X-ray and Nuclear Spectroscopies to Reveal the Element-Specific Oxidation States and Electronic Spin States for Nanoparticulated Manganese Cyanidoferrates and Analogs
Abstract
:1. Introduction
2. Experiments and Materials
2.1. L-Edge XAS Measurements
2.2. NRVS Measurements
2.3. Sample Preparation and Basic Characterization
3. Results and Discussion
3.1. Manganese L-Edge XAS
3.2. Cobalt L-Edge XAS
3.3. Iron L-Edge XAS
3.4. 57Fe NRVS
4. Conclusions
5. Future Work
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Geraldes, C.F.G.C.; Laurent, S. Classification and basic properties of contrast agents for magnetic resonance imaging. Contrast Media Mol. Imaging 2009, 4, 1–23. [Google Scholar] [CrossRef] [PubMed]
- Tınaz, Ş.; Stern, C.E. Principles of Functional Magnetic Resonance Imaging and its Applications in Cognitive Neuroscience. Turk. J. Neurol. 2005, 11, 8–26. [Google Scholar]
- Parizel, P.M.; van den Hauwe, L.; De Belder, F.; Van Goethem, J.; Venstermans, C.; Salgado, R.; Voormolen, M.; Van Hecke, W. Magnetic Resonance Imaging of the Brain. In Clinical MR Imaging; Reimer, P., Parizel, P.M., Meaney, J.F.M., Stichnoth, F.A., Eds.; Springer: Berlin, Heidelberg, 2010; pp. 107–195. [Google Scholar] [CrossRef]
- Llamas, M. Gadolinium-Based Contrast Agents. Available online: https://www.drugwatch.com/gadolinium/ (accessed on 12 December 2023).
- Fraum, T.J.; Ludwig, D.R.; Bashir, M.R.; Fowler, K.J. Gadolinium-based contrast agents: A comprehensive risk assessment. J. Magn. Reson. Imaging 2017, 46, 338–353. [Google Scholar] [CrossRef] [PubMed]
- Wahsner, J.; Gale, E.M.; Rodríguez-Rodríguez, A.; Caravan, P. Chemistry of MRI Contrast Agents: Current Challenges and New Frontiers. Chem. Rev. 2019, 119, 957–1057. [Google Scholar] [CrossRef] [PubMed]
- Cowper, S.E.; Robin, H.S.; Steinberg, S.M.; Su, L.D.; Gupta, S.; LeBoit, P.E. Scleromyxoedema-like cutaneous diseases in renal-dialysis patients. Lancet 2000, 356, 1000. [Google Scholar] [CrossRef] [PubMed]
- George, S.J.; Webb, S.M.; Abraham, J.L.; Cramer, S.P. Synchrotron X-ray analyses demonstrate phosphate-bound gadolinium in skin in nephrogenic systemic fibrosis. Br. J. Dermatol. 2010, 163, 1077–1081. [Google Scholar] [CrossRef]
- Perazella, M.A. Current Status of Gadolinium Toxicity in Patients with Kidney Disease. Clin. J. Am. Soc. Nephrol. 2009, 4, 461–469. [Google Scholar] [CrossRef]
- Weller, A.; Barber, J.L.; Olsen, Ø.E. Gadolinium and nephrogenic systemic fibrosis: An update. Pediatr. Nephrol. 2014, 29, 1927–1937. [Google Scholar] [CrossRef]
- Le Fur, M.; Caravan, P. The biological fate of gadolinium-based MRI contrast agents: A call to action for bioinorganic chemists. Metallomics 2019, 11, 240–254. [Google Scholar] [CrossRef]
- Schieda, N.; Blaichman, J.I.; Costa, A.F.; Glikstein, R.; Hurrell, C.; James, M.; Jabehdar Maralani, P.; Shabana, W.; Tang, A.; Tsampalieros, A.; et al. Gadolinium-Based Contrast Agents in Kidney Disease: A Comprehensive Review and Clinical Practice Guideline Issued by the Canadian Association of Radiologists. Can. J. Kidney Health Dis. 2018, 5, 2054358118778573. [Google Scholar] [CrossRef]
- Do, C.; DeAguero, J.; Brearley, A.; Trejo, X.; Howard, T.; Escobar, G.P.; Wagner, B. Gadolinium-Based Contrast Agent Use, Their Safety, and Practice Evolution. Kidney360 2020, 1, 561–568. [Google Scholar] [CrossRef] [PubMed]
- FDA. FDA Drug Safety Communication: FDA Warns that Gadolinium-Based Contrast Agents (GBCAs) Are Retained in the Body; Requires New Class Warnings. Available online: https://www.fda.gov/drugs/drug-safety-and-availability/fda-drug-safety-communication-fda-warns-gadolinium-based-contrast-agents-gbcas-are-retained-body (accessed on 12 December 2023).
