Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Aquaponic Facility Description
2.2. Drum Screen Effluent Collection, Effluent and Feed Analysis, and Nutrient Characterization
2.3. Continuously Mixed Batch Reactor Design
2.4. Experimental Design
2.5. Reactor Operation and Sample Analysis
2.6. Statistical Analysis
3. Results
3.1. Feed and Effluent Nutrient Analysis
3.2. Reactor Sample Analysis
3.3. Carbon, Nitrogen, and Sulfur Mass Analysis
3.4. Final Nutrient Analysis
4. Discussion
4.1. Feed and Drum Screen Effluent Nutrient Profiles
4.2. Abiotic Controls Confirm Microbial Mineralization in AT Reactors
4.3. AT Reactor Solids Reductions and Biological Activity
4.4. Treated Effluent Nutrient Profile
4.5. Organic Carbon Removal
4.6. Future Research for Improved Treatment
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Van Rijn, J. The potential for integrated biological treatment systems in recirculating fish culture—A review. Aquacultue 1996, 139, 181–201. [Google Scholar] [CrossRef]
- Gelfand, I.; Barak, Y.; Even-Chen, Z.; Cytryn, E.; van Rijn, J.; Krom, M.D.; Neori, A. A Novel Zero Discharge Intensive Seawater Recirculating System for the Culture of Marine Fish. J. World Aquac. Soc. 2003, 34, 344–358. [Google Scholar] [CrossRef]
- Timmons, M.; Guerdat, T.; Vinci, B.J. Recirculating Aquaculture, 4th ed.; Ithaca Publishing Company, LLC: Vero Beach, FL, USA, 2018; pp. 2–25. [Google Scholar]
- Miller, D.; Semmens, K. Waste Management in Aquaculture. Aquaculture 2002, 1–10. Available online: https://freshwater-aquaculture.extension.org/wp-content/uploads/2019/08/WasteManagemetninAquaculture.pdf (accessed on 14 December 2020).
- EPA (United States Environmental Protection Agency). Effluent Limitations Guidelines and New Source Performance Standards for the Concentrated Aquatic Animal Production Point Source Category; Final Rule. 40 CFR Part 451; EPA: Washington, DC, USA, 2004. [Google Scholar]
- Sharrer, M.; Rishel, K.; Taylor, A.; Vinci, B.J.; Summerfelt, S.T. The cost and effectiveness of solids thickening technologies for treating backwash and recovering nutrients from intensive aquaculture systems. Bioresour. Technol. 2010, 101, 6630–6641. [Google Scholar] [CrossRef] [Green Version]
- Tsani, S.; Koundouri, P. A Methodological Note for the Development of Integrated Aquaculture Production Models. Front. Mar. Sci. 2018, 4, 406. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Delaide, B.; Mankasingh, U.; Ragnarsdottir, K.V.; Jijakli, H.; Thorarinsdottir, R. Challenges of Sustainable and Commercial Aquaponics. Sustainability 2015, 7, 4199–4224. [Google Scholar] [CrossRef] [Green Version]
- Delaide, B.; Goddek, S.; Gott, J.; Soyeurt, H.; Jijakli, M.H. Lettuce (Lactuca sativa L. var. Sucrine) Growth Performance in Complemented Aquaponic Solution Outperforms Hydroponics. Water 2016, 8, 467. [Google Scholar] [CrossRef]
- Bhatt, A.H.; Tao, L. Economic Perspectives of Biogas Production via Anaerobic Digestion. Bioengineering 2020, 7, 74. [Google Scholar] [CrossRef]
- Caruso, M.C.; Braghieri, A.; Capece, A.; Napolitano, F.; Romano, P.; Galgano, F.; Altieri, G.; Genovese, F. Recent Updates on the Use of Agro-Food Waste for Biogas Production. Appl. Sci. 2019, 9, 1217. [Google Scholar] [CrossRef] [Green Version]
- Bhatt, A.H.; Ren, Z.J.; Tao, L. Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. iScience 2020, 23, 101221. [Google Scholar] [CrossRef]
- Lee, U.; Benavides, P.T.; Wang, M. Waste-To-Energy: Multi-Criteria Decision Analysis for Sustainability Assessment and Ranking; Academic Press: Cambridge, MA, USA, 2020; pp. 213–233. [Google Scholar]
