillus Fermentum? Braz. J. Chem. Eng. 2020, 37, 323–332. [Google Scholar] [CrossRef]
- Hibbing, M.E.; Fuqua, C.; Parsek, M.R.; Peterson, S.B. Bacterial Competition: Surviving and Thriving in the Microbial Jungle. Nat. Rev. Microbiol. 2010, 8, 15–25. [Google Scholar] [CrossRef]
- Wood, J.L.; Tang, C.; Franks, A.E. Competitive Traits Are More Important than Stress-Tolerance Traits in a Cadmium-Contaminated Rhizosphere: A Role for Trait Theory in Microbial Ecology. Front. Microbiol. 2018, 9, 121. [Google Scholar] [CrossRef]
- Fedorec, A.J.H.; Karkaria, B.D.; Sulu, M.; Barnes, C.P. Single Strain Control of Microbial Consortia. Nat. Commun. 2021, 12, 1977. [Google Scholar] [CrossRef]
- Costa, O.Y.A.; Souto, B.M.; Tupinambá, D.D.; Bergmann, J.C.; Kyaw, C.M.; Kruger, R.H.; Barreto, C.C.; Quirino, B.F. Microbial Diversity in Sugarcane Ethanol Production in a Brazilian Distillery Using a Culture-Independent Method. J. Ind. Microbiol. Biotechnol. 2015, 42, 73–84. [Google Scholar] [CrossRef]
- Rela, P.R.; Sampa, M.H.O.; Duarte, C.L.; Costa, F.E.; Sciani, V. Development of an Up-Flow Irradiation Device for Electron Beam Wastewater Treatment. Radiat. Phys. Chem. 2000, 57, 657–660. [Google Scholar] [CrossRef]
- Molins, R.A. (Ed.) Food Irradiation: Principles and Applications; Wiley: New York, NY, USA, 2001; ISBN 978-0-471-35634-9. [Google Scholar]
- Oliveira, A.J.; Gallo, C.R.; Alcarde, V.E.; Godoy, A.; Amorim, H.V. Métodos Para o Controle Microbiológico Na Produção de Álcool e Açúcar; FERMENTEC: Piracicaba, Brazil, 1996; 86p. [Google Scholar]
- Pierce, J.S.; For the Analysis Committee. Institute of brewing: Analysis committee measurement of yeast viability. J. Inst. Brew. 1970, 76, 442–443. [Google Scholar] [CrossRef]
- Amerine, M.A.; Ough, C.S. Methods for Analysis of Musts and Wines. J. Inst. Brew. 1981, 87, 223–224. [Google Scholar]
- Miller, G.L. Use of Dinitrosalicylic Acid Reagent for Determination of Reducing Sugar. Anal. Chem. 1959, 31, 426–428. [Google Scholar] [CrossRef]
- CEM Corporation. MARS 6TM Microwave Digestion System: Method Note Compendium. Available online: https://cem.com/mars-6 (accessed on 29 January 2024).
Cycle | Treatment | Total Mesophilic n.s. | Total Bacteria |
---|---|---|---|
Log (CFU + 1) mL−1 | Log (CFU + 1) mL−1 | ||
1 | Radiation | 8.5 ± 0.3 | 0.63 ± 0.9 Ba |
ClO2 | 8.3 ± 0.1 | 4.1 ± 0.1 Ab | |
No treat. | 8.6 ± 0.1 | 5.4 ± 1.6 Aa | |
