The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
3. Results and Discussion
3.1. Scanning Electron Microscopy (SEM)
3.2. Batch Experiments
3.2.1. High Lead Concentration (100 mg/L)
3.2.2. Low Lead Concentration (10 mg/L)
3.3. Energy-Dispersive X-ray Spectroscopy (EDS)
3.4. Adsorption Isotherms
3.5. Kinetic Studies
3.6. BET Surface Area
3.7. Additional Extraction Studies
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fomina, M.; Gadd, G.M. Biosorption: Current Perspectives on Concept, Definition and Application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef] [PubMed]
- Hashim, M.A.; Mukhopadhyay, S.; Sahu, J.N.; Sengupta, B. Remediation Technologies for Heavy Metal Contaminated Groundwater. J. Environ. Manag. 2011, 92, 2355–2388. [Google Scholar] [CrossRef] [PubMed]
- Gautam, R.K.; Sharma, S.K.; Mahiya, S.; Chattopadhyaya, M.C. Contamination of Heavy Metals in Aquatic Media: Transport, Toxicity and Technologies for Remediation. In Heavy Metals in Water: Presence, Removal and Safety; Sharma, S.K., Ed.; The Royal Society of Chemistry: London, UK, 2015; pp. 1–24. [Google Scholar] [CrossRef]
- Shah, G.M.; Umm-e-aiman; Imran, M.; Bakhat, H.F.; Hammad, H.M.; Ahmad, I.; Rabbani, F.; Khan, Z.U.H. Kinetics and equilibrium study of lead bio-sorption from contaminated water by compost and biogas residues. Int. J. Environ. Sci. Technol. 2019, 16, 3839–3850. [Google Scholar] [CrossRef]
- Chowdhury, S.; Mazumder, M.A.J.; Al-Attas, O.; Husain, T. Heavy Metals in Drinking Water: Occurrences, Implications, and Future Needs in Developing Countries. Sci. Total Environ. 2016, 569–570, 476–488. [Google Scholar] [CrossRef] [PubMed]
- Human Rights Watch. Bangladesh: 20 Million Drink Arsenic-Laced Water. Available online: https://www.hrw.org/news/2016/04/06/bangladesh-20-million-drink-arsenic-laced-water (accessed on 17 April 2017).
- World Health Organization. Mercury and Health. Available online: http://www.who.int/mediacentre/factsheets/fs361/en/ (accessed on 17 April 2017).
- Xu, M.; McKay, G. Removal of Heavy Metals, Lead, Cadmium, and Zinc, Using Adsorption Processes by Cost-Effective Adsorbents. In Adsorption Processes for Water Treatment and Purification; Bonilla-Petriciolet, A., Mendoza-Castillo, D.I., Reynel-Avila, H.E., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 109–138. [Google Scholar] [CrossRef]
- Lesmana, S.O.; Febriana, N.; Soetaredjo, F.E.; Sunarso, J.; Ismadji, S. Studies on Potential Applications of Biomass for the Separation of Heavy Metals from Water and Wastewater. Biochem. Eng. J. 2009, 44, 19–41. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for Heavy Metals Removal and Their Future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef] [PubMed]
- Park, D.; Yun, Y.-S.; Park, J.M. The Past, Present, and Future Trends of Biosorption. Biotechnol. Bioprocess Eng. 2010, 15, 86–102. [Google Scholar] [CrossRef]
- Kurniawan, T.A.; Chan, G.Y.S.; Lo, W.H.; Babel, S. Comparisons of Low-Cost Adsorbents for Treating Wastewaters Laden with Heavy Metals. Sci. Total Environ. 2006, 366, 409–426. [Google Scholar] [CrossRef] [PubMed]
- Londoño-Zuluaga, C.; Jameel, H.; Gonzalez, R.W.; Lucia, L. Crustacean Shell-Based Biosorption Water Remediation Platforms: Status and Perspectives. J. Environ. Manag. 2019, 231, 757–762. [Google Scholar] [CrossRef]
