Exploring Serum Copeptin and Hematological Profile: A Comparative Analysis after Intradermal versus Intramuscular Porcine Reproductive and Respiratory Syndrome Virus Vaccination in Piglets
Abstract
:Simple Summary
Abstract
1. Introduction
2. Results
2.1. PCR Testing
2.2. Copeptin Results
2.3. Correlation between PRRSV Viral Load and Copeptin
2.4. Hematological Results
3. Materials and Methods
3.1. Ethics
3.2. Experimental Animals
3.3. Experimental Material
3.4. Study Design
3.5. Sampling/Laboratory Examinations
3.6. Statistical Analysis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jochberger, S.; Morgenthaler, N.G.; Mayr, V.D.; Luckner, G.; Wenzel, V.; Ulmer, H.; Schwarz, S.; Hasibeder, W.R.; Friesenecker, B.E.; Dünser, M.W. Copeptin and arginine vasopressin concentrations in critically ill patients. J. Clin. Endocrinol. Metab. 2006, 91, 4381–4386. [Google Scholar] [CrossRef] [PubMed]
- Katan, M.; Morgenthaler, N.G.; Dixit, K.C.; Rutishauser, J.; Brabant, G.E.; Müller, B.; Christ-Crain, M. Anterior and posterior pituitary function testing with simultaneous insulin tolerance test and a novel copeptin assay. J. Clin. Endocrinol. Metab. 2007, 92, 2640–2643. [Google Scholar] [CrossRef] [PubMed]
- Szinnai, G.; Morgenthaler, N.G.; Berneis, K.; Struck, J.; Müller, B.; Keller, U.; Christ-Crain, M. Changes in plasma copeptin, the c-terminal portion of arginine vasopressin during water deprivation and excess in healthy subjects. J. Clin. Endocrinol. Metab. 2007, 92, 3973–3978. [Google Scholar] [CrossRef] [PubMed]
- Jochberger, S.; Luckner, G.; Mayr, V.D.; Wenzel, V.; Morgenthaler, N.G.; Friesenecker, B.E.; Hasibeder, W.R.; Dünser, M.W. Course of vasopressin and copeptin plasma concentrations in a patient with severe septic shock. Anaesth. Intensive Care 2006, 34, 498–500. [Google Scholar] [CrossRef] [PubMed]
- Dunser, M.W.; Wenzel, V.; Mayr, A.J.; Hasibeder, W.R. Management of vasodilatory shock: Defining the role of arginine vasopressin. Drugs 2003, 63, 237–256. [Google Scholar] [CrossRef] [PubMed]
- Boone, M.; Deen, P.M. Physiology and pathophysiology of the vasopressin-regulated renal water reabsorption. Pflug. Arch. Eur. J. Physiol. 2008, 456, 1005–1024. [Google Scholar] [CrossRef] [PubMed]
- Imai, Y.; Nolan, P.L.; Johnston, C.I. Role of Vasopressin in Blood Pressure Regulation Through its Modulatory Effect on Baroreceptor Reflex. In Fundamental Fault in Hypertension; Sambhi, M.P., Ed.; Springer: Dordrecht, The Netherlands, 1984; pp. 251–260. [Google Scholar]
- Antoni, F. Vasopressin as a Stress Hormone; Elsevier Science: Maryland Heights, MO, USA, 2017; pp. 97–108. [Google Scholar]
- Abdelmageed, M.; Güzelgül, F. Copeptin: Up-to-date diagnostic and prognostic role highlight. Anal. Biochem. 2023, 673, 115181. [Google Scholar] [CrossRef] [PubMed]
- Stoiser, B.; Mörtl, D.; Hülsmann, M.; Berger, R.; Struck, J.; Morgenthaler, N.G.; Bergmann, A.; Pacher, R. Copeptin, a fragment of the vasopressin precursor, as a novel predictor of outcome in heart failure. Eur. J. Clin. Investig. 2006, 36, 771–778. [Google Scholar] [CrossRef] [PubMed]