- Winter, M.B.; Klemm, P.J.; Phillips-Piro, C.M.; Raymond, K.N.; Marletta, M.A. Porphyrin-Substituted H-NOX Proteins as High-Relaxivity MRI Contrast Agents. Inorg. Chem. 2013, 52, 2277–2279. [Google Scholar] [CrossRef] [PubMed]
- Young, I.R.; Clarke, G.J.; Bailes, D.R.; Pennock, J.M.; Doyle, F.H.; Bydder, G.M. Enhancement of Relaxation Rate with Paramagnetic Contrast Agents in Nmr Imaging. J. Comput. Tomogr. 1981, 5, 543–547. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.; Ye, Z.; Jeong, E.-K.; Wu, X.; Parker, D.L.; Lu, Z.-R. Synthesis and Evaluation of Nanoglobular Macrocyclic Mn(II) Chelate Conjugates as Non-Gadolinium(III) MRI Contrast Agents. Bioconjugate Chem. 2011, 22, 931–937. [Google Scholar] [CrossRef] [PubMed]
- Gallez, B.; Baudelet, C.; Adline, J.; Geurts, M.; Delzenne, N. Accumulation of manganese in the brain of mice after intravenous injection of manganese-based contrast agents. Chem. Res. Toxicol. 1997, 10, 360–363. [Google Scholar] [CrossRef] [PubMed]
- Shokouhimehr, M.; Soehnlen, E.S.; Hao, J.; Griswold, M.; Flask, C.; Fan, X.; Basilion, J.P.; Basu, S.; Huang, S.D. Dual purpose Prussian blue nanoparticles for cellular imaging and drug delivery: A new generation of T-1-weighted MRI contrast and small molecule delivery agents. J. Mater. Chem. 2010, 20, 5251–5259. [Google Scholar] [CrossRef]
- Kandanapitiye, M.S.; Valley, B.; Yang, L.D.; Fry, A.M.; Woodward, P.M.; Huang, S.D. Gallium Analogue of Soluble Prussian Blue KGaFe(CN)6·nH2O: Synthesis, Characterization, and Potential Biomedical Applications. Inorg. Chem. 2013, 52, 2790–2792. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. World Health Organization Model List of Essential Medicines: 21st List. Available online: https://apps.who.int/iris/handle/10665/325771 (accessed on 12 December 2023).