2 | Radiation | 8.4 ± 0.2 | 0.97 ± 1.6 Ba |
ClO2 | 8.3 ± 0.1 | 5.6 ± 2.3 Aab | |
No treat. | 8.4 ± 0.1 | 6.1 ± 2.4 Aa | |
3 | Radiation | 8.4 ± 0.1 | 1.3 ± 1.4 Ba |
ClO2 | 8.5 ± 0.2 | 5.7 ± 2.2 Aab | |
No treat. | 8.5 ± 0.2 | 6.3 ± 2.1 Aa | |
4 | Radiation | 8.3 ± 0.2 | 1.3 ± 1.5 Ba |
ClO2 | 8.4 ± 0.3 | 7.8 ± 0.2 Aa | |
No treat. | 8.4 ± 0.2 | 8.2 ± 0.1 Aa | |
5 | Radiation | 8.4 ± 0.2 | 1.3 ± 1.4 Ba |
ClO2 | 8.3 ± 0.2 | 5.9 ± 1.3 Aab | |
No treat. | 8.4 ± 0.1 | 7.9 ± 0.5 Aa | |
Average | Radiation | 8.4 ± 0.2 | 1.1 ± 1.4 Ba |
ClO2 | 8.4 ± 0.2 | 5.8 ± 1.2 Aab | |
No treat. | 8.5 ± 0.1 | 6.8 ± 1.3 Aa |
Cycle | Treatment | Total Acidity (g L−1) | pH |
---|---|---|---|
1 | Radiation | 6.2 ± 0.6 Aa | 4.50 ± 0.01 Aa |
ClO2 | 5.7 ± 0.4 Aa | 4.59 ± 0.11 Aa | |
No treat. | 6.2 ± 0.7 Aa | 4.52 ± 0.03 Aa | |
2 | Radiation | 5.3 ± 0.2 Ab | 4.47 ± 0.02 Bab |
ClO2 | 4.5 ± 0.3 Bb | 4.54 ± 0.02 Aa | |
No treat. | 4.8 ± 0.3 Bb | 4.47 ± 0.05 Ba | |
3 | Radiation | 4.5 ± 0.4 Ac | 4.52 ± 0.03 Ba |
ClO2 | 4.1 ± 0.3 Ab | 4.64 ± 0.08 Aa | |
No treat. | 4.5 ± 0.1 Ab | 4.55 ± 0.08 ABa | |
4 | Radiation | 4.8 ± 0.2 Abc | 4.44 ± 0.03 Bb |
ClO2 | 4.0 ± 0.3 Bb | 4.64 ± 0.10 Aa | |
No treat. | 4.5 ± 0.1 Ab | 4.47 ± 0.08 Ba | |
5 | Radiation | 4.7 ± 0.2 Abc | 4.51 ± 0.03 Ba |
ClO2 | 4.2 ± 0.1 Bb | 4.65 ± 0.08 Aa | |
No treat. | 4.6 ± 0.1 Ab | 4.49 ± 0.08 Ba | |
Average | Radiation | 5.1 ± 0.3 Ab | 4.49 ± 0.02 Ba |
ClO2 | 4.5 ± 0.3 Bb | 4.61 ± 0.08 Aa | |
No treat. | 4.9 ± 0.3 Bb | 4.50 ± 0.06 Ba |
Residual Sugars | Productivity | Efficiency | Yield | ||
---|---|---|---|---|---|
Cycle | Treatment | g L−1 | g L−1 h−1 | % | % |
1 | Radiation | 87.4 ± 3.3 Aa | 3.11 ± 0.0 Ad | 96.2 ± 1.4 Aa | 67.4 ± 1.1 Ac |
ClO2 | 88.0 ± 12.8 Aa | 2.90 ± 0.2 Ba | 93.4 ± 0.8 Ba | 64.3 ± 0.6 Aa | |
No treat. | 82.3 ± 18.7 Aa | 3.00 ± 0.1 Aba | 93.3 ± 0.3 Ba | 66.6 ± 0.2 Aa | |
2 | Radiation | 79.1 ± 5.1 Aa | 3.28 ± 0.0 Abcd | 97.2 ± 1.4 Aa | 70.6 ± 1.1 Abc |
ClO2 | 76.0 ± 5.8 Aba | 3.03 ± 0.3 Aa | 92.0 ± 3.1 Ba | 70.3 ± 2.5 Aa | |
No treat. | 62.8 ± 12.3 Ba | 3.29 ± 0.1 Aa | 93.5 ± 1.4 Ba | 73.8 ± 1.1 Aa | |
3 | Radiation | 43.4 ± 17 Ac | 3.81 ± 0.3 Aa | 96.8 ± 0.7 Aa | 82.7 ± 0.6 Aa |
ClO2 | 57.3 ± 20.2 Aa | 3.22 ± 0.6 Ba | 91.1 ± 5.4 Ba | 72.5 ± 4.3 Aa | |
No treat. | 50.9 ± 10.1 Aa | 3.35 ± 0.3 Ba | 91.8 ± 3.1 Ba | 75.5 ± 2.5 Aa | |
4 | Radiation | 81.1 ± 10.7 Aa | 3.24 ± 0.2 Acd | 97.3 ± 0.9 Aa | 70.3 ± 0.7 Abc |