- Struck, J.; Morgenthaler, N.G.; Bergmann, A. Copeptin, a stable peptide derived from the vasopressin precursor, is elevated in serum of sepsis patients. Peptides 2005, 26, 2500–2504. [Google Scholar] [CrossRef]
- Lippi, G.; Schena, F.; Salvagno, G.L.; Sanchis-Gomar, F.; Guidi, G.C. Serum copeptin and midregion proadrenomedullin (MR-proADM) after an ultramarathon. J. Clin. Lab. Anal. 2015, 29, 15–20. [Google Scholar] [CrossRef]
- Morgenthaler, N.G.; Struck, J.; Jochberger, S.; Dünser, M.W. Copeptin: Clinical use of a new biomarker. Trends Endocrinol. Metab. 2008, 19, 43–49. [Google Scholar] [CrossRef] [PubMed]
- Balanescu, S.; Kopp, P.; Gaskill, M.B.; Morgenthaler, N.G.; Schindler, C.; Rutishauser, J. Correlation of Plasma Copeptin and Vasopressin Concentrations in Hypo-, Iso-, and Hyperosmolar States. J. Clin. Endocrinol. Metab. 2011, 96, 1046–1052. [Google Scholar] [CrossRef] [PubMed]
- Martino, M.; Arnaldi, G. Copeptin and Stress. Endocrines 2021, 2, 384–404. [Google Scholar] [CrossRef]
- Slagman, A.; Jerichow, T.; Struck, J.; Vollert, J.; Mans, D.; Schröder, M.; Searle, J.; Schulz-Menger, J.; Schindler, R.; Möckel, M. Elevation of Plasma Copeptin in Acute Myocardial Infarction in Pigs is Related to Changes in Mean Arterial Blood Pressure but not to Myocardial Ischemia. Int. J. Clin. Chem. Lab. Med. 2016, 2, 17–21. [Google Scholar] [CrossRef]
- Li, W.; Sun, W.; Lyu, L.; Wang, G.; Yang, W.; An, H.; Chen, L.; Fan, J.; Yue, Y.; Zhang, R. Copeptin Reflect Left Ventricular Systolic Function at Early Stage of Acute Myocardial Infarction in a Pig Model. Biomark. Insights 2023, 18, 11772719231171764. [Google Scholar] [CrossRef] [PubMed]
- Pierantoni, L.; Albertini, M.; Piotti, P.; Ripamonti, G.; Pocar, P.; Borromeo, V.; Pirrone, F. Signs of Anxiety and Salivary Copeptin Levels in Dogs Diagnosed with Separation-Related Problems in a Short Separation Test. Anim. Open Access J. 2022, 12, 1974. [Google Scholar] [CrossRef] [PubMed]
- Schill, F.; Engström, G.; Melander, O.; Timpka, S.; Enhörning, S. The possible role of the vasopressin system in hematopoiesis. Sci. Rep. 2024, 14, 5085. [Google Scholar] [CrossRef]
- Mayer, B.; Németh, K.; Krepuska, M.; Myneni, V.D.; Maric, D.; Tisdale, J.F.; Hsieh, M.M.; Uchida, N.; Lee, H.J.; Nemeth, M.J.; et al. Vasopressin stimulates the proliferation and differentiation of red blood cell precursors and improves recovery from anemia. Sci. Transl. Med. 2017, 9, eaao1632. [Google Scholar] [CrossRef]
- Winzeler, B.; Morin, B.; Refardt, J.; Imber, C.; Fenske, W.; Sailer, C.O.; Holbro, A.; Christ-Crain, M. Low arginine vasopressin levels in patients with diabetes insipidus are not associated with anaemia. Clin. Endocrinol. 2020, 93, 456–465. [Google Scholar] [CrossRef]
- Chikanza, I.C.; Grossman, A.S. Hypothalamic-pituitary-mediated immunomodulation: Arginine vasopressin is a neuroendocrine immune mediator. Br. J. Rheumatol. 1998, 37, 131–136. [Google Scholar] [CrossRef]
- Mavani, G.P.; DeVita, M.V.; Michelis, M.F. A review of the nonpressor and nonantidiuretic actions of the hormone vasopressin. Front. Med. 2015, 2, 19. [Google Scholar] [CrossRef] [PubMed]