- Wang, H.; Huang, S.D.; Yan, L.; Hu, M.Y.; Zhao, J.; Alp, E.E.; Yoda, Y.; Petersen, C.M.; Thompson, M.K. Europium-151 and iron-57 nuclear resonant vibrational spectroscopy of naturally abundant KEu(iii)Fe(ii)(CN)6 and Eu(iii)Fe(iii)(CN)6 complexes. Dalton Trans. 2022, 51, 17753–17761. [Google Scholar] [CrossRef]
- Buser, H.J.; Schwarzenbach, D.; Petter, W.; Ludi, A. The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O. Inorg. Chem. 1977, 16, 2704–2710. [Google Scholar] [CrossRef]
- Zhang, J.; Deng, L.; Feng, M.; Zeng, L.; Hu, M.; Zhu, Y. Low-defect K2Mn[Fe(CN)6]-reduced graphene oxide composite for high-performance potassium-ion batteries. Chem. Commun. 2021, 57, 8632–8635. [Google Scholar] [CrossRef]
- Shin, J.; Anisur, R.M.; Ko, M.K.; Im, G.H.; Lee, J.H.; Lee, I.S. Hollow Manganese Oxide Nanoparticles as Multifunctional Agents for Magnetic Resonance Imaging and Drug Delivery. Angew. Chem. Int. Ed. 2009, 48, 321–324. [Google Scholar] [CrossRef] [PubMed]
- Wasinger, E.C.; de Groot, F.M.F.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. L-edge X-ray Absorption Spectroscopy of Non-Heme Iron Sites: Experimental Determination of Differential Orbital Covalency. J. Am. Chem. Soc. 2003, 125, 12894–12906. [Google Scholar] [CrossRef] [PubMed]
- Denny, Y.R.; Takahashi, K.; Niki, K.; Yang, D.S.; Fujikawa, T.; Kang, H.J. Ni K-edge XAFS analysis of NiO thin film with multiple scattering theory. Surf. Interface Anal. 2014, 46, 997–999. [Google Scholar] [CrossRef]
- Wang, H.; Braun, A.; Cramer, S.P.; Gee, L.B.; Yoda, Y. Nuclear Resonance Vibrational Spectroscopy: A Modern Tool to Pinpoint Site-Specific Cooperative Processes. Crystals 2021, 11, 909. [Google Scholar] [CrossRef] [PubMed]
- Cressey, G.; Henderson, C.M.B.; van der Laan, G. Use of L-edge X-ray absorption spectroscopy to characterize multiple valence states of 3d transition metals; a new probe for mineralogical and geochemical research. Phys. Chem. Miner. 1993, 20, 111–119. [Google Scholar] [CrossRef]
- Baker, M.L.; Mara, M.W.; Yan, J.J.; Hodgson, K.O.; Hedman, B.; Solomon, E.I. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. Coord. Chem. Rev. 2017, 345, 182–208. [Google Scholar] [CrossRef] [PubMed]
- Xi, L.; Schwanke, C.; Xiao, J.; Abdi, F.F.; Zaharieva, I.; Lange, K.M. In Situ L-Edge XAS Study of a Manganese Oxide Water Oxidation Catalyst. J. Phys. Chem. C 2017, 121, 12003–12009. [Google Scholar] [CrossRef]
- Penner-Hahn, J.E.; Fronko, R.M.; Pecoraro, V.L.; Yocum, C.F.; Betts, S.D.; Bowlby, N.R. Structural Characterization of the Manganese Sites in the Photosynthetic Oxygen-Evolving Complex Using X-Ray Absorption Spectroscopy. J. Am. Chem. Soc. 1990, 112, 2549–2557. [Google Scholar] [CrossRef]
- Westre, T.E.; Kennepohl, P.; DeWitt, J.G.; Hedman, B.; Hodgson, K.O.; Solomon, E.I. A multiplet analysis of Fe K-edge 1s->3d pre-edge features of iron complexes. J. Am. Chem. Soc. 1997, 119, 6297–6314. [Google Scholar] [CrossRef]
