Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets
Abstract
:1. Introduction
2. Results
2.1. Fecal Consistency Score
2.2. Prevalence of F4-ETEC Shedding in Piglets
2.3. F4-ETEC Concentration in Feces
2.4. Intestinal Histomorphometry
3. Discussion
4. Materials and Methods
4.1. Experimental Design
4.2. Animal Inclusion and Exclusion Criteria
4.3. Animal Housing and Management
4.4. Feed Preparation and Diet Composition
4.5. Recordings and Sample Collection
4.6. Laboratory Analysis
4.7. Statistical Analysis
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Heo, J.M.; Opapeju, F.O.; Pluske, J.R.; Kim, J.C.; Hampson, D.J.; Nyachoti, C.M. Gastrointestinal health and function in weaned pigs: A review of feeding strategies to control post—Weaning diarrhoea without using in—Feed antimicrobial compounds. J. Anim. Physiol. Anim. Nutr. 2013, 97, 207–237. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Duarte, M.E.; Sevarolli Loftus, A.; Kim, S.W. Intestinal Health of Pigs Upon Weaning: Challenges and Nutritional Intervention. Front. Vet. Sci. 2021, 8, 628258. [Google Scholar] [CrossRef] [PubMed]
- Gresse, R.; Chaucheyras-Durand, F.; Denis, S.; Beaumont, M.; Van De Wiele, T.; Forano, E.; Blanquet-Diot, S. Weaning-associated feed deprivation stress causes microbiota disruptions in a novel mucin-containing in vitro model of the piglet colon (MPigut-IVM). J. Anim. Sci. Biotechnol. 2021, 12, 75. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.; Song, M.; Liu, Y.; Ji, P. Enterotoxigenic Escherichia coli infection of weaned pigs: Intestinal challenges and nutritional intervention to enhance disease resistance. Front. Immunol. 2022, 13, 885253. [Google Scholar] [CrossRef]
- Da Silva, C.A.; Bentin, L.A.T.; Dias, C.P.; Callegari, M.A.; Facina, V.B.; Dias, F.T.F.; Passos, A.; Da Silva Martins, C.C.; Costa, M.C. Impact of zinc oxide, benzoic acid and probiotics on the performance and cecal microbiota of piglets. Anim. Microbiome 2021, 3, 86. [Google Scholar] [CrossRef] [PubMed]
- Zeng, Z.; Zhang, S.; Wang, H.; Piao, X. Essential oil and aromatic plants as feed additives in non-ruminant nutrition: A review. J. Anim. Sci. Biotechnol. 2015, 6, 7. [Google Scholar] [CrossRef]
- Liu, Y.; Song, M.; Che, T.M.; Almeida, J.A.S.; Lee, J.J.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Dietary plant extracts alleviate diarrhea and alter immune responses of weaned pigs experimentally infected with a pathogenic Escherichia coli. J. Anim. Sci. 2013, 91, 5294–5306. [Google Scholar] [CrossRef]
- Blavi, L.; Solà-Oriol, D.; Mallo, J.J.; Pérez, J.F. Anethol, cinnamaldehyde, and eugenol inclusion in feed affects postweaning performance and feeding behavior of piglets. J. Anim. Sci. 2016, 94, 5262–5271. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, A. Carvacrol: A Brief Analysis of Molecular Properties and Their Therapeutic Potential. Am. J. Med. Chem. 2020, 1. [Google Scholar] [CrossRef]
- Mączka, W.; Twardawska, M.; Grabarczyk, M.; Wińska, K. Carvacrol—A Natural Phenolic Compound with Antimicrobial Properties. Antibiotics 2023, 12, 824. [Google Scholar] [CrossRef]
- Asadi, S.; Nayeri-Fasaei, B.; Zahraei-Salehi, T.; Yahya-Rayat, R.; Shams, N.; Sharifi, A. Antibacterial and anti-biofilm properties of carvacrol alone and in combination with cefixime against Escherichia coli. BMC Microbiol. 2023, 23, 55. [Google Scholar] [CrossRef]
- Axmann, S.; Schorpp, A.; Strassgüttl, J.; Aumiller, T. Effects of phytogenic substances on growth and biofilm formation of Escherichia coli and Salmonella field isolates. Bodenkult. J. Land Manag. Food Environ. 2021, 72, 1–8. [Google Scholar] [CrossRef]