ClO2 | 70.2 ± 33.6 Aa | 3.03 ± 0.4 Aa | 91.3 ± 2.9 Ba | 68.0 ± 2.3 Aa | |
No treat. | 72.2 ± 34.7 Aa | 2.99 ± 0.5 Aa | 89.9 ± 2.3 Ba | 67.0 ± 1.8 Aa | |
5 | Radiation | 55.2 ± 9.7 Ab | 3.56 ± 0.2 Aab | 96.1 ± 1.9 Aa | 77.2 ± 1.5 Aab |
ClO2 | 81.1 ± 21.7 Aa | 2.83 ± 0.4 Ba | 86.9 ± 2.7 Ca | 61.9 ± 2.2 Ba | |
No treat. | 59. ± 27.2 Aa | 3.31 ± 0.3 Aba | 91.3 ± 1.1 Ba | 72.3 ± 0.9 Aba | |
Average | Radiation | 69.2 ± 18.9 Aab | 3.40 ± 0.3 Abc | 96.7 ± 0.6 Aa | 73.6 ± 6.2 Abc |
ClO2 | 74.5 ± 11.6 Aa | 3.00 ± 0.1 Ba | 90.9 ± 2.4 Ba | 67.4 ± 4.3 Ba | |
No treat. | 65.4 ± 12.1 Aa | 3.19 ± 0.2 Ba | 92.0 ± 1.5 Ba | 71.0 ± 4.0 Aba |
Yeast Cell Viability | Sprouting Rates | Population | |||||
---|---|---|---|---|---|---|---|
Cycle | Treatment | % | % | Log (cel. + 1) mL−1 | |||
Initial | Final | Initial | Final | Initial | Final | ||
1 | Radiation | 85.9 ± 0 Aa | 44.1 ± 3 Aa | 3.20 ± 3.8 Aa | 1.27 ± 0.9 Abc | 9.27 ± 0.2 Aa | 9.02 ± 0.2 Aa |
ClO2 | 84.1 ± 0 Aa | 34.8 ± 10 Aa | 3.17 ± 3.8 Aa | 0.93 ± 0.3 Aa | 9.23 ± 0.1 Aa | 8.88 ± 0.2 Aa | |
No treat. | 84.7 ± 0 Aa | 31.9 ± 17 Aa | 3.10 ± 3.7 Aab | 0.06 ± 0.1 Bc | 9.22 ± 0.1 Aa | 8.69 ± 0.6 Aa | |
2 | Radiation | 45.4 ± 2 Ab | 36.2 ± 8 Aa | 1.25 ± 1.1 Aa | 0.57 ± 0.4 Ac | 9.04 ± 0.2 Aab | 8.90 ± 0.2 Aa |
ClO2 | 32.5 ± 10 Ab | 25.9 ± 2 ABab | 0.95 ± 0.3 ABa | 1.88 ± 1.6 Aa | 8.83 ± 0.2 Ab | 8.65 ± 0.1 Bab | |
No treat. | 26.2 ± 20 Ab | 22.7 ± 6 Ba | 0.10 ± 0.1 Bb | 0.90 ± 0.9 Abc | 8.54 ± 0.6 Ab | 8.70 ± 0.1 Ba | |
3 | Radiation | 35.9 ± 7 Ac | 22.3 ± 2 Ab | 0.50 ± 0.3 Aa | 2.46 ± 0.7 Aabc | 8.87 ± 0.2 Ab | 8.55 ± 0.1 Ab |
ClO2 | 25.9 ± 2 Bb | 22.9 ± 4 Ab | 1.88 ± 1.6 Aa | 3.88 ± 3.3 Aa | 8.65 ± 0.1 Bb | 8.64 ± 0.3 Aab | |
No treat. | 22.7 ± 6 Bb | 20.8 ± 4 Aa | 0.90 ± 0.9 Ab | 3.13 ± 1.8 Aab | 8.70 ± 0.1 ABab | 8.57 ± 0.2 Aa | |
4 | Radiation | 22.3 ± 2 Ad | 23.2 ± 3 Ab | 2.46 ± 0.7 Aa | 4.49 ± 2.4 Aab | 8.55 ± 0.1 Ac | 8.47 ± 0.1 Ab |
ClO2 | 24.2 ± 3 Ab | 20.4 ± 6 Ab | 4.54 ± 3.4 Aa | 4.38 ± 1.2 Aa | 8.64 ± 0.3 Ab | 8.45 ± 0.1 Ab | |
No treat. | 20.8 ± 5 Ab | 20.4 ± 4 Aa | 3.56 ± 1.7 Aab | 5.14 ± 2.4 Aa | 8.66 ± 0.1 Aab | 8.62 ± 0.1 Aa | |
5 | Radiation | 23.2 ± 3 Abd | 18.6 ± 3 Ab | 4.49 ± 2.4 Aa | 5.26 ± 3.1 Aa | 8.47 ± 0.1 Ac | 8.46 ± 0.1 Ab |
ClO2 | 21.4 ± 6 Ab | 17.6 ± 1 Ab | 4.38 ± 1.2 Aa | 4.76 ± 1.5 Aa | 8.54 ± 0.2 Ab | 8.44 ± 0.1 Ab | |
No treat. | 19.0 ± 5 Ab | 16.7 ± 3 Aa | 5.14 ± 2.4 Aa | 4.95 ± 1.3 Aa | 8.60 ± 0.1 Aab | 8.57 ± 0.1 Aa | |