- Penner-Hahn, J.E. X-ray Absorption Spectroscopy. In eLS; Wiley Online Library: Hoboken, NJ, USA, 2005. [Google Scholar] [CrossRef]
- Stöhr, J. NEXAFS Spectroscopy; Springer: New York, NY, USA, 2003. [Google Scholar]
- Wang, H.; Friedrich, S.; Li, L.; Mao, Z.; Ge, P.; Balasubramanian, M.; Patil, D.S. L-edge sum rule analysis on 3d transition metal sites: From d10 to d0 and towards application to extremely dilute metallo-enzymes. Phys. Chem. Chem. Phys. 2018, 20, 8166–8176. [Google Scholar] [CrossRef]
- de Groot, F. High resolution X-ray emission and X-ray absorption spectroscopy. Chem. Rev. 2001, 101, 1779–1808. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.X.; Ralston, C.Y.; Patil, D.S.; Jones, R.M.; Gu, W.; Verhagen, M.; Adams, M.; Ge, P.; Riordan, C.; Marganian, C.A.; et al. Nickel L-edge soft X-ray spectroscopy of nickel-iron hydrogenases and model compounds—Evidence for high-spin nickel(II) in the active enzyme. J. Am. Chem. Soc. 2000, 122, 10544–10552. [Google Scholar] [CrossRef]
- Nakamura, T.; Oike, R.; Kimura, Y.; Tamenori, Y.; Kawada, T.; Amezawa, K. Operando Soft X-ray Absorption Spectroscopic Study on a Solid Oxide Fuel Cell Cathode during Electrochemical Oxygen Reduction. ChemSusChem 2017, 10, 2008–2014. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, P.; Guo, J.H.; Såthe, C.; Duda, L.C.; Nordgren, J.; Pothuizen, J.J.M.; de Groot, F.M.F.; Sawatzky, G.A. Resonant X-Ray Raman Spectra of Cu dd Excitations in Sr2CuO2Cl2. Phys. Rev. Lett. 1998, 80, 5204–5207. [Google Scholar] [CrossRef]
- Freelon, B.; Augustsson, A.; Guo, J.H.; Medaglia, P.G.; Tebano, A.; Balestrino, G. Electron correlation and charge transfer in superconducting superlattices. Phys. Rev. Lett. 2006, 96, 017003. [Google Scholar] [CrossRef] [PubMed]
- Kapilashrami, M.; Zhang, Y.; Liu, Y.-S.; Hagfeldt, A.; Guo, J. Probing the Optical Property and Electronic Structure of TiO2 Nanomaterials for Renewable Energy Applications. Chem. Rev. 2014, 114, 9662–9707. [Google Scholar] [CrossRef] [PubMed]
- Jang, J.-W.; Du, C.; Ye, Y.; Lin, Y.; Yao, X.; Thorne, J.; Liu, E.; McMahon, G.; Zhu, J.; Javey, A.; et al. Enabling unassisted solar water splitting by iron oxide and silicon. Nat. Commun. 2015, 6, 7447. [Google Scholar] [CrossRef]
- Chumakov, A.I.; Rüffer, R.; Leupold, O.; Sergueev, I. Insight to Dynamics of Molecules with Nuclear Inelastic Scattering. Struct. Chem. 2003, 14, 109–119. [Google Scholar] [CrossRef]
- Lehnert, N.; Sage, J.T.; Silvernail, N.; Scheidt, W.R.; Alp, E.E.; Sturhahn, W.; Zhao, J. Oriented Single-Crystal Nuclear Resonance Vibrational Spectroscopy of [Fe(TPP)(MI)(NO)]: Quantitative Assessment of the trans Effect of NO. Inorg. Chem. 2010, 49, 7197–7215. [Google Scholar] [CrossRef]
- Zhao, J.; Sturhahn, W.; Lin, J.-F.; Shen, G.; Apl, E.; Mao, H.-K. Nuclear resonant scattering at high pressure and high temperature. High Press. Res. Int. J. 2004, 24, 447–457. [Google Scholar] [CrossRef]
