Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials
Abstract
:1. Introduction
2. Materials and Methods
2.1. Crystals Growth
2.2. Structural Determination
2.3. Computational Studies
2.4. Thermoanalytical Studies
3. Results and Discussion
3.1. Structure Solving and Geometric Parameters
3.2. Analysis of Intermolecular Interactions by Hirshfeld Surfaces
3.3. Crystal Void Study
3.4. Thermal Characterization
3.5. Thermochemical Parameters via DSC Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Liu, W.; Song, M.S.; Kong, B.; Cui, Y. Flexible and Stretchable Energy Storage: Recent Advances and Future Perspectives. Adv. Mater. 2017, 29, 1603436. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, J. Advanced Lightweight Materials for Automobiles: A Review. Mater. Des. 2022, 221, 110994. [Google Scholar] [CrossRef]
- Gao, M.; Gao, Y.; Chen, G.; Huang, X.; Xu, X.; Lv, J.; Wang, J.; Xu, D.; Liu, G. Recent Advances and Future Trends in the Detection of Contaminants by Molecularly Imprinted Polymers in Food Samples. Front. Chem. 2020, 8, 616326. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lu, X.; Liu, B.; Chen, D.; Tong, Y.; Shen, G. Flexible Energy-Storage Devices: Design Consideration and Recent Progress. Adv. Mater. 2014, 26, 4763–4782. [Google Scholar] [CrossRef] [PubMed]
- Choi, C.; Kim, S.; Kim, R.; Choi, Y.; Kim, S.; Jung, H.-Y.; Yang, J.H.; Kim, H.-T. A Review of Vanadium Electrolytes for Vanadium Redox Flow Batteries. Renew. Sustain. Energy Rev. 2017, 69, 263–274. [Google Scholar] [CrossRef]
- Badmaev, V.; Prakash, S.; Majeed, M. Vanadium: A Review of Its Potential Role in the Fight against Diabetes. J. Altern. Complement. Med. 1999, 5, 273–291. [Google Scholar] [CrossRef] [PubMed]
- Floris, B.; Sabuzi, F.; Coletti, A.; Conte, V. Sustainable Vanadium-Catalyzed Oxidation of Organic Substrates with H2O2. Catal. Today 2017, 285, 49–56. [Google Scholar] [CrossRef]
- Zou, Z.; Li, N.; Li, D.; Liu, H.; Mu, S. A Vanadium-Based Conversion Coating as Chromate Replacement for Electrogalvanized Steel Substrates. J. Alloys Compd. 2011, 509, 503–507. [Google Scholar] [CrossRef]
- Galloni, P.; Conte, V.; Floris, B. A Journey into the Electrochemistry of Vanadium Compounds. Coord. Chem. Rev. 2015, 301–302, 240–299. [Google Scholar] [CrossRef]
- Larkworthy, L.F.; Murphy, J.M.; Patel, K.C.; Phillips, D.J. Vanadium(II) Chemistry. Part I. Magnetic and Spectroscopic Investigations of the Sulphate and Double Sulphates. J. Chem. Soc. A. 1968, 12, 2936–2938. [Google Scholar] [CrossRef]
- Montgomery, H.; Morosin, B.; Natt, J.J.; Witkowska, A.M.; Lingafelter, E.C. The Crystal Structure of Tutton’s Salts. VI. Vanadium(II), Iron(II) and Cobalt(II) Ammonium Sulfate Hexahydrates. Acta Crystallogr. 1967, 22, 775–780. [Google Scholar] [CrossRef]
- Oliveira Neto, J.G.; Lang, R.; Rodrigues, J.A.O.; Gutiérrez, C.E.O.; Murillo, M.A.R.; Sousa, F.F.; Silva Filho, J.G.; Santos, A.O. Kröhnkite-Type K2Mn(SO4)2(H2O)2 Double Salt: Synthesis, Structure, and Properties. J. Mater. Sci. 2022, 57, 8195–8210. [Google Scholar] [CrossRef]
- Donkers, P.A.J.; Sögütoglu, L.C.; Huinink, H.P.; Fischer, H.R.; Adan, O.C.G. A Review of Salt Hydrates for Seasonal Heat Storage in Domestic Applications. Appl. Energy 2017, 199, 45–68. [Google Scholar] [CrossRef]
- Kooijman, W.; Kok, D.J.; Blijlevens, M.A.R.; Meekes, H.; Vlieg, E. Screening Double Salt Sulfate Hydrates for Application in Thermochemical Heat Storage. J. Energy Storage 2022, 55, 105459. [Google Scholar] [CrossRef]