- Papatsiros, V.G.; Alexopoulos, C.; Kritas, S.K.; Koptopoulos, G.; Nauwynck, H.J.; Pensaert, M.B.; Kyriakis, S.C. Long-term administration of a commercial porcine reproductive and respiratory syndrome virus (PRRSV)-inactivated vaccine in PRRSV-endemically infected sows. J. Vet. Med. Ser. B 2006, 53, 266–272. [Google Scholar] [CrossRef] [PubMed]
- Linhares, D.C.; Johnson, C.; Morrison, R.B. Correction: Economic Analysis of Vaccination Strategies for PRRS Control. PLoS ONE 2016, 11, e0150444. [Google Scholar] [CrossRef] [PubMed]
- Maragkakis, G.; Athanasiou, L.V.; Chaintoutis, S.C.; Psalla, D.; Kostoulas, P.; Meletis, E.; Papakonstantinou, G.; Maes, D.; Christodoulopoulos, G.; Papatsiros, V.G. Evaluation of Intradermal PRRSV MLV Vaccination of Suckling Piglets on Health and Performance Parameters under Field Conditions. Animals 2023, 13, 61. [Google Scholar]
- Martelli, P.; Cordioli, P.; Alborali, L.G.; Gozio, S.; De Angelis, E.; Ferrari, L.; Lombardi, G.; Borghetti, P. Protection and immune response in pigs intradermally vaccinated against porcine reproductive and respiratory syndrome (PRRS) and subsequently exposed to a heterologous European (Italian cluster) field strain. Vaccine 2007, 25, 3400–3408. [Google Scholar] [CrossRef] [PubMed]
- Maragkakis, G.; Athanasiou, L.V.; Korou, L.-M.; Chaintoutis, S.C.; Dovas, C.; Perrea, D.N.; Papakonstantinou, G.; Christodoulopoulos, G.; Maes, D.; Papatsiros, V.G. Angiotensin II Blood Serum Levels in Piglets, after Intra-Dermal or Intra-Muscular Vaccination against PRRSV. Vet. Sci. 2022, 9, 496. [Google Scholar] [CrossRef] [PubMed]
- Lurchachaiwong, W.; Payungporn, S.; Srisatidnarakul, U.; Mungkundar, C.; Theamboonlers, A.; Poovorawan, Y. Rapid detection and strain identification of porcine reproductive and respiratory syndrome virus (PRRSV) by real-time RT-PCR. Lett. Appl. Microbiol. 2008, 46, 55–60. [Google Scholar] [CrossRef]
- Bull, B.; Hay, K. Is the packed cell volume (PCV) reliable? Lab. Hematol. 2001, 7, 191–196. [Google Scholar]
- Harvey, J. (Ed.) Leukocyte Evaluation. In Atlas of Veterinary Hematology: Blood and Bone Marrow of Domestic Animals; W.O. Saunders Company: Philadelphia, PA, USA, 2001; pp. 18–19. [Google Scholar]
- Taylor, R. Interpretation of the Correlation Coefficient: A Basic Review. J. Diagn. Med. Sonogr. 1990, 6, 35–39. [Google Scholar] [CrossRef]
- Ach, T.; Kammoun, F.; Fekih, H.E.; Slama, N.B.H.; Kahloun, S.; Fredj, F.B.; Laouani, C.; Ach, K. Central diabetes insipidus revealing a hypophysitis induced by SARS-CoV-2 vaccine. Therapie 2023, 78, 453–455. [Google Scholar] [CrossRef]
- Zhang, F.; Hu, Y.; Xu, Q.; Ye, S. Different effects of angiotensin II and angiotensin-(1-7) on vascular smooth muscle cell proliferation and migration. PLoS ONE 2010, 5, e12323. [Google Scholar] [CrossRef] [PubMed]