- Yan, N.; Chen, X. Sustainability: Don’t Waste Seafood. Nature 2015, 524, 155–157. [Google Scholar] [CrossRef]
- Aklog, Y.F.; Egusa, M.; Kaminaka, H.; Izawa, H.; Morimoto, M.; Saimoto, H.; Ifuku, S. Protein/CaCo3/Chitin Nanofiber Complex Prepared from Crab Shells by Simple Mechanical Treatment and Its Effect on Plant Growth. Int. J. Mol. Sci. 2016, 17, 1600. [Google Scholar] [CrossRef]
- Gagnon, B.; Berrouard, S. Effects of Several Organic Fertilizers on Growth of Greenhouse Tomato Transplants. Can. J. Plant Sci. 1994, 74, 167–168. [Google Scholar] [CrossRef]
- Spinelli, J.; Lehman, L.; Wieg, D. Composition, Processing, and Utilization of Red Crab (Pleuroncodes Planipes) as an Aquacultural Feed Ingredient. J. Fish. Res. Board Can. 1974, 31, 1025–1029. [Google Scholar] [CrossRef]
- Lee, M.Y.; Park, J.M.; Yang, J.W. Micro Precipitation of Lead on the Surface of Crab Shell Particles. Process Biochem. 1997, 32, 671–677. [Google Scholar] [CrossRef]
- Percot, A.; Viton, C.; Domard, A. Optimization of Chitin Extraction from Shrimp Shells. Biomacromolecules 2003, 4, 12–18. [Google Scholar] [CrossRef] [PubMed]
- Sagheer, F.A.; AAl-Sughayer, M.A.; Muslim, S.; Elsabee, M.Z. Extraction and Characterization of Chitin and Chitosan from Marine Sources in Arabian Gulf. Carbohydr. Polym. 2009, 77, 410–419. [Google Scholar] [CrossRef]
- Brunauer, S.; Emmett, P.H.; Teller, E. Adsorption of Gases in Multimolecular Layers. J. Am. Chem. Soc. 1938, 60, 309–319. [Google Scholar] [CrossRef]
- Foo, K.; Hameed, B. Insights into the Modeling of Adsorption Isotherm Systems. Chem. Eng. J. 2010, 156, 2–10. [Google Scholar] [CrossRef]
- Abdou, E.S.; Nagy, K.S.A.; Elsabee, M.Z. Extraction and Characterization of Chitin and Chitosan from Local Sources. Bioresour. Technol. 2008, 99, 1359–1367. [Google Scholar] [CrossRef]
- Younes, I.; Hajji, S.; Rinaudo, M.; Chaabouni, M.; Jellouli, K.; Nasri, M. Optimization of Proteins and Minerals Removal from Shrimp Shells to Produce Highly Acetylated Chitin. Int. J. Biol. Macromol. 2016, 84, 246–253. [Google Scholar] [CrossRef]
- Karthik, R.; Meenakshi, S. Synthesis, Characterization and Cr(VI) Uptake Studies of Polypyrrole Functionalized Chitin. Synth. Met. 2014, 198, 181–187. [Google Scholar] [CrossRef]
- Kousalya, G.N.; Gandhi, M.R.; Meenakshi, S. Preparation of Modified Chitin for the Removal of Chromium(VI). Bioremediat. J. 2010, 14, 208–218. [Google Scholar] [CrossRef]
- Jeon, C. Adsorption Characteristics of Waste Crab Shells for Silver Ions in Industrial Wastewater. Korean J. Chem. Eng. 2014, 31, 446–451. [Google Scholar] [CrossRef]
- Pavia, D.L.; Lampman, G.M.; Kriz, G.S.; Vyvyan, J.A. Introduction to Spectroscopy; Cengage Learning: Boston, MA, USA, 2014. [Google Scholar]
- Kontoyannis, C.G.; Vagenas, N.V. Calcium Carbonate Phase Analysis Using XRD and FT-Raman Spectroscopy. Analyst 2000, 125, 251–255. [Google Scholar] [CrossRef]
- Kawano, J.; Shimobayashi, N.; Miyake, A.; Kitamura, M. Precipitation Diagram of Calcium Carbonate Polymorphs: Its Construction and Significance. J. Phys. Condens. Matter 2009, 21, 425102. [Google Scholar] [CrossRef] [PubMed]
- Knidri, H.; El Khalfaouy, R.; El Laajeb, A.; Addaou, A.; Lahsini, A. Eco-Friendly Extraction and Characterization of Chitin and Chitosan from the Shrimp Shell Waste via Microwave Irradiation. Process Saf. Environ. Prot. 2014, 4, 395–405. [Google Scholar] [CrossRef]