- Montoya, D.; D’Angelo, M.; Martín-Orúe, S.M.; Rodríguez-Sorrento, A.; Saladrigas-García, M.; Araujo, C.; Chabrillat, T.; Kerros, S.; Castillejos, L. Effectiveness of Two Plant-Based In-Feed Additives against an Escherichia coli F4 Oral Challenge in Weaned Piglets. Animals 2021, 11, 2024. [Google Scholar] [CrossRef]
- Chang, S.Y.; Lee, J.H.; Oh, H.J.; An, J.W.; Song, D.C.; Cho, H.A.; Park, S.H.; Jeon, K.H.; Cho, S.Y.; Kim, D.J.; et al. Effect of different ratios of phytogenic feed additives on growth performance, nutrient digestibility, intestinal barrier integrity, and immune response in weaned pigs challenged with a pathogenic Escherichia coli. J. Anim. Sci. 2023, 101, skad148. [Google Scholar] [CrossRef] [PubMed]
- Xun, W.; Shi, L.; Zhou, H.; Hou, G.; Cao, T.; Zhao, C. Effects of curcumin on growth performance, jejunal mucosal membrane integrity, morphology and immune status in weaned piglets challenged with enterotoxigenic Escherichia coli. Int. Immunopharmacol. 2015, 27, 46–52. [Google Scholar] [CrossRef] [PubMed]
- Pulido-Moran, M.; Moreno-Fernandez, J.; Ramirez-Tortosa, C.; Ramirez-Tortosa, M. Curcumin and Health. Molecules 2016, 21, 264. [Google Scholar] [CrossRef]
- Huang, C.M.; Lee, T.T. Immunomodulatory effects of phytogenics in chickens and pigs—A review. Asian-Australas. J. Anim. Sci. 2017, 31, 617. [Google Scholar] [CrossRef]
- Gupta, S.; Sung, B.; Kim, J.; Prasad, S.; Li, S.; Aggarwal, B. Multitargeting by turmeric, the golden spice: From kitchen to clinic. Mol. Nutr. Food Res. 2013, 57, 1510–1528. [Google Scholar] [CrossRef] [PubMed]
- Burt, S.A.; Ojo-Fakunle, V.T.A.; Woertman, J.; Veldhuizen, E.J.A. The Natural Antimicrobial Carvacrol Inhibits Quorum Sensing in Chromobacterium violaceum and Reduces Bacterial Biofilm Formation at Sub-Lethal Concentrations. PLoS ONE 2014, 9, e93414. [Google Scholar] [CrossRef]
- Mith, H.; Clinquart, A.; Zhiri, A.; Daube, G.; Delcenserie, V. The impact of oregano (Origanum heracleoticum) essential oil and carvacrol on virulence gene transcription by Escherichia coli O157:H7. FEMS Microbiol. Lett. 2015, 362, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Boyen, F.; Eeckhaut, V.; Immerseel, F.V.; Pasmans, F.; Ducatelle, R.; Haesebrouck, F. Quorum sensing in veterinary pathogens: Mechanisms, clinical importance and future perspectives. Vet. Microbiol. 2009, 135, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Middelkoop, A.; Kettunen, H.; Guan, X.; Vuorenmaa, J.; Tichelaar, R.; Gambino, M.; Rydal, M.P.; Molist, F. Effect of dietary tall oil fatty acids and hydrolysed yeast in SNP2-positive and SNP2-negative piglets challenged with F4 enterotoxigenic Escherichia coli. Sci. Rep. 2024, 14, 2060. [Google Scholar] [CrossRef] [PubMed]
- Osek, J. Prevalence of virulence factors of Escherichia coli strains isolated from diarrheic and healthy piglets after weaning. Vet. Microbiol. 1999, 68, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Hossain, M.M.; Begum, M.; Nyachoti, C.M.; Hancock, J.D.; Kim, I.H. Dietary fenugreek seed extract improves performance and reduces fecal E. coli counts and fecal gas emission in lactating sows and suckling piglets. Can. J. Anim. Sci. 2015, 95, 561–568. [Google Scholar] [CrossRef]
- Mohana Devi, S.; Lee, S.I.; Kim, I.H. Effect of phytogenics on growth performance, fecal score, blood profiles, fecal noxious gas emission, digestibility, and intestinal morphology of weanling pigs challenged with Escherichia coli K88. Pol. J. Vet. Sci. 2015, 18, 557–564. [Google Scholar] [CrossRef]
- Chang, S.Y.; Song, M.H.; Lee, J.H.; Oh, H.J.; Kim, Y.J.; An, J.W.; Go, Y.B.; Song, D.C.; Cho, H.A.; Cho, S.Y.; et al. Phytogenic feed additives alleviate pathogenic Escherichia coli-induced intestinal damage through improving barrier integrity and inhibiting inflammation in weaned pigs. J. Anim. Sci. Biotechnol. 2022, 13, 107. [Google Scholar] [CrossRef]