- Souamti, A.; Zayani, L.; Lozano-Gorrín, A.D.; Ben Hassen Chehimi, D.; Morales Palomino, J. Synthesis, Characterization and Thermal Behavior of New Rare Earth Ion-Doped Picromerite-Type Tutton’s Salts. J. Therm. Anal. Calorim. 2017, 128, 1001–1008. [Google Scholar] [CrossRef]
- Ghosh, S.; Ullah, S.; de Mendonça, J.P.A.; Moura, L.G.; Menezes, M.G.; Flôres, L.S.; Pacheco, T.S.; de Oliveira, L.F.C.; Sato, F.; Ferreira, S.O. Electronic Properties and Vibrational Spectra of (NH4)2M″(SO4)2·6H2O (M = Ni, Cu) Tutton’s Salt: DFT and Experimental Study. Spectrochim. Acta-Part A Mol. Biomol. Spectrosc. 2019, 218, 281–292. [Google Scholar] [CrossRef]
- Neto, J.G.O.; Viana, J.R.; Lopes, J.B.O.; Lima, A.D.S.G.; Sousa, M.L.; Lage, M.R.; Stoyanov, S.R.; Lang, R.; Santos, A.O. Crystal Growth, Crystal Structure Determination, and Computational Studies of a New Mixed (NH4)2Mn1−XZnx(SO4)2(H2O)6 Tutton Salt. J. Mol. Model. 2022, 28, 341. [Google Scholar] [CrossRef]
- De Oliveira, G.; Carvalho, J.D.O.; Marques, J.V.; Façanha, P.F.; Adenilson, O.; Lang, R. Tutton K2Zn(SO4)2(H2O)6 Salt: Structural-Vibrational Properties as a Function of Temperature and Ab Initio Calculations. Spectrochim. Acta-Part A Mol. Spectrosc. 2024, 306, 123611. [Google Scholar] [CrossRef]
- Dobe, C.; Strässle, T.; Juranyi, F.; Tregenna-Piggott, P.L.W. Pressure-Induced Switch of the Direction of the Unique Jahn-Teller Axis of the Chromium(II) Hexaqua Cation in the Deuterated Ammonium Chromium Tutton Salt. Inorg. Chem. 2006, 45, 5066–5072. [Google Scholar] [CrossRef]
- Augustyniak, M.A.; Usachev, A.E. The Host Lattice Influence on the Jahn-Teller Effect of the Cu(H2O)62+ Complex Studied by EPR in K2Zn(SO4)2·6H2O and (NH4)2Zn(SO4)2·6H2O Tutton Salt Crystals. J. Phys. Condens. Matter 1999, 11, 4391–4400. [Google Scholar] [CrossRef]
- Pacheco, T.S.; Ludwig, Z.M.C.; Sant’Anna, D.R.; Perpétuo, G.J.; Franco, C.J.; Paiva, E.C.; Ghosh, S. Growth and Vibrational Spectroscopy of K2LiyNixCo1−XSO42.6H2O (Y = 0.1; 0.2; 0.3; 0.4) Crystals. Vib. Spectrosc. 2020, 109, 103093. [Google Scholar] [CrossRef]
- No, R.; St, J.; Rani, C.S.; Sweetlin, M.D.; Selvarajan, P. Studies of L-Methionine Doped Ammonium Ferrous Sulfate Single Crystals Grown by Solution Method. IJRAR—Int. J. Res. Anal. Rev. 2018, 5, 615–622. [Google Scholar]
- Ghosh, S.; Lima, A.H.; Flôres, L.S.; Pacheco, T.S.; Barbosa, A.A.; Ullah, S.; de Mendonça, J.P.A.; Oliveira, L.F.C.; Quirino, W.G. Growth and Characterization of Ammonium Nickel-Copper Sulfate Hexahydrate: A New Crystal of Tutton’s Salt Family for the Application in Solar-Blind Technology. Opt. Mater. 2018, 85, 425–437. [Google Scholar] [CrossRef]
- De Oliveira, G.; Viana, J.R.; Lima, A.D.S.G.; Lopes, J.B.O.; Ayala, A.P.; Lage, M.R.; Stoyanov, S.R.; Santos, A.O. Assessing the Novel Mixed Tutton Salts for Thermochemical Heat Storage Applications: An Experimental—Theoretical Study. Molecules 2023, 97, 8058. [Google Scholar] [CrossRef]
- Smith, J.; Weinberger, P.; Werner, A. Dehydration Performance of a Novel Solid Solution Library of Mixed Tutton Salts as Thermochemical Heat Storage Materials. J. Energy Storage 2024, 78, 110003. [Google Scholar] [CrossRef]
- David, W.I.F.; Shankland, K.; Van De Streek, J.; Pidcock, E.; Motherwell, W.D.S.; Cole, J.C. DASH: A Program for Crystal Structure Determination from Powder Diffraction Data. J. Appl. Crystallogr. 2006, 39, 910–915. [Google Scholar] [CrossRef]
- Le Bail, A.; Duroy, H.; FourQuet, J.L. Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction. Mat. Res. Bull. 1988, 23, 447–452. [Google Scholar] [CrossRef]
- Mccusker, L.B.; Von Dreele, R.B.; Cox, D.E.; Louër, D.; Scardi, P. Rietveld Refinement Guidelines. J. Appl. Crystallogr. 1999, 32, 36–50. [Google Scholar] [CrossRef]