- Schneider, O.; Sereti, V.; Eding, E.H.; Verreth, J.A.J. Analysis of nutrient flows in integrated intensive aquaculture systems. Aquac. Eng. 2005, 32, 379–401. [Google Scholar] [CrossRef]
- Henckens, M.L.C.M.; van Ierland, E.; Driessen, P.P.J.; Worrell, E. Mineral resources: Geological scarcity, market price trends, and future generations. Resour. Policy 2016, 49, 102–111. [Google Scholar] [CrossRef] [Green Version]
- Yogev, U.; Sowers, K.R.; Mozes, N.; Gross, A. Nitrogen and carbon balance in a novel near-zero water exchange saline recirculating aquaculture system. Aquaculture 2017, 467, 118–126. [Google Scholar] [CrossRef]
- Goddek, S.; Joyce, A.; Kotzen, B.; Burnell, G. Aquaponics Food Production Systems: Combined Aquaculture and Hydroponic Production Technologies for the Future; Springer Open: Berlin/Heidelberg, Germany, 2019; pp. 247–266. [Google Scholar]
- Chen, Y.; Cheng, J.J.; Creamer, K.S. Inhibition of anaerobic digestion process: A review. Bioresour. Technol. 2008, 99, 4044–4064. [Google Scholar] [CrossRef]
- Parkin, G.F.; Owen, W.F. Fundamentals of Anaerobic Digestion of Wastewater Sludges. J. Environ. Eng. 1986, 112, 867–920. [Google Scholar] [CrossRef]
- Fan, Y.V.; Klemeš, J.J.; Lee, C.T.; Perry, S. Anaerobic digestion of municipal solid waste: Energy and carbon emission footprint. J. Environ. Manag. 2018, 223, 888–897. [Google Scholar] [CrossRef]
- Ma, J.; Frear, C.; Wang, Z.-W.; Yu, L.; Zhao, Q.; Li, X.; Chen, S. A simple methodology for rate-limiting step determination for anaerobic digestion of complex substrates and effect of microbial community ratio. Bioresour. Technol. 2013, 134, 391–395. [Google Scholar] [CrossRef]
- Anukam, A.; Mohammadi, A.; Naqvi, M.; Granström, K. A Review of the Chemistry of Anaerobic Digestion: Methods of Accelerating and Optimizing Process Efficiency. Processes 2019, 7, 504. [Google Scholar] [CrossRef] [Green Version]
- Goddek, S.; Delaide, B.P.; Joyce, A.; Wuertz, S.; Jijakli, M.H.; Gross, A.; Eding, E.H.; Bläser, I.; Reuter, M.; Keizer, L.P.; et al. Nutrient mineralization and organic matter reduction performance of RAS-based sludge in sequential UASB-EGSB reactors. Aquac. Eng. 2018, 83, 10–19. [Google Scholar] [CrossRef]
- Delaide, B.; Goddek, S.; Keesman, K.J.; Jijakli, M.H.M. A methodology to quantify the aerobic and anaerobic sludge digestion performance for nutrient recycling in Aquaponics. Biotechnol. Agron. Soc. Environ. 2018, 22, 106–112. [Google Scholar] [CrossRef]
- Monsees, H.; Keitel, J.; Paul, M.; Kloas, W.; Wuertz, S. Potential of aquacultural sludge treatment for aquaponics: Evaluation of nutrient mobilization under aerobic and anaerobic conditions. Aquac. Environ. Interact. 2017, 9, 9–18. [Google Scholar] [CrossRef] [Green Version]
- Conroy, J.; Couturier, M. Dissolution of minerals during hydrolysis of fish waste solids. Aquaculture 2010, 298, 220–225. [Google Scholar] [CrossRef]
- Losordo, T.M.; Hobbs, A.O.; DeLong, D.P. The design and operational characteristics of the CP&L/EPRI fish barn: A demonstration of recirculating aquaculture technology. Aquac. Eng. 2000, 22, 3–16. [Google Scholar] [CrossRef]
- DeLong, D.; Losordo, T.; Rakocy, J. Tank Culture of Tilapia; Southern Regional Aquaculture Center: Stoneville, MS, USA, 2009. [Google Scholar]
- Mattson, N.; Peters, C. A Recipe for Hydroponic Success. Inside Grower. January 2014, pp. 16–19. Available online: https://dokumen.tips/documents/a-recipe-for-hydroponic-successpdf.html (accessed on 14 December 2020).
