The Bidirectional Interaction Between Insulin and the Hypothalamus–Pituitary–Adrenal Axis in Normal Pregnant Mares
Abstract
:1. Introduction
2. Results
2.1. Insulin
2.2. Glucose
2.3. Fructosamine
2.4. ACTH
2.5. Cortisol
3. Discussion
3.1. Insulin, Glucose, Fructosamine
3.2. ACTH, Cortisol
4. Materials and Methods
4.1. Animals
4.2. Evaluation of Reproductive Activity of Mares
4.3. Blood Samples
4.4. Determination of Insulin, Glucose, Fructosamine, ACTH and Cortisol Concentrations
4.5. Statistical Analyses
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ralston, S.L. Insulin and glucoseregulation. Vet. Clin. N. Am. Equine Pract. 2002, 18, 295–304. [Google Scholar] [CrossRef] [PubMed]
- Galantino-Homer, H.L.; Engiles, J.B. Insulin resistance and laminitis in brood-mares. J. Equine Vet. Sci. 2013, 33, 844–846. [Google Scholar] [CrossRef]
- Satué, K.; Fazio, E.; Muñoz, A.; Medica, P. Successful pregnancy outcome in mares: The potential role of body conditional score, age and biochemical parameter’s adjustments. J. Equine Vet. Sci. 2022, 115, 104023. [Google Scholar] [CrossRef]
- Ousey, J.C.; Fowden, A.L.; Wilsehr, S.; Allen, W.R. The effects of maternal health and body condition on the endocrine responses of neonatal foals. Equine Vet. J. 2008, 40, 673–679. [Google Scholar] [CrossRef] [PubMed]
- George, L.A.; Staniar, W.B.; Cubitt, T.A.; Treiber, K.H.; Harris, P.A.; Geor, R.J. Evaluation of the effects of pregnancy on insulin sensitivity, insulin secretion, and glucose dynamics in Thoroughbred mares. Am. J. Vet. Res. 2011, 72, 666–674. [Google Scholar] [CrossRef]
- Smith, S.; Marr, C.M.; Dunnett, C.; Menzies-Gow, N.J. The effect of mare obesity and endocrine function on foal birthweight in Thoroughbreds. Equine Vet. J. 2017, 49, 461–466. [Google Scholar] [CrossRef] [PubMed]
- Robles, M.; Nouveau, E.; Gautier, C.; Mendoza, L.; Dubois, C.; Dahirel, M.; Lagofun, B.; Aubrière, M.-C.; Lejeune, J.-P.; Caudron, I.; et al. Maternal obesity increases insulin resistance, low-grade inflammation and osteochondrosis lesions in foals and yearlings until 18 months of age. PLoS ONE 2018, 13, e0190309. [Google Scholar] [CrossRef] [PubMed]
- Mousquer, M.A.; Pereira, A.B.; Finger, I.S.; Franz, H.C.; Torres, A.J.; Müller, T.V.; Nogueira, C.E.W. Glucose and insulin curve in pregnant mares and its relationship with clinical and biometric features of newborn foals. Pesq. Vet. Bras. 2019, 39, 764–770. [Google Scholar] [CrossRef]
- Marcilla, M.; Munoz, A.; Satue, K. Longitudinal changes in serum catecholamines, dopamine, serotonin, ACTH and cortisol in pregnant Spanish mares. Res. Vet. Sci. 2017, 115, 29–33. [Google Scholar] [CrossRef] [PubMed]
- Mastorakos, G.; Ilias, I. Maternal and fetal hypothalamic-pituitary-adrenal axes during pregnancy and postpartum. Ann. N. Y. Acad. Sci. 2003, 997, 136–149. [Google Scholar] [CrossRef] [PubMed]
- Ellis, M.J.; Livesey, J.H.; Donald, R.A. Horse plasma corticotrophin-releasing hormone (CRH): Characterisation and lack of a late gestational rise or a plasma CRH-binding protein. J. Endocrinol. 1994, 143, 455–460. [Google Scholar] [CrossRef]
- Hoffmann, B.; Gentz, F.; Failing, K. Investigations into the course of progesterone-, oestrogen-and eCG-concentrations during normal and impaired pregnancy in the mare. Reprod. Domest. Anim. 1996, 31, 717–723. [Google Scholar] [CrossRef]