- Hussain, M.; Awan, F.R. Hypertension regulating angiotensin peptides in the pathobiology of cardiovascular disease. Clin. Exp. Hypertens. 2018, 40, 344–352. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.J.; Arnold, A.C. The renin-angiotensin system in cardiovascular autonomic control: Recent developments and clinical implications. Clin. Auton. Res. Off. J. Clin. Auton. Res. Soc. 2019, 29, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Morgenthaler, N.G.; Struck, J.; Alonso, C.; Bergmann, A. Assay for the measurement of copeptin, a stable peptide derived from the precursor of vasopressin. Clin. Chem. 2006, 52, 112–119. [Google Scholar] [CrossRef]
- Madapong, A.; Saeng-chuto, K.; Boonsoongnern, A.; Tantituvanont, A.; Nilubol, D. Cell-mediated immune response and protective efficacy of porcine reproductive and respiratory syndrome virus modified-live vaccines against co-challenge with PRRSV-1 and PRRSV-2. Sci. Rep. 2020, 10, 1649. [Google Scholar] [CrossRef]
Group | Time (Weeks) | Copeptin Levels (Mean ± SD) | Significant Differences in the Same Group over Time | Significant Differences among Groups |
---|---|---|---|---|
Group A (Porcilis PRRS ID) | 4 weeks | 88.10 ± 11.66 | ns | 4, 7, 10 weeks ns |
7 weeks | 70.79 ± 35.21 | |||
10 weeks | 93.56 ± 51.45 | |||
Group B (Porcilis PRRS IM) | 4 weeks | 74.95 ± 23.17 | ns | |
7 weeks | 87.63 ± 29.76 | |||
10 weeks | 67.33 ± 40.30 | |||
Group C (Diluvac ID) | 4 weeks | 64.44 ± 21.77 | ns | |
7 weeks | 78.97 ± 28.53 | |||
10 weeks | 93.22 ± 32.37 | |||
Group D (Diluvac IM) | 4 weeks | 78.71 ± 27.39 | ns | |
7 weeks | 67.17 ± 24.07 | |||
10 weeks | 79.51 ± 40.65 |
Group | Time (Weeks) | PCV (%) (Mean ± SD) | WBC (Mean ± SD) | PLT (Mean ± SD) | Significant Differences in the Same Group over Time | Significant Differences among Groups |
---|---|---|---|---|---|---|
Group A (Porcilis PRRS ID) | 4 | 35.52 ± 3.66 | 10,976.92 ± 3596.33 | 2,555,384.62 ± 118,145.02 | ns | 4, 7, 10 weeks ns |
7 | 35.87 ± 3.96 | 14,784.61 ± 4855.38 | 296,286.15 ± 136,115.35 | |||
10 | 35.76 ± 3.62 | 12,584.61 ± 4141.55 | 237,415.38 ± 100,738.75 | |||
Group B (Porcilis PRRS IM) | 4 | 33.95 ± 4.15 | 12,247.69 ± 4018.61 | 278,369.23 ± 86,354.68 | ns | |
7 | 34.51 ± 3.73 | 16,469.23 ± 5508.38 | 222,695.38 ± 69,083.74 | |||
10 | 33.43 ± 3.66 | 14,330.77 ± 4704.14 | 275,300.00 ± 98,715.60 | |||
Group C (Diluvac ID) | 4 | 35.33 ± 4.59 | 11,815.38 ± 3874.02 | 277,861.54 ± 142,872.41 | ns | |
7 | 35.31 ± 4.65 | 13,553.84 ± 4446.64 | 246,946.15 ± 93,303.90 | |||
10 | 35.78 ± 4.88 | 14,184.61 ± 4654.72 | 31,115.15 ± 117,562.92 | |||
Group D (Diluvac IM) | 4 | 34.39 ± 4.68 | 12,061.54 ± 3642.24 | 334,553.85 ± 154,769.98 | ns | |
7 | 34.42 ± 4.11 | 13,407.69 ± 3264.06 | 299,123.08 ± 83,916.32 | |||
10 | 34.09 ± 4.41 | 14,130.77 ± 2109.26 | 296,923.08 ± 130,245.94 |
Group | Time (Weeks) | Neu (Mean ± SD) | Lymph (Mean ± SD) | Mono (Mean ± SD) | Eos (Mean ± SD) | Significant Differences in the Same Group over Time | Significant Differences among Groups |
---|---|---|---|---|---|---|---|
Group A (Porcilis PRRS ID) | 4 | 6611.00 ± 1972.24 | 3363.77 ± 1508.11 | 609.07 ± 371.85 | 393.07 ± 283.80 | ns | 4, 7, 10 weeks ns |
7 | 8881.65 ± 2917.80 | 4986.69 ± 1793.29 | 532.73 ± 265.04 | 417.77 ± 205.51 | |||