- Standard Methods. Standard Methods for the Examination of Water and Wastewater, 19th ed.; American Public Health Association: Washington, DC, USA, 2012; pp. 2–71. [Google Scholar]
- Merriam, J.; McDowell, W.H.; Currie, W.S. A High-Temperature Catalytic Oxidation Technique for Determining Total Dissolved Nitrogen. Soil Sci. Soc. Am. J. 1996, 60, 1050–1055. [Google Scholar] [CrossRef] [Green Version]
- Barbot, E.; Seyssiecq, I.; Roche, N.; Marrot, B. Inhibition of activated sludge respiration by sodium azide addition: Effect on rheology and oxygen transfer. Chem. Eng. J. 2010, 163, 230–235. [Google Scholar] [CrossRef]
- Cioabla, A.E.; Ionel, I.; Dumitrel, G.-A.; Popescu, F. Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol. Biofuels 2012, 5, 39. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cordell, D.; Drangert, J.-O.; White, S. The story of phosphorus: Global food security and food for thought. Glob. Environ. Chang. 2009, 19, 292–305. [Google Scholar] [CrossRef]
- Lee, J.G.; Lee, B.Y.; Lee, H.J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce (Lactuca sativa L.). Sci. Hortic. 2006, 110, 119–128. [Google Scholar] [CrossRef]
- Furtner, B.; Bergstrand, K.J.; Brand, T.; Jung, V.; Alsanius, B.W. Abiotic and biotic factors in slow filters integrated to closed hydroponic systems. Eur. J. Hortic. Sci. 2007, 72, 104–112. [Google Scholar]
- Guerdat, T.C.; Losordo, T.M.; Delong, D.P.; Jones, R.D. An evaluation of solid waste capture from recirculating aquaculture systems using a geotextile bag system with a flocculant-aid. Aquac. Eng. 2013, 54, 1–8. [Google Scholar] [CrossRef]
- Anderson, T. Biological Responses of Lettuce to Hydroponic and Aquaponic Conditions. Master’s Thesis, Cornell University, Ithaca, NY, USA, 2016. [Google Scholar]
- Marschner, H. Mineral Nutrition of Higher Plants, 3rd ed.; Academic Press: Cambridge, MA, USA, 2011; pp. 135–150, 151–157. [Google Scholar]
- Gerardi, M. ORP Management in Wastewater as an Indicator of Process Efficiency; Interstate Water Report; NEIWPCC: Lowell, MA, USA, 2007. [Google Scholar]
- Dabkowski, B. Applying Oxidation Reduction Potential Sensors in Biological Nutrient Removal Systems. Proc. Water Environ. Fed. 2008, 2008, 3033–3042. [Google Scholar] [CrossRef] [Green Version]
- Etienne, P.; Sorin, E.; Maillard, A.; Gallardo, K.; Arkoun, M.; Guerrand, J.; Cruz, F.; Yvin, J.-C.; Ourry, A. Assessment of Sulfur Deficiency under Field Conditions by Single Measurements of Sulfur, Chloride and Phosphorus in Mature Leaves. Plants 2018, 7, 37. [Google Scholar] [CrossRef] [Green Version]
- Ikeda, H.; Osawa, T. Nitrate- and Ammonium-N Absorption by Vegetables from Nutrient Solution Containing Ammonium Nitrate and the Resultant Change of Solution pH. J. Jpn. Soc. Hortic. Sci. 1981, 50, 225–230. [Google Scholar] [CrossRef] [Green Version]
- Shinohara, M.; Aoyama, C.; Fujiwara, K.; Watanabe, A.; Ohmori, H.; Uehara, Y.; Takano, M. Microbial mineralization of organic nitrogen into nitrate to allow the use of organic fertilizer in hydroponics. Soil Sci. Plant Nutr. 2011, 57, 190–203. [Google Scholar] [CrossRef]
- Gilbert, F.A. The place of sulfur in plant nutrition. Bot. Rev. 1951, 17, 671–691. [Google Scholar] [CrossRef]
- Zhang, T.; Jiang, R.; Deng, Y. Phosphorus Recovery by Struvite Crystallization from Livestock Wastewater and Reuse as Fertilizer: A Review. Phys. Chem. Wastewater Treat. Resour. Recovery 2017, 135–152. [Google Scholar] [CrossRef]
- Cooil, B.; Slattery, M. Effects of potassium deficiency and excess upon certain carbohydrate and nitrogenous con-stituents in guayule1. Plant Physiol. 1948, 234, 425–442. [Google Scholar] [CrossRef] [Green Version]
- Yaron, S.; Römling, U. Biofilm formation by enteric pathogens and its role in plant colonization and persistence. Microb. Biotechnol. 2014, 7, 496–516. [Google Scholar] [CrossRef]
- Garland, J.L.; Mackowiak, C.L.; Strayer, R.F.; Finger, B.W. Integration of waste processing and biomass production systems as part of the KSC Breadboard project. Adv. Space Res. 1997, 20, 1821–1826. [Google Scholar] [CrossRef]
- Schooley, K.; Bourgier, V.; Lawson, R. Evaporation and Crystallisation Challenges. World Fertilizer, 2017. Available online: https://www.cabdirect.org/cabdirect/abstract/20163275073 (accessed on 14 December 2020).