- Chumakov, A.I.; Rüffer, R.; Grünsteudel, H.; Grünsteudel, H.F.; Grübel, G.; Metge, J.; Leupold, O.; Goodwin, H.A. Energy Dependence of Nuclear Recoil Measured with Incoherent Nuclear Scattering of Synchrotron Radiation. EPL Europhys. Lett. 1995, 30, 427. [Google Scholar] [CrossRef]
- Ogata, H.; Kramer, T.; Wang, H.; Schilter, D.; Pelmenschikov, V.; van Gastel, M.; Neese, F.; Rauchfuss, T.B.; Gee, L.B.; Scott, A.D.; et al. Hydride bridge in [NiFe]-hydrogenase observed by nuclear resonance vibrational spectroscopy. Nat. Commun. 2015, 6, 7890. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Wang, H.; Xiao, Y.; Vogt, S.; Thauer, R.K.; Shima, S.; Volkers, P.I.; Rauchfuss, T.B.; Pelmenschikov, V.; Case, D.A.; et al. Characterization of the Fe site in iron-sulfur cluster-free hydrogenase (Hmd) and of a model compound via nuclear resonance vibrational spectroscopy (NRVS). Inorg. Chem. 2008, 47, 3969–3977. [Google Scholar] [CrossRef] [PubMed]
- Petit, S.; Madejova, J. Chapter 2.7—Fourier Transform Infrared Spectroscopy. In Developments in Clay Science; Bergaya, F., Lagaly, G., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; Volume 5, pp. 213–231. [Google Scholar]
- Scheidt, W.R.; Li, J.; Sage, J.T. What Can Be Learned from Nuclear Resonance Vibrational Spectroscopy: Vibrational Dynamics and Hemes. Chem. Rev. 2017, 117, 12532–12563. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Li, L.; Wang, H. Machine learning concept in de-spiking process for nuclear resonant vibrational spectra—Automation using no external parameter. Vib. Spectrosc. 2022, 119, 103352. [Google Scholar] [CrossRef]
- Sturhahn, W. CONUSS and PHOENIX: Evaluation of nuclear resonant scattering data. Hyperfine Interact. 2000, 125, 149–172. [Google Scholar] [CrossRef]
- Wang, H.; Salzberg, A.P.; Weiner, B.R. Laser ablation of aluminum at 193, 248, and 351 nm. Appl. Phys. Lett. 1991, 59, 935–937. [Google Scholar] [CrossRef]
- Barnhard, K.I.; He, M.; Weiner, B.R. Excited-State Dynamics of CH2CHO (B̃2A‘‘). J. Phys. Chem. 1996, 100, 2784–2790. [Google Scholar] [CrossRef]
- Wu, F.; Chen, X.; Weiner, B.R. The Photochemistry of Ethylene Episulfoxide. J. Am. Chem. Soc. 1996, 118, 8417–8424. [Google Scholar] [CrossRef]
- Murai, N.; Fukuda, T.; Nakajima, M.; Kawamura, M.; Ishikawa, D.; Tajima, S.; Baron, A.Q.R. Lattice dynamics in FeSe via inelastic x-ray scattering and first-principles calculations. Phys. Rev. B 2020, 101, 035126. [Google Scholar] [CrossRef]
- Chumakov, A.I.; Metge, J.; Baron, A.Q.R.; Grünsteudel, H.; Grünsteudel, H.F.; Rüffer, R.; Ishikawa, T. An X-ray monochromator with 1.65 meV energy resolution. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 1996, 383, 642–644. [Google Scholar] [CrossRef]
- Toellner, T.S.; Alatas, A.; Said, A.; Shu, D.; Sturhahn, W.; Zhao, J. A cryogenically stabilized meV-monochromator for hard X-rays. J. Synchrotron Radiat. 2006, 13, 211–215. [Google Scholar] [CrossRef] [PubMed]