- Julkapli, N.; Ahmad, Z.; Akil, H.M. HX-Ray Diffraction Studies of Cross Linked Chitosan With Different Cross Linking Agents For Waste Water Treatment Application. AIP Conf. Proc. 2010, 1202, 106–111. [Google Scholar] [CrossRef]
- Teodosiu, C.; Paduraru, C.; Ibanescu, D.; Tofan, L. Biosorption of lead ions from aqueous effluents by rapeseed biomass, Irina Morosanu. New Biotechnol. 2017, 39, 110–124. [Google Scholar] [CrossRef] [PubMed]
- Chen, P.Y.; Lin, A.Y.-M.; McKittrick, J.; Meyers, M.A. Structure and Mechanical Properties of Crab Exoskeletons. Acta Biomater. 2008, 4, 587–596. [Google Scholar] [CrossRef] [PubMed]
- Van, H.T.; Nguyen, V.D.; Vigneswaran, S.; Nguyen, T.V.; Nguyen, L.H.; Nguyen, X.H.; Rinklebe, J.; Nguyen, T.H.; Tran, H.N. Characteristics and Mechanisms of Cadmium Adsorption onto Biogenic Aragonite Shells-Derived Biosorbent: Batch and Column Studies. J. Environ. Manag. 2018, 241, 535–548. [Google Scholar] [CrossRef]
- Leofanti, G.; Padovan, M.; Tozzola, G.; Venturelli, B. Surface Area and Pore Texture of Catalysts. Catal. Today 1998, 41, 207–219. [Google Scholar] [CrossRef]
- Karthik, R.; Meenakshi, S. Chemical Modification of Chitin with Polypyrrole for the Uptake of Pb(II) and Cd(II) Ions. Int. J. Biol. Macromol. 2015, 78, 157–164. [Google Scholar] [CrossRef] [PubMed]
- Zuluaga, C.L.; Lucia, L.A.; Jameel, H.; Gonzalez, R. Marine Exoskeleton-Based Biosorption of Heavy Metals: Performance Cost Analysis. In Proceedings of the 2018 AIChE Annual Meeting, Pittsburgh, PA, USA, 28 October–2 November 2018. [Google Scholar]
- Zuluaga, C.L.; Lucia, L.A.; Jameel, H.; Gonzalez, R. Dynamics and kinetics of marine exoskeleton-based heavy metal biosorption and desorption. In Abstracts of Papers of the American Chemical Society; American Chemical Society: Washington, DC, USA, 2018; Volume 255. [Google Scholar]
Regression Parameter | Langmuir Isotherm | Freundlich Isotherm |
---|---|---|
0.32 | N/A | |
(mg/g) | 384.60 | N/A |
0.01 | N/A | |
N/A | 0.89 | |
N/A | 7.76 | |
N/A | 1.56 |
Pseudo-First-Order Fit | Pseudo-Second-Order Fit | |||
---|---|---|---|---|
Slope | R2 | qe | k2 | R2 |
−0.0008 | 0.9429 | 77.69 | 0.001 | 0.9936 |
Material Characteristics | Surface Area (m2/g) |
---|---|
Crab Shell 40 mesh | 28.7 |
Crab Shell No Protein (No Protein) | 49.1 |
Crab Shell No Mineral (No CaCO3) | 2.2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Londoño-Zuluaga, C.; Jameel, H.; Gonzalez, R.W.; Yang, G.; Lucia, L. The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II). Physchem 2024, 4, 167-180. https://doi.org/10.3390/physchem4020013
Londoño-Zuluaga C, Jameel H, Gonzalez RW, Yang G, Lucia L. The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II). Physchem. 2024; 4(2):167-180. https://doi.org/10.3390/physchem4020013
Chicago/Turabian StyleLondoño-Zuluaga, Carolina, Hasan Jameel, Ronalds W. Gonzalez, Guihua Yang, and Lucian Lucia. 2024. "The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II)" Physchem 4, no. 2: 167-180. https://doi.org/10.3390/physchem4020013
APA StyleLondoño-Zuluaga, C., Jameel, H., Gonzalez, R. W., Yang, G., & Lucia, L. (2024). The Surprising Role of Endogenous Calcium Carbonate in Crab Shell-Mediated Biosorption of Pb (II). Physchem, 4(2), 167-180. https://doi.org/10.3390/physchem4020013