- Hamelin, L.; Naroznova, I.; Wenzel, H. Environmental consequences of different carbon alternatives for increased manure-based biogas. Appl. Energy 2014, 114, 774–782. [Google Scholar] [CrossRef]
- Hamelin, L.; Wesnæs, M.; Wenzel, H.; Petersen, B.M. Environmental Consequences of Future Biogas Technologies Based on Separated Slurry. Environ. Sci. Technol. 2011, 45, 5869–5877. [Google Scholar] [CrossRef]
- Gunaseelan, V.N. Anaerobic digestion of biomass for methane production: A review. Biomass Bioenergy 1997, 13, 83–114. [Google Scholar] [CrossRef]
- Ge, H.; Jensen, P.D.; Batstone, D.J. Relative kinetics of anaerobic digestion under thermophilic and mesophilic conditions. Water Sci. Technol. 2011, 64, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Venkiteshwaran, K.; Bocher, B.; Maki, J.; Zitomer, D. Relating Anaerobic Digestion Microbial Community and Process Function: Supplementary Issue: Water Microbiology. Microbiol. Insights 2015, 8, 37–44. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bergland, W.H.; Dinamarca, C.; Bakke, R. Temperature Effects in Anaerobic Digestion Modeling. In Proceedings of the 56th Conference on Simulation and Modelling (SIMS 56), Linköping, Sweden, 7–9 October 2015; pp. 261–269. [Google Scholar]
- Gebreeyessus, G.D.; Jenicek, P. Thermophilic versus Mesophilic Anaerobic Digestion of Sewage Sludge: A Comparative Review. Bioengineering 2016, 3, 15. [Google Scholar] [CrossRef]
- Ruffino, B.; Campo, G.; Genon, G.; Lorenzi, E.; Novarino, D.; Scibilia, G.; Zanetti, M. Improvement of anaerobic digestion of sewage sludge in a wastewater treatment plant by means of mechanical and thermal pre-treatments: Performance, energy and economical assessment. Bioresour. Technol. 2015, 175, 298–308. [Google Scholar] [CrossRef] [PubMed]
- Borzacconi, L.; López, I.; Ohanian, M.; Viñas, M. Anaerobic-Aerobic Treatment of Municipal Solid Waste Leachate. Environ. Technol. 1999, 20, 211–217. [Google Scholar] [CrossRef]
- Del Pozo, R.; Diez, V. Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res. 2003, 37, 3561–3568. [Google Scholar] [CrossRef]
- Maier, R.; Pepper, I.; Gerba, C. Environmental Microbiology, 2nd ed.; Academic Press: Cambridge, MA, USA, 2009; pp. 38–54. [Google Scholar]
- Mata-Alvarez, J.; Macé, S.; Llabrés, P. Anaerobic digestion of organic solid wastes. An overview of research achievements and perspectives. Bioresour. Technol. 2000, 74, 3–16. [Google Scholar] [CrossRef]
Macro-Nutrients | ||||||||
---|---|---|---|---|---|---|---|---|
Nutrient | N * | P * | K * | Ca * | Mg * | S † | ||
Feed | 6.44 | 0.97 | 0.96 | 1.17 | 0.14 | 1024 | ||
Micro-Nutrients | ||||||||
Nutrient | Fe † | Mn † | B † | Cu † | Zn † | Mo † | Na † | Al † |