- Kandanapitiye, M.S.; Dassanayake, T.M.; Dassanayake, A.C.; Shelestak, J.; Clements, R.J.; Fernando, C.; Huang, S.D. K2Mn3[FeII(CN)6]2 NPs with High T1-Relaxivity Attributable to Water Coordination on the Mn(II) Center for Gastrointestinal Tract MR Imaging. Adv. Healthc. Mater. 2021, 10, 2100987. [Google Scholar] [CrossRef] [PubMed]
- Albracht, S.P.J. Nickel Hydrogenases—In Search Of the Active Site. Biochim. Biophys. Acta-Bioenerg. 1994, 1188, 167–204. [Google Scholar] [CrossRef] [PubMed]
- Bertini, I.; Gray, H.B.; Lippard, S.J.; Valentine, J.S. Bioinorganic Chemistry; University Science Books: Mill Valley, CA, USA, 1994. [Google Scholar]
- Cammack, R.; Fernandez, V.M.; Hatchikian, E.C. Nickel-iron Hydrogenases. In Inorganic Microbial Sulfur Metabolism; LeGall, J., Peck, H.D., Jr., Eds.; Academic Press Inc.: San Diego, CA, USA, 1994; Volume 243, pp. 43–67. [Google Scholar]
- Pickering, I.J.; George, G.N.; Lewandowski, J.T.; Jacobson, A.J. Nickel K-Edge X-Ray Absorption Fine Structure of Lithium Nickel Oxides. J. Am. Chem. Soc. 1993, 115, 4137–4144. [Google Scholar] [CrossRef]
- Coyle, C.L.; Stiefel, E.I. The Coordination Chemistry of Nickel: An Introductory Survey. In The Bioinorganic Chemistry of Nickel; Lancaster, J.R., Jr., Ed.; VCH Publishers: New York, NY, USA, 1988; pp. 1–28. [Google Scholar]
- Lee, J.; Kitchaev, D.A.; Kwon, D.-H.; Lee, C.-W.; Papp, J.K.; Liu, Y.-S.; Lun, Z.; Clément, R.J.; Shi, T.; McCloskey, B.D.; et al. Reversible Mn2+/Mn4+ double redox in lithium-excess cathode materials. Nature 2018, 556, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Gilbert, B.; Frazer, B.H.; Belz, A.; Conrad, P.G.; Nealson, K.H.; Haskel, D.; Lang, J.C.; Srajer, G.; De Stasio, G. Multiple Scattering Calculations of Bonding and X-ray Absorption Spectroscopy of Manganese Oxides. J. Phys. Chem. A 2003, 107, 2839–2847. [Google Scholar] [CrossRef]
- Kubobuchi, K.; Mogi, M.; Ikeno, H.; Tanaka, I.; Imai, H.; Mizoguchi, T. Mn L2,3-edge X-ray absorption spectroscopic studies on charge-discharge mechanism of Li2MnO3. Appl. Phys. Lett. 2014, 104, 053906. [Google Scholar] [CrossRef]
- Jeong, S.; Milner, P.J.; Wan, L.F.; Liu, Y.-S.; Oktawiec, J.; Zaia, E.W.; Forse, A.C.; Leick, N.; Gennett, T.; Guo, J.; et al. Runaway Carbon Dioxide Conversion Leads to Enhanced Uptake in a Nanohybrid Form of Porous Magnesium Borohydride. Adv. Mater. 2019, 31, 1904252. [Google Scholar] [CrossRef]
- Cramer, S.P.; Ma, Y.; Chen, C.; Sette, F.; Kipke, C.A.; Eichhorn, D.M.; Chan, M.K.; Armstrong, W.H.; Libby, I.E.; Christou, G.; et al. Ligand Field Strengths and Oxidation States from Manganese L-Edge Spectroscopy. J. Am. Chem. Soc. 1991, 113, 7937–7940. [Google Scholar] [CrossRef]
- Grush, M.M.; Chen, J.; Stemmler, T.L.; George, S.J.; Ralston, C.Y.; Stibrany, R.T.; Gelasco, A.; Christou, G.; Gorun, S.M.; Penner-Hahn, J.E.; et al. Manganese L-Edge X-ray Absorption Spectroscopy of Manganese Catalase from Lactobacillus plantarum and Mixed Valence Manganese Complexes. J. Am. Chem. Soc. 1996, 118, 65–69. [Google Scholar] [CrossRef]