- Recharla, N.; Balasubramanian, B.; Song, M.; Puligundla, P.; Kim, S.-K.; Jeong, J.Y.; Park, S. Dietary turmeric (Curcuma longa L.) supplementation improves growth performance, short-chain fatty acid production, and modulates bacterial composition of weaned piglets. J. Anim. Sci. Technol. 2021, 63, 575–592. [Google Scholar] [CrossRef]
- Wang, Y.; Yang, Z.; Zhou, Y.; Tan, J.; Sun, H.; Sun, D.; Mu, Y.; Peng, J.; Wei, H. Effects of different amino acid levels and a carvacrol–thymol blend on growth performance and intestinal health of weaned pigs. J. Anim. Sci. Biotechnol. 2022, 13, 22. [Google Scholar] [CrossRef]
- Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P.; Luise, D.; Lauridsen, C.; Bosi, P.; Trevisi, P. Methodology and application of Escherichia coli F4 and F18 encoding infection models in post-weaning pigs. J. Anim. Sci. Biotechnol. 2019, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Gustafsson, J.K.; Johansson, M.E.V.; Gustafsson, J.K.; Johansson, M.E.V. The role of goblet cells and mucus in intestinal homeostasis. Nat. Rev. Gastroenterol. Hepatol. 2022, 19, 785–803. [Google Scholar] [CrossRef]
- Johansson, M.E.V.; Hansson, G.C. Immunological aspects of intestinal mucus and mucins. Nat. Rev. Immunol. 2016, 16, 639–649. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.J.; Morris, A.; Kayal, A.; Milošević, I.; Van, T.T.H.; Bajagai, Y.S.; Stanley, D. Pioneering gut health improvements in piglets with phytogenic feed additives. Appl. Microbiol. Biotechnol. 2024, 108, 142. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Song, M.; Yun, W.; Lee, J.; Lee, C.; Kwak, W.; Han, N.; Kim, H.; Cho, J. Effects of oral administration of different dosages of carvacrol essential oils on intestinal barrier function in broilers. J. Anim. Physiol. Anim. Nutr. 2018, 102, 1257–1265. [Google Scholar] [CrossRef] [PubMed]
- Ahsan, U.; Kuter, E.; Raza, I.; Köksal, B.; Cengiz, Ö.; Yıldız, M.; Kızanlık, P.; Kaya, M.; Tatlı, O.; Sevim, Ö. Dietary Supplementation of Different Levels of Phytogenic Feed Additive in Broiler Diets: The Dynamics of Growth Performance, Caecal Microbiota, and Intestinal Morphometry. Braz. J. Poult. Sci. 2018, 20, 737–746. [Google Scholar] [CrossRef]
- Periago, P.M.; Delgado, B.; Fernández, P.S.; Palop, A. Use of Carvacrol and Cymene To Control Growth and Viability of Listeria monocytogenes Cells and Predictions of Survivors Using Frequency Distribution Functions. J. Food Prot. 2004, 67, 1408–1416. [Google Scholar] [CrossRef]
- Guarda, A.; Rubilar, J.F.; Miltz, J.; Galotto, M.J. The antimicrobial activity of microencapsulated thymol and carvacrol. Int. J. Food Microbiol. 2011, 146, 144–150. [Google Scholar] [CrossRef]
- Daferera, D.J.; Ziogas, B.N.; Polissiou, M.G. The effectiveness of plant essential oils on the growth of Botrytis cinerea, Fusarium sp. and Clavibacter michiganensis subsp. michiganensis. Crop Prot. 2003, 22, 39–44. [Google Scholar] [CrossRef]
- Arora, D.S.; Kaur, J. Antimicrobial activity of spices. Int. J. Antimicrob. Agents 1999, 12, 257–262. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Nakata, R.; Katsukawa, M.; Hori, K.; Takahashi, S.; Inoue, H. Carvacrol, a component of thyme oil, activates PPARα and γ and suppresses COX-2 expression. J. Lipid Res. 2010, 51, 132–139. [Google Scholar] [CrossRef] [PubMed]
- da Silva, L.; Quintans-Júnior, L.J.; Santana, W.A.d.; Kaneto, C.M.; Soares, M.B.P.; Villarreal, C.F. Anti-inflammatory effects of carvacrol: Evidence for a key role of interleukin-10. Eur. J. Pharmacol. 2013, 699, 112–117. [Google Scholar] [CrossRef]
- Aeschbach, R.; Löliger, J.; Scott, B.C.; Murcia, A.; Butler, J.; Halliwell, B.; Aruoma, O.I. Antioxidant actions of thymol, carvacrol, 6-gingerol, zingerone and hydroxytyrosol. Food Chem. Toxicol. 1994, 32, 31–36. [Google Scholar] [CrossRef] [PubMed]