- Boulfekhar, L.; Brudieux, R. Peripheral concentrations of progesterone, cortisol, aldosterone, sodium and potassium in the plasma of the tadmit ewe during pregnancy and parturition. J. Endocrinol. 1980, 84, 25–33. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, R.M.; Kronfeld, D.S.; Cooper, W.L.; Harris, P.A. Glucose clearance in pregnant mares is affected by diet, pregnancy and lactation. J. Anim. Sci. 2003, 81, 1764–1771. [Google Scholar] [CrossRef]
- Dallman, M.F.; Akana, S.F.; Strack, A.M.; Hanson, E.S.; Sebastian, R.J. The neural network that regulates energy balance is responsive to glucocorticoids and insulin and also regulates HPA axis responsivity at a site proximal to CRF neurons. Ann. N. Y. Acad. Sci. 1995, 771, 730–742. [Google Scholar] [CrossRef] [PubMed]
- Hicks, G.R.; Fraser, N.S.; Bertin, F.R. Changes associated with the periovulatory period, age and pregnancy in ACTH, cortisol, glucose and insulin concentrations in mares. Animals 2021, 11, 891. [Google Scholar] [CrossRef] [PubMed]
- Myers, M.G., Jr.; Affinati, A.H.; Richardson, N.; Schwartz, M.W. Central nervous system regulation of organismal energy and glucose homeostasis. Nat. Metab. 2021, 3, 737–750. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.X.; Foppen, E.; Abplanalp, W.; Gao, Y.; Alkemade, A.; la Fleur, S.E.; Serlie, M.J.; Fliers, E.; Buijs, R.M.; Tschöp, M.H.; et al. Glucocorticoid signaling in the arcuate nucleus modulates hepatic insulin sensitivity. Diabetes 2012, 61, 339–345. [Google Scholar] [CrossRef]
- Magomedova, L.; Cummins, C.L. Glucocorticoids and metabolic control. In Metabolic Control; Herzig, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 73–93. [Google Scholar]
- Swaab, D.F.; Bao, A.M.; Lucassen, P.J. The stress system in the human brain in depression and neurodegeneration. Ageing Res. Rev. 2005, 4, 141–194. [Google Scholar] [CrossRef] [PubMed]
- Gallagher, J.P.; Orozco-Cabal, L.F.; Liu, J.; Shinnick-Gallagher, P. Synaptic physiology of central CRH system. Eur. J. Pharm. 2008, 583, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bisschop, P.H.; Eggels, L.; Foppen, E.; Ackermans, M.T.; Zhou, J.-N.; Fliers, E.; Kalsbeek, A. Intrahypothalamic estradiol regulates glucose metabolism via the sympathetic nervous system in female rats. Diabetes 2013, 62, 435–443. [Google Scholar] [CrossRef] [PubMed]
- Flak, J.N.; Goforth, P.B.; Dell’Orco, J.; Sabatini, P.V.; Li, C.; Bozadjieva, N.; Sorensen, M.; Valenta, A.; Rupp, A.; Affinati, A.H.; et al. Ventromedial hypothalamic nucleus neuronal subset regulates blood glucose independently of insulin. J. Clin. Investig. 2020, 130, 2943–2952. [Google Scholar] [CrossRef]
- Huang, Z.; Liu, L.; Zhang, J.; Conde, C.; Phansalkar, J.; Li, Z.; Yao, L.; Xu, Z.; Wang, W.; Zhou, J.; et al. Glucose-sensing glucagon-like peptide-1 receptor neurons in the dorsomedial hypothalamus regulate glucose metabolism. Sci. Adv. 2022, 8, eabn5345. [Google Scholar] [CrossRef]
- Liu, L.; Huang, Z.; Zhang, J.; Wang, M.; Yue, T.; Wang, W.; Wu, Y.; Zhang, Z.; Xiong, W.; Wang, C.; et al. Hypothalamus-sympathetic-liver axis mediates the early phase of stress-induced hyperglycemia in the male mice. Nat. Commun. 2024, 15, 8632. [Google Scholar] [CrossRef]
- Beythien, E.; Wulf, M.; Ille, N.; Aurich, J.; Aurich, C. Effects of sex, pregnancy and season on insulin secretion and carbohydrate metabolism in horses. Anim. Reprod. Sci. 2017, 184, 86–93. [Google Scholar] [CrossRef]
- Vincze, B.; Kutasi, O.; Baska, F.; Szenci, O. Pregnancy-associated changes of serum biochemical values in Lipizzaner brood-mares. Acta Vet. Hung. 2015, 63, 303–316. [Google Scholar] [CrossRef]