- Kubin, M.; Guo, M.; Kroll, T.; Löchel, H.; Källman, E.; Baker, M.L.; Mitzner, R.; Gul, S.; Kern, J.; Föhlisch, A.; et al. Probing the oxidation state of transition metal complexes: A case study on how charge and spin densities determine Mn L-edge X-ray absorption energies. Chem. Sci. 2018, 9, 6813–6829. [Google Scholar] [CrossRef] [PubMed]
- Lee, E.; Kim, D.H.; Hwang, J.; Kang, J.S.; Van Minh, N.; Yang, I.-S.; Ueno, T.; Sawada, M. Soft x-ray absorption spectroscopy study of Prussian blue analogue ACo[Fe(CN)6]H2O nano-particles (A=Na, K). J. Korean Phys. Soc. 2013, 62, 1910–1913. [Google Scholar] [CrossRef]
- Lalithambika, S.S.N.; Atak, K.; Seidel, R.; Neubauer, A.; Brandenburg, T.; Xiao, J.; Winter, B.; Aziz, E.F. Chemical bonding in aqueous hexacyano cobaltate from photon- and electron-detection perspectives. Sci. Rep. 2017, 7, 40811. [Google Scholar] [CrossRef] [PubMed]
- Chang, C.F.; Hu, Z.; Wu, H.; Burnus, T.; Hollmann, N.; Benomar, M.; Lorenz, T.; Tanaka, A.; Lin, H.J.; Hsieh, H.H.; et al. Spin Blockade, Orbital Occupation, and Charge Ordering in La1.5Sr0.5CoO4. Phys. Rev. Lett. 2009, 102, 116401. [Google Scholar] [CrossRef] [PubMed]
- Istomin, S.Y.; Tyablikov, O.A.; Kazakov, S.M.; Antipov, E.V.; Kurbakov, A.I.; Tsirlin, A.A.; Hollmann, N.; Chin, Y.Y.; Lin, H.J.; Chen, C.T.; et al. An unusual high-spin ground state of Co3+ in octahedral coordination in brownmillerite-type cobalt oxide. Dalton Trans. 2015, 44, 10708–10713. [Google Scholar] [CrossRef]
- Miedema, P.S.; van Schooneveld, M.M.; Bogerd, R.; Rocha, T.C.R.; Hävecker, M.; Knop-Gericke, A.; de Groot, F.M.F. Oxygen Binding to Cobalt and Iron Phthalocyanines As Determined from in Situ X-ray Absorption Spectroscopy. J. Phys. Chem. C 2011, 115, 25422–25428. [Google Scholar] [CrossRef]
- Hocking, R.K.; Wasinger, E.C.; de Groot, F.M.F.; Hodgson, K.O.; Hedman, B.; Solomon, E.I. Fe L-Edge XAS Studies of K4[Fe(CN)6] and K3[Fe(CN)6]: A Direct Probe of Back-Bonding. J. Am. Chem. Soc. 2006, 128, 10442–10451. [Google Scholar] [CrossRef]
- George, S.J.; Fu, J.; Guo, Y.; Drury, O.B.; Friedrich, S.; Rauchfuss, T.; Volkers, P.I.; Peters, J.C.; Scott, V.; Brown, S.D.; et al. X-ray photochemistry in iron complexes from Fe(0) to Fe(IV)—Can a bug become a feature? Inorganica Chim. Acta 2008, 361, 1157–1165. [Google Scholar] [CrossRef]
- Weber, B. Coordination Chemistry—Basics and Current Trends; Springer: Berlin/Heidelberg, Germany, 2023. [Google Scholar] [CrossRef]
- Pike, R.D. Structure and Bonding in Copper(I) Carbonyl and Cyanide Complexes. Organometallics 2012, 31, 7647–7660. [Google Scholar] [CrossRef]
- Frenking, G.; Fernández, I.; Holzmann, N.; Pan, S.; Krossing, I.; Zhou, M. Metal–CO Bonding in Mononuclear Transition Metal Carbonyl Complexes. JACS Au. 2021, 1, 623–645. [Google Scholar] [CrossRef] [PubMed]