Average | Radiation | 42.5 ± 3 Ab | 28.9 ± 4 Aab | 2.38 ± 1.7 Aa | 2.81 ± 1.5 Aabc | 8.84 ± 0.2 Ab | 8.68 ± 0.1 Aab |
ClO2 | 37.6 ± 4 Ab | 24.3 ± 5 Aab | 2.98 ± 2.1 Aa | 3.17 ± 1.6 Aa | 8.78 ± 0.2 Ab | 8.61 ± 0.2 Aab | |
No treat. | 34.7 ± 7 Ab | 22.5 ± 7 Aa | 2.56 ± 1.8 Aab | 2.84 ± 1.3 Aab | 8.74 ± 0.2 Aab | 8.63 ± 0.2 Aa |
Concentration (mg L−1) | Minimum Required a (mg L−1) | |
---|---|---|
Fermentable sugars | 342.40 ± 2.2 | - |
Potassium | 636.6 ± 48.5 | 117 |
Phosphorus | 444.4 ± 14.0 | >1000 |
Magnesium | 129.2 ± 23.3 | 72 |
Sodium | 71.1 ± 24.9 | - |
Zinc | 1.73 ± 1.1 | 0.39 |
Copper | 2.93 ± 1.2 | 0.10 |
Cobalt | 2.43 ± 1.0 | - |
Manganese | 2.08 ± 0.1 | 0.16 |
Total nitrogen | 885.8 ± 88.0 | >1000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Douradinho, R.; Sica, P.; Oliveira, M.; Uchoa Pinto, A.; Mota, L.; Mattos, E.; Perecin, D.; Garcilasso, V.; de Almeida, J.M.A.R.; Piedade, S.; et al. Assessing Ionizing Radiation and Chlorine Dioxide (ClO2) as Potential Aseptization Treatments for Yeast Recycling on Mixed Wort of Corn and Sugarcane in Brazil. Stresses 2024, 4, 155-171. https://doi.org/10.3390/stresses4010009
Douradinho R, Sica P, Oliveira M, Uchoa Pinto A, Mota L, Mattos E, Perecin D, Garcilasso V, de Almeida JMAR, Piedade S, et al. Assessing Ionizing Radiation and Chlorine Dioxide (ClO2) as Potential Aseptization Treatments for Yeast Recycling on Mixed Wort of Corn and Sugarcane in Brazil. Stresses. 2024; 4(1):155-171. https://doi.org/10.3390/stresses4010009
Chicago/Turabian StyleDouradinho, Rafael, Pietro Sica, Matheus Oliveira, Alana Uchoa Pinto, Layna Mota, Eduardo Mattos, Danilo Perecin, Vanessa Garcilasso, João Monnerat Araujo Ribeiro de Almeida, Sonia Piedade, and et al. 2024. "Assessing Ionizing Radiation and Chlorine Dioxide (ClO2) as Potential Aseptization Treatments for Yeast Recycling on Mixed Wort of Corn and Sugarcane in Brazil" Stresses 4, no. 1: 155-171. https://doi.org/10.3390/stresses4010009
APA StyleDouradinho, R., Sica, P., Oliveira, M., Uchoa Pinto, A., Mota, L., Mattos, E., Perecin, D., Garcilasso, V., de Almeida, J. M. A. R., Piedade, S., Alves, L., Arthur, V., Coelho, S., & Baptista, A. (2024). Assessing Ionizing Radiation and Chlorine Dioxide (ClO2) as Potential Aseptization Treatments for Yeast Recycling on Mixed Wort of Corn and Sugarcane in Brazil. Stresses, 4(1), 155-171. https://doi.org/10.3390/stresses4010009