Feed | 209 | 91.8 | 5.9 | 46.5 | 89.6 | 4.13 | 2051 | 0 |
Nutrient | Total Drum Screen Effluent(mg/L) | Aqueous (%) | Particulate (%) |
---|---|---|---|
TOC | 151 | 18.83 | 81.17 |
Macro-nutrients | |||
N | 143 | 88.54 | 11.46 |
P | 5.13 | 31.76 | 68.24 |
K † | 303 | 99.96 | 0.04 |
Ca | 21.3 | 72.80 | 27.20 |
Mg | 17.6 | 96.93 | 3.07 |
S | 23.2 | 99.61 | 0.39 |
Micro-nutrients | |||
Fe † | 1.78 | 87.74 | 12.26 |
Mn | 0.16 | 80.43 | 19.57 |
Cu | 0.15 | 80.04 | 19.96 |
Zn | 0.74 | 94.20 | 5.80 |
Na | 34.6 | 99.62 | 0.38 |
Parameter | AT Reactors | Abiotic Controls | p-Value between Treatments |
---|---|---|---|
Temperature (°C) | 22.6 ± 1.32 | 23.4 ± 1.17 | =0.0398 |
DO (MG/L) | 0.96 ± 0.22 | 4.1 ± 1.04 | <0.0001 |
pH | 7.5 ± 0.28 | 7.3 ± 0.13 | =0.0003 |
Nutrient | Initial Effluent (% Aqueous) | Post-AT (% Aqueous) |
---|---|---|
TOC | 18.83 | 86.36 ± 10.8 |
Macro-nutrients | ||
N | 88.54 | 93.83 ± 4.23 |
P | 31.76 | 99.53 ± 0.20 |
Ca | 72.80 | 98.93 ± 0.45 |
Mg | 96.93 | 99.78 ± 0.07 |
Micro-nutrients | ||
Fe † | 87.74 | 98.91 ± 1.58 |
Mn | 80.43 | 99.52 ± 0.26 |
Cu | 80.04 | 91.61 ± 11.7 |
Zn | 94.20 | 86.85 ± 5.18 |
Nutrient | Anaerobic (mg/L) | Jack’s Hydroponic (mg/L) |
---|---|---|
Macro-nutrients | ||
N | 23.1 | 150 |
P | 5.11 | 39 |
K † | 303 | 162 |
Ca | 21.1 | 139 |
Mg | 17.6 | 47 |
S | 3.14 | N/A |
Micro-nutrients | ||
Fe † | 1.8 | 2.3 |
Mn | 0.16 | 0.38 |
Cu | 0.137 | 0.113 |
Zn | 0.74 | 0.11 |
Na | 34.6 | N/A |
Nutrient | Untreated Effluent (ppm) | AT Reactors (ppm) | Jack’s Hydroponic (ppm) |
---|---|---|---|
Macro-nutrients | |||
N | 10.0 | 10.0 | 10.0 |
P | 0.12 | 2.21 | 2.60 |
K † | 22.3 | 131 | 10.8 |
Ca | 1.14 | 9.13 | 9.27 |
S | 1.70 | 1.36 | N/A |
Micro-Nutrients | |||
Na | 2.54 | 15.0 | N/A |
Fe † | 1.04 | 1.20 | 1.53 |
Mn | 0.09 | 0.11 | 0.25 |
Cu | 0.08 | 0.09 | 0.08 |
Zn | 0.47 | 0.49 | 0.07 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tetreault, J.; Fogle, R.; Guerdat, T. Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems. Conservation 2021, 1, 151-167. https://doi.org/10.3390/conservation1030013
Tetreault J, Fogle R, Guerdat T. Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems. Conservation. 2021; 1(3):151-167. https://doi.org/10.3390/conservation1030013
Chicago/Turabian StyleTetreault, Joseph, Rachel Fogle, and Todd Guerdat. 2021. "Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems" Conservation 1, no. 3: 151-167. https://doi.org/10.3390/conservation1030013
APA StyleTetreault, J., Fogle, R., & Guerdat, T. (2021). Anaerobic Mineralization of Recirculating Aquaculture Drum Screen Effluent for Use as a Naturally-Derived Nutrient Solution in Hydroponic Cropping Systems. Conservation, 1(3), 151-167. https://doi.org/10.3390/conservation1030013