- Aydın, E.; Türkez, H.; Keleş, M.S. The effect of carvacrol on healthy neurons and N2a cancer cells: Some biochemical, anticancerogenicity and genotoxicity studies. Cytotechnology 2014, 66, 149–157. [Google Scholar] [CrossRef]
- Wei, H.-K.; Xue, H.-X.; Zhou, Z.X.; Peng, J. A carvacrol–thymol blend decreased intestinal oxidative stress and influenced selected microbes without changing the messenger RNA levels of tight junction proteins in jejunal mucosa of weaning piglets | animal | Cambridge Core. Animal 2017, 11, 193–201. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Zhang, J.; Zhang, H.; Chen, Y.; Wang, C.; Zhang, L.; Ding, L.; Wang, T.; Yang, Z. Influence of Trans-anethole on the nutrient digestibility and intestinal barrier function in broilers. Poult. Sci. 2021, 100, 101489. [Google Scholar] [CrossRef]
- Yu, C.; Wang, T.; Yang, Z. Effects of dietary supplementation of trans-anethole on the intestinal antioxidant status, immune function, and liver lipid metabolism in broilers. Ital. J. Anim. Sci. 2022, 21, 729–736. [Google Scholar] [CrossRef]
- Moniruzzaman, M.; Kim, D.; Kim, H.; Kim, N.; Chin, S.; Karthikeyan, A.; Han, K.; Min, T. Evaluation of dietary curcumin nanospheres as phytobiotics on growth performance, serum biochemistry, nutritional composition, meat quality, gastrointestinal health, and fecal condition of finishing pigs. Front. Vet. Sci. 2023, 10, 1127309. [Google Scholar] [CrossRef] [PubMed]
- Moniruzzaman, M.; Min, T. Curcumin, Curcumin Nanoparticles and Curcumin Nanospheres: A Review on Their Pharmacodynamics Based on Monogastric Farm Animal, Poultry and Fish Nutrition. Pharmaceutics 2020, 12, 447. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Song, M.; Che, T.M.; Lee, J.J.; Bravo, D.; Maddox, C.W.; Pettigrew, J.E. Dietary plant extracts modulate gene expression profiles in ileal mucosa of weaned pigs after an Escherichia coli infection. J. Anim. Sci. 2014, 92, 2050–2062. [Google Scholar] [CrossRef]
- Garg, R.C. Fenugreek: Multiple Health Benefits. In Nutraceuticals; Academic Press: Cambridge, MA, USA, 2016. [Google Scholar] [CrossRef]
- Monteagudo-Mera, A.; Rastall, R.A.; Gibson, G.R.; Charalampopoulos, D.; Chatzifragkou, A. Adhesion mechanisms mediated by probiotics and prebiotics and their potential impact on human health. Appl. Microbiol. Biotechnol. 2019, 103, 6463–6472. [Google Scholar] [CrossRef]
- Begum, M.; Hossain, M.M.; Kim, I.H. Effects of fenugreek seed extract supplementation on growth performance, nutrient digestibility, diarrhoea scores, blood profiles, faecal microflora and faecal noxious gas emission in weanling piglets. J. Anim. Physiol. Anim. Nutr. 2016, 100, 1121–1129. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Chen, Y.; Min, B.; Kim, H.; Kwon, O.; Shon, K.; Kim, I.; Kim, S.; Asamer, A. Effects of essential oils supplementation on growth performance, IgG concentration and fecal noxious gas concentration of weaned pigs. Asian-Australas. J. Anim. Sci. 2006, 19, 80–85. [Google Scholar] [CrossRef]
- Sturbelle, R.T.; Avila, L.F.D.C.D.; Roos, T.B.; Borchardt, J.L.; De Cássia Dos Santos Da Conceição, R.; Dellagostin, O.A.; Leite, F.P.L. The role of quorum sensing in Escherichia coli (ETEC) virulence factors. Vet. Microbiol. 2015, 180, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Santos, R.R.; Koopmans, S.J.; Molist, F.; Guan, X.; Santos, R.R.; Koopmans, S.J.; Molist, F. Effects of the Inclusion of Dietary Bitter Gourd (Momordica charantia) on the Performance and Carcass Characteristics of Pigs: Potential Application in the Feed Chain. Animals 2023, 13, 2159. [Google Scholar] [CrossRef]
- ISO 6496:1999; Animal Feeding Stuffs-Determination of Moisture and Other Volatile Matter Content. Nederlands Normalisatie-Instituut: Delft, The Netherlands, 1999.