- Harvey, J.W.; Pate, M.G.; Kivipelto, J.; Asquith, R.L. Clinical biochemistry of Clinical biochemistry of pregnant and nursing mares. Vet. Clin. Pathol. 2005, 34, 248–254. [Google Scholar] [CrossRef]
- Fazio, E.; Medica, P.; Ferlazzo, A. Seasonal patterns of circulating ß-endorphin, adrenocorticotropic hormone and cortisol levels in pregnant and barren mares. Bulg. J. Vet. Med. 2009, 12, 125–135. [Google Scholar]
- Faramarzi, B.; Rich, L.J.; Wu, J. Hematological and serum biochemical profile values in pregnant and non-pregnant mares. Can. J. Vet. Res. 2018, 82, 287–293. [Google Scholar]
- Frank, N.; Andrews, F.M.; Sommardahl, C.S.; Eiler, H.; Rohrbach, B.W.; Donnell, R.L. Evaluation of the combined dexamethasone suppression/thyrotropin-releasing hormone stimulation test for detection of pars intermedia pituitary adenomas in horses. J. Vet. Intern. Med. 2006, 20, 987–993. [Google Scholar] [PubMed]
- Jacob, S.I.; Geor, R.J.; Weber, P.S.D.; Harris, P.A.; McCue, M.E. Effect of age and dietary carbohydrate profiles on glucose and insulin dynamics in horses. Equine Vet. J. 2018, 50, 249–254. [Google Scholar] [CrossRef] [PubMed]
- Rapson, J.L.; Schott, H.C., 2nd; Nielsen, B.D.; McCutcheon, L.J.; Harris, P.A.; Geor, R.J. Effects of age and diet on glucose and insulin dynamics in the horse. Equine Vet. J. 2018, 50, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Miller, M.A.; Pardo, I.D.; Jackson, L.P.; Moore, G.E.; Sojka, J.E. Correlation of pituitary histomorphometry with adrenocorticotrophic hormone response to domperidone administration in the diagnosis of equine pituitary pars intermedia dysfunction. Vet. Pathol. 2008, 45, 26–38. [Google Scholar] [CrossRef] [PubMed]
- Warren, L.K.; Vineyard, K.R. Fat and fatty acids. In Equine Applied and Clinical Nutrition; Geor, R.J., Harris, P., Coenen, M., Eds.; Elsevier: St. Louis, MO, USA, 2013; pp. 136–155. [Google Scholar]
- Hart, K.A.; Wochele, D.M.; Norton, N.A.; McFarlane, D.; Wooldridge, A.A.; Frank, N. Effect of age, season, body condition, and endocrine status on serum free cortisol fraction and insulin concentration in horses. J. Vet. Intern. Med. 2016, 30, 653–663. [Google Scholar] [CrossRef]
- Liberati, T.A.; Sansone, S.R.; Feuston, M.H. Haematology and clinical chemistry values in pregnant Wistar Hannover rats compared with nonmated controls. Vet. Clin. Pathol. 2004, 33, 68–73. [Google Scholar] [CrossRef] [PubMed]
- Selvin, E.; Rawlings, A.; Grams, M.; Klein, R.; Sharrett, A.; Steffes, M.; Coresh, J. Fructosamine and glycated albumin for risk stratification and prediction of incident diabetes and microvascular complications: A prospective cohort analysis of the Atherosclerosis Risk in Communities (ARIC) study. Lancet Diabetes Endocrinol. 2014, 2, 279–288. [Google Scholar] [CrossRef] [PubMed]
- Satué, K.; Marcilla, M.; Medica, P.; Cravana, C.; Fazio, E. Temporal relationships of GH, IGF-I and fructosamine concentrations in pregnant Spanish Purebred mares: A substantial contribution from the hormonal standpoint. Theriogenology 2018, 118, 164–171. [Google Scholar] [CrossRef] [PubMed]
- Filipović, N.; Stojević, Z.; Prvanović, N. Serum fructosamine concentrations in relation to metabolic changes during late pregnancy and early lactation in mares. Berl. Und Münchener Tierärztliche Wochenschr. 2010, 123, 169–173. [Google Scholar]
- Fowden, A.L.; Forhead, A.J.; White, K.L.; Taylor, P.M. Equine uteroplacental metabolism at mid- and late gestation. Exp. Physiol. 2000, 85, 539.e45. [Google Scholar]