10 | 7680.40 ± 2279.13 | 4199.09 ± 1883.36 | 462.21 ± 302.26 | 281.75 ± 131.10 | |||
Group B (Porcilis PRRS IM) | 4 | 7852.14 ± 2400.30 | 3703.49 ± 1424.05 | 449.81 ± 380.40 | 288.70 ± 217.99 | ns | |
7 | 10,027.36 ± 3277.65 | 5439.56 ± 2147.07 | 579.48 ± 380.01 | 479.61 ± 297.45 | |||
10 | 8969.18 ± 2645.03 | 4597.08 ± 1993.06 | 518.82 ± 348.48 | 299.07 ± 130.23 | |||
Group C (Diluvac ID) | 4 | 7392.18 ± 2179.97 | 3788.80 ± 1642.64 | 427.59 ± 287.21 | 246.49 ± 107.33 | ns | |
7 | 9464.64 ± 2893.23 | 4464.03 ± 1716.50 | 542.18 ± 458.52 | 347.98 ± 262.76 | |||
10 | 8870.62 ± 2615.96 | 4546.56 ± 1971.16 | 513.12 ± 344.65 | 295.79 ± 128.81 | |||
Group D (Diluvac IM) | 4 | 7856.80 ± 2541.17 | 4447.40 ± 1751.86 | 567.02 ± 421.01 | 410.84 ± 234.99 | ns | |
7 | 9324.44 ± 2923.24 | 4961.77 ± 2298.55 | 545.90 ± 193.86 | 442.28 ± 246.95 | |||
10 | 10,006.70 ± 2769.45 | 6286.92 ± 2892.31 | 670.22 ± 385.91 | 302.86 ± 88.23 |
Group A (Porcilis PRRS ID | Group B (Porcilis PRRS IM) | Group C (Diluvac ID) | Group D (Diluvac IM) |
---|---|---|---|
0.2 mL Porcilis® PRRS (ID) | 2 mL Porcilis® PRRS (IM) | 0.2 mL of Diluvac Forte (ID) | 2 mL of Diluvac Forte (IM) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maragkakis, G.; Katsogiannou, E.G.; Papakonstantinou, G.I.; Korou, L.-M.; Chaintoutis, S.C.; Konstantopoulos, P.; Perrea, D.N.; Christodoulopoulos, G.; Athanasiou, L.V.; Papatsiros, V.G. Exploring Serum Copeptin and Hematological Profile: A Comparative Analysis after Intradermal versus Intramuscular Porcine Reproductive and Respiratory Syndrome Virus Vaccination in Piglets. Stresses 2024, 4, 358-366. https://doi.org/10.3390/stresses4020023
Maragkakis G, Katsogiannou EG, Papakonstantinou GI, Korou L-M, Chaintoutis SC, Konstantopoulos P, Perrea DN, Christodoulopoulos G, Athanasiou LV, Papatsiros VG. Exploring Serum Copeptin and Hematological Profile: A Comparative Analysis after Intradermal versus Intramuscular Porcine Reproductive and Respiratory Syndrome Virus Vaccination in Piglets. Stresses. 2024; 4(2):358-366. https://doi.org/10.3390/stresses4020023
Chicago/Turabian StyleMaragkakis, Georgios, Eleni G. Katsogiannou, Georgios I. Papakonstantinou, Laskarina-Maria Korou, Serafeim C. Chaintoutis, Panagiotis Konstantopoulos, Despoina N. Perrea, Georgios Christodoulopoulos, Labrini V. Athanasiou, and Vasileios G. Papatsiros. 2024. "Exploring Serum Copeptin and Hematological Profile: A Comparative Analysis after Intradermal versus Intramuscular Porcine Reproductive and Respiratory Syndrome Virus Vaccination in Piglets" Stresses 4, no. 2: 358-366. https://doi.org/10.3390/stresses4020023
APA StyleMaragkakis, G., Katsogiannou, E. G., Papakonstantinou, G. I., Korou, L. -M., Chaintoutis, S. C., Konstantopoulos, P., Perrea, D. N., Christodoulopoulos, G., Athanasiou, L. V., & Papatsiros, V. G. (2024). Exploring Serum Copeptin and Hematological Profile: A Comparative Analysis after Intradermal versus Intramuscular Porcine Reproductive and Respiratory Syndrome Virus Vaccination in Piglets. Stresses, 4(2), 358-366. https://doi.org/10.3390/stresses4020023