- ISO 16634-2:2016; Food Products. Determination of the Total Nitrogen Content by Combustion According to the Dumas Principle and Calculation of the Crude Protein Content. Part 2: Cereals, Pulses and Milled Cereal Products. Nederlands Normalisatie-Instituut: Delft, The Netherlands, 2016.
- ISO 5984:2003/C1:2005; Animal Feeding Stuffs-Determination of Crude Ash. Nederlands Normalisatie-Instituut: Delft, The Netherlands, 2005.
- ISO 6492:1999; Animal Feeding Stuffs-Determination of Fat Content. Nederlands Normalisatie-instituut: Delft, The Netherlands, 1999.
- ISO 6865:2001; Animal Feeding Stuffs-Determination of Crude Fibre Content-Method with Intermediate Filtration. Nederlands Normalisatie-instituut: Delft, The Netherlands, 2001.
- ISO 15914:2004; Animal Feeding Stuffs-Enzymatic Determination of Total Starch Content. Nederlands Normalisatie-Instituut: Delft, The Netherlands, 2004.
PC | NC | PFA | SEM | p-Value | |
---|---|---|---|---|---|
Jejunum | |||||
Villus height (VH), µm | 543 | 538 | 558 | 39.5 | 0.78 |
Crypt depth (CD), µm | 189 | 185 | 203 | 15.4 | 0.54 |
VH:CD ratio | 3.1 | 3.3 | 3.0 | 0.44 | 0.57 |
Goblet cells (GC), n/villi | 3.7 b | 5.0 b | 7.4 a | 0.68 | 0.002 |
GC, n/100 µm | 0.69 b | 0.99 ab | 1.37 a | 0.186 | 0.010 |
Mucus thickness, µm | 1.617 b | 2.111 a | 1.652 ab | 0.205 | 0.035 |
Colon | |||||
CD, µm | 480 | 489 | 475 | 30.2 | 0.90 |
GC, n/crypt | 31.7 | 29.6 | 34.7 | 2.74 | 0.40 |
GC, n/100 µm | 6.70 | 5.94 | 7.28 | 0.512 | 0.11 |
Mucus thickness, µm | 1.185 | 1.204 | 1.142 | 0.095 | 0.72 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alberto, T.-P.; Keiner, A.; Le Gall, M.; Molist, F.; Guan, X.; Middelkoop, A.; Jiménez-Moreno, E.; Balfagón, A.; Mantovani, G.; Nofrarías, M.; et al. Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets. Stresses 2025, 5, 8. https://doi.org/10.3390/stresses5010008
Alberto T-P, Keiner A, Le Gall M, Molist F, Guan X, Middelkoop A, Jiménez-Moreno E, Balfagón A, Mantovani G, Nofrarías M, et al. Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets. Stresses. 2025; 5(1):8. https://doi.org/10.3390/stresses5010008
Chicago/Turabian StyleAlberto, Torres-Pitarch, Anja Keiner, Maud Le Gall, Francesc Molist, Xiaonan Guan, Anouschka Middelkoop, Encarnación Jiménez-Moreno, Aitor Balfagón, Graziano Mantovani, Miquel Nofrarías, and et al. 2025. "Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets" Stresses 5, no. 1: 8. https://doi.org/10.3390/stresses5010008
APA StyleAlberto, T.-P., Keiner, A., Le Gall, M., Molist, F., Guan, X., Middelkoop, A., Jiménez-Moreno, E., Balfagón, A., Mantovani, G., Nofrarías, M., & Aumiller, T. (2025). Impact of a Phytogenic Feed Additive on Diarrhea Incidence, Intestinal Histomorphology and Fecal Excretion of F4-Fimbriated Enterotoxigenic Escherichia coli in Post-Weaning Piglets. Stresses, 5(1), 8. https://doi.org/10.3390/stresses5010008