- Heidler, B.; Parvizi, N.; Sauerwein, H.; Bruckmaier, R.M.; Heintges, U.; Aurich, J.E.; Aurich, C. Effects of lactation on metabolic and reproductive hormones in Lipizzaner mares. Domest. Anim. Endocrinol. 2003, 25, 47.e59. [Google Scholar] [CrossRef] [PubMed]
- Wilsher, S.; Allen, W.R. Factors influencing placental development and function in the mare. Equine Vet. J. 2012, 44, 113.e9. [Google Scholar] [CrossRef] [PubMed]
- Fowden, A.L.; Gardner, D.S.; Ousey, J.C.; Giussani, D.A.; Forhead, A.J. Maturation of pancreatic beta cell function in the fetal horse during late gestation. J. Endocrinol. 2005, 186, 467–743. [Google Scholar] [CrossRef]
- Fowden, A.B.; Comline, R.S.; Silver, M. Insulin secretion and carbohydrate metabolism during pregnancy in the mare. Equine Vet. J. 1984, 16, 239–246. [Google Scholar] [CrossRef] [PubMed]
- Friedman, J.E.; Ishizuka, T.; Shao, J.; Huston, L.; Highman, T.; Catalano, P. Impaired glucose transport and insulin receptor tyrosine phosphorylation in skeletal muscle from obese women with gestational diabetes. Diabetes 1999, 48, 1807.e14. [Google Scholar] [CrossRef]
- Li, K.; Yang, H.X. Value of fructosamine measurement in pregnant women with abnormal glucose tolerance. Chin. Med. J. 2006, 119, 1861.e5. [Google Scholar] [CrossRef]
- Casella, S.; Vazzana, I.; Giudice, E.; Fazio, F.; Piccione, G. Relationship between serum cortisol levels and some physiological parameters following reining training session in horse. Anim. Sci. J. 2016, 87, 729–735. [Google Scholar] [CrossRef] [PubMed]
- Stewart, A.J.; Hackett, E.; Bertin, F.R.; Towns, T.J. Cortisol and adrenocorticotropic hormone concentrations in horses with systemic inflammatory response syndrome. J. Vet. Intern. Med. 2019, 33, 2257–2266. [Google Scholar] [CrossRef] [PubMed]
- Satué, K.; Domingo, R.; Redondo, J.I. 2011. Relationship between progesterone, oestrone sulphate and cortisol and the components of renin angiotensin aldosterone system in Spanish purebred broodmares during pregnancy. Theriogenology 2011, 76, 1404–1415. [Google Scholar] [CrossRef]
- Flisinska-Bojanowska, A.; Komosa, M.; Gill, J. Influence of pregnancy on diurnal and seasonal changes in cortisol, T3 and T4 levels in mare blood serum. Comp. Biochem. Physiol. 1991, 98, 23–30. [Google Scholar] [CrossRef]
- Gill, J.; Flisinska-Bojanowska, A.; Grzelkowska, K. Diurnal seasonal changes in the WBC number, neutrophil percentage and lysozyme activity in the blood of barren, pregnant and lactating mares. Adv. Agric. Sci. 1994, 3, 15–23. [Google Scholar]
- Tsumagari, S.; Higashino, T.; Takagi, K.; Ohba, S.; Satoh, S.; Takeishi, M. Changes of plasma concentrations of steroid hormones, prostaglandin F2 alpha-metabolite and pregnant mare serum gonadotropin during pregnancy in thoroughbred mares. J. Vet. Med. Sci. 1991, 53, 797–801. [Google Scholar] [CrossRef]
- Fazio, E.; Cravana, C.; Medica, P.; Quartuccio, M.; Tripodina, S.; Satué, K. A wide range of endocrine and haematochemical changes in the reproductive process of early pregnant mares. J. Equine Vet. Sci. 2019, 73, 63–69. [Google Scholar] [CrossRef]
- Gill, J.; Kompanowska-Jezierska, E.; Jakubow, K.; Kott, A.; Szumska, D. Seasonal changes in the white blood cell system, lyzozyme activity and cortisol level in arabian brood mares and their foals. Comp. Biochem. Physiol. Part A 1985, 81, 511–523. [Google Scholar] [CrossRef] [PubMed]
- Mizutani, S.; Sakura, H.; Akiyama, H.; Kobayashi, H. Simultaneous determinations of total cortisol and progesterone by radioimmunoassay during late pregnancy. Radioisotopes 1982, 31, 185–189. [Google Scholar] [CrossRef]