- Everett, J.; Céspedes, E.; Shelford, L.R.; Exley, C.; Collingwood, J.F.; Dobson, J.; van der Laan, G.; Jenkins, C.A.; Arenholz, E.; Telling, N.D. Ferrous iron formation following the co-aggregation of ferric iron and the Alzheimer’s disease peptide β-amyloid (1–42). J. R. Soc. Interface 2014, 11, 20140165. [Google Scholar] [CrossRef] [PubMed]
- Miedema, P.S.; de Groot, F.M.F. The iron L edges: Fe 2p X-ray absorption and electron energy loss spectroscopy. J. Electron Spectrosc. Relat. Phenom. 2013, 187, 32–48. [Google Scholar] [CrossRef]
- Bhattacharyya, A.; Stavitski, E.; Dvorak, J.; Martínez, C.E. Redox interactions between Fe and cysteine: Spectroscopic studies and multiplet calculations. Geochim. Cosmochim. Acta 2013, 122, 89–100. [Google Scholar] [CrossRef]
- Collison, D.; Garner, C.D.; McGrath, C.M.; Mosselmans, J.F.W.; Roper, M.D.; Seddon, J.M.W.; Sinn, E.; Young, N.A. Soft X-ray photochemistry at the L2,3-edges in K3[Fe(CN)6], [Co(acac)3] and [Cp2Fe][BF3]. J. Synchrotron Radiat. 1999, 6, 585–587. [Google Scholar] [CrossRef] [PubMed]
- van Schooneveld, M.M.; DeBeer, S. A close look at dose: Toward L-edge XAS spectral uniformity, dose quantification and prediction of metal ion photoreduction. J. Electron Spectrosc. Relat. Phenom. 2015, 198, 31–56. [Google Scholar] [CrossRef]
- Parasar, D.; Jayaratna, N.B.; Muñoz-Castro, A.; Conway, A.E.; Mykhailiuk, P.K.; Dias, H.V.R. Carbonyl complexes of copper(i) stabilized by bridging fluorinated pyrazolates and halide ions. Dalton Trans. 2019, 48, 6358–6371. [Google Scholar] [CrossRef]
- Eaton, J.P.; Nicholls, D. The complex cyanides of chromium(II) and chromium(0). Transit. Met. Chem. 1981, 6, 203–206. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, H.; Huang, S.D.; Young, A.T.; Cramer, S.P.; Yoda, Y.; Li, L. X-ray and Nuclear Spectroscopies to Reveal the Element-Specific Oxidation States and Electronic Spin States for Nanoparticulated Manganese Cyanidoferrates and Analogs. Physchem 2024, 4, 25-42. https://doi.org/10.3390/physchem4010003
Wang H, Huang SD, Young AT, Cramer SP, Yoda Y, Li L. X-ray and Nuclear Spectroscopies to Reveal the Element-Specific Oxidation States and Electronic Spin States for Nanoparticulated Manganese Cyanidoferrates and Analogs. Physchem. 2024; 4(1):25-42. https://doi.org/10.3390/physchem4010003
Chicago/Turabian StyleWang, Hongxin, Songping D. Huang, Anthony T. Young, Stephen P. Cramer, Yoshitaka Yoda, and Lei Li. 2024. "X-ray and Nuclear Spectroscopies to Reveal the Element-Specific Oxidation States and Electronic Spin States for Nanoparticulated Manganese Cyanidoferrates and Analogs" Physchem 4, no. 1: 25-42. https://doi.org/10.3390/physchem4010003
APA StyleWang, H., Huang, S. D., Young, A. T., Cramer, S. P., Yoda, Y., & Li, L. (2024). X-ray and Nuclear Spectroscopies to Reveal the Element-Specific Oxidation States and Electronic Spin States for Nanoparticulated Manganese Cyanidoferrates and Analogs. Physchem, 4(1), 25-42. https://doi.org/10.3390/physchem4010003