- Horn, R.; Stewart, A.J.; Jackson, K.V.; Dryburgh, E.L.; Medina-Torres, C.E.; Bertin, F.R. Clinical implications of using adrenocorticotropic hormone diagnostic cutoffs or reference intervals to diagnose pituitary pars intermedia dysfunction in mature horses. J. Vet. Intern. Med. 2021, 35, 560–570. [Google Scholar] [CrossRef] [PubMed]
- Yen, S.S.C. Endocrine metabolic adaptations in pregnancy. In Reproductive Endocrinology, Physiology, Pathophysiology and Clinical Management; Yen, S.S.C., Jaffe, R.B., Eds.; W. B. Saunders Company: Philadelphia, PA, USA, 1991; pp. 441–499. [Google Scholar]
- Père, M.C.; Etienne, M.; Dourmad, J.Y. Adaptations of glucose metabolism in multiparous sows: Effects of pregnancy and feeding level. J. Anim. Sci. 2000, 78, 2933–2941. [Google Scholar] [CrossRef]
- Herman, J.P.; McKlveen, J.M.; Ghosal, S.; Kopp, B.; Wulsin, A.; Makinson, R.; Scheimann, J.; Myers, B. Regulation of the Hypothalamic-Pituitary-Adrenocortical stress response. Compr. Physiol. 2016, 6, 603–621. [Google Scholar]
- Myers, B.; McKlveen, J.M.; Herman, J.P. Neural Regulation of the Stress Response: The Many Faces of Feedback. Cell Mol. Neurobiol. 2012, 352, 683–694. [Google Scholar] [CrossRef] [PubMed]
- Henneke, D.R.; Potter, G.D.; Kreider, J.K. Body condition during pregnancy and lactation and reproductive efficiency of mares. Theriogenology 1984, 21, 897–909. [Google Scholar] [CrossRef]
- Henneke, D.R.; Polter, G.; Kreider, J.; Yeates, B. Relationship between condition score, physical measurements and body fat percentage in mares. Equine Vet. J. 1983, 15, 371–372. [Google Scholar] [CrossRef]
CORT (ng/dL) | Insulin (mUI/mL) | FRUCT (µg/mL) | GLU (mg/dL) | |
---|---|---|---|---|
ACTH (pg/mL) | 0.01 | −0.13 | −0.26 | −0.10 |
CORT (ng/dL) | −0.01 | 0.36 | 0.13 | |
Insulin (mUI/mL) | 0.06 | 0.04 | ||
FRUCT (µg/mL) | 0.39 |
Month of pregnancy | Kg | BCS 4–5 | BCS 6–7 | BCS 8 |
---|---|---|---|---|
1 to 8 | Concentrate | 2.5 | 1.0 | 0 |
Hay | 10.0 | 9.0 | 7.5 | |
9 | Concentrate | 2.75 | 1.1 | 0 |
Hay | 11.0 | 9.9 | 8.25 | |
10 | Concentrate | 2.87 | 1.15 | 0.25 |
Hay | 11.5 | 10.3 | 8.5 | |
11 | Concentrate | 3.0 | 2.4 | 0.5 |
Hay | 12.0 | 10.8 | 8.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Satué, K.; La Fauci, D.; Medica, P.; Velasco-Martinez, M.G.; Cravana, C.; Bruschetta, G.; Fazio, E. The Bidirectional Interaction Between Insulin and the Hypothalamus–Pituitary–Adrenal Axis in Normal Pregnant Mares. Stresses 2025, 5, 4. https://doi.org/10.3390/stresses5010004
Satué K, La Fauci D, Medica P, Velasco-Martinez MG, Cravana C, Bruschetta G, Fazio E. The Bidirectional Interaction Between Insulin and the Hypothalamus–Pituitary–Adrenal Axis in Normal Pregnant Mares. Stresses. 2025; 5(1):4. https://doi.org/10.3390/stresses5010004
Chicago/Turabian StyleSatué, Katiuska, Deborah La Fauci, Pietro Medica, Maria Gemma Velasco-Martinez, Cristina Cravana, Giuseppe Bruschetta, and Esterina Fazio. 2025. "The Bidirectional Interaction Between Insulin and the Hypothalamus–Pituitary–Adrenal Axis in Normal Pregnant Mares" Stresses 5, no. 1: 4. https://doi.org/10.3390/stresses5010004
APA StyleSatué, K., La Fauci, D., Medica, P., Velasco-Martinez, M. G., Cravana, C., Bruschetta, G., & Fazio, E. (2025). The Bidirectional Interaction Between Insulin and the Hypothalamus–Pituitary–Adrenal Axis in Normal Pregnant Mares. Stresses, 5(1), 4. https://doi.org/10.3390/stresses5010004