- Allen, F.H.; Johnson, O.; Shields, G.P.; Smith, B.R.; Towler, M. CIF Applications. XV. EnCIFer: A Program for Viewing, Editing and Visualizing CIFs. J. Appl. Crystallogr. 2004, 37, 335–338. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Wolff, S.K.; Gromwood, D.J.; Spackman, P.R.; Jayalitaka, D.; Spackman, M.A. Crystal Explorer 17.5; University of Western Australia: Perth, WA, Australia, 2017. [Google Scholar]
- Seth, S.K.; Sarkar, D.; Roy, A.; Kar, T. Insight into Supramolecular Self-Assembly Directed by Weak Interactions in Acetophenone Derivatives: Crystal Structures and Hirshfeld Surface Analyses. CrystEngComm 2011, 13, 6728–6741. [Google Scholar] [CrossRef]
- Turner, M.J.; McKinnon, J.J.; Jayatilaka, D.; Spackman, M.A. Visualisation and Characterisation of Voids in Crystalline Materials. CrystEngComm 2011, 13, 1804–1813. [Google Scholar] [CrossRef]
- de Oliveira Neto, J.G.; Viana, J.R.; Ayala, A.P.; Nogueira, C.E.S.; de Oliveira, M.M.; dos Santos, A.O.; de Sousa, F.F. Crystallographic, Intermolecular Interactions, Vibrational, and Computational Studies of a New Cocrystal of Decanoic Acid and Nicotinamide. J. Mol. Struct. 2024, 1315, 138835. [Google Scholar] [CrossRef]
- Cardoso, L.M.B.; de Oliveira Neto, J.G.; Saraiva, G.D.; Leite, F.F.; Ayala, A.P.; dos Santos, A.O.; de Sousa, F.F. New Polymorphic Phase of Arachidic Acid Crystal: Structure, Intermolecular Interactions, Low-Temperature Stability and Raman Spectroscopy Combined with DFT Calculations. RSC Adv. 2023, 13, 34032–34044. [Google Scholar] [CrossRef] [PubMed]
- Gomes, J.; Neto, D.O.; Fernando, L.; Kalil, T.; Alves, C.; Neumann, A.; De Sousa, F.F.; Ayala, A.P. Mixed Tutton Salts K2Mn0.15Co0.85(SO4)2(H2O)6 and K2Mn0.16Zn0.84(SO4)2(H2O)6 for Applications in Thermochemical Devices: Experimental Physicochemical Properties Combined with First-principles Calculations. J. Mater. Sci. 2024, 59, 14445–14464. [Google Scholar] [CrossRef]
- Souamti, A.; Martín, I.R.; Zayani, L.; Hernández-Rodríguez, M.A.; Soler-Carracedo, K.; Lozano-Gorrín, A.D.; Lalla, E.; Chehimi, D.B.H. Synthesis, Characterization and Spectroscopic Properties of a New Nd3+-Doped Co-Picromerite-Type Tutton Salt. J. Lumin. 2016, 177, 93–98. [Google Scholar] [CrossRef]
- Souamti, A.; Martín, I.R.; Zayani, L.; Lozano-Gorrín, A.D.; Ben Hassen Chehimi, D. Luminescence Properties of Pr3+ Ion Doped Mg-Picromerite Tutton Salt. J. Lumin. 2017, 188, 148–153. [Google Scholar] [CrossRef]
- Lim, A.R. Thermodynamic Properties and Phase Transitions of Tutton Salt (NH4)2Co(SO4)2·6H2O Crystals. J. Therm. Anal. Calorim. 2012, 109, 1619–1623. [Google Scholar] [CrossRef]
- Morales, A.C.; Cooper, N.D.; Reisner, B.A.; DeVore, T.C. Variable Temperature PXRD Investigation of the Phase Changes during the Dehydration of Potassium Tutton Salts. J. Therm. Anal. Calorim. 2018, 132, 1523–1534. [Google Scholar] [CrossRef]
- N’Tsoukpoe, K.E.; Schmidt, T.; Rammelberg, H.U.; Watts, B.A.; Ruck, W.K.L. A Systematic Multi-Step Screening of Numerous Salt Hydrates for Low Temperature Thermochemical Energy Storage. Appl. Energy 2014, 124, 1–16. [Google Scholar] [CrossRef]
- Ait Ousaleh, H.; Sair, S.; Zaki, A.; Faik, A.; Mirena Igartua, J.; El Bouari, A. Double Hydrates Salt as Sustainable Thermochemical Energy Storage Materials: Evaluation of Dehydration Behavior and Structural Phase Transition Reversibility. Sol. Energy 2020, 201, 846–856. [Google Scholar] [CrossRef]
K2SO4 | VOSO4∙x(H2O) | M’SO4(H2O)n | Sample Code | ||||
---|---|---|---|---|---|---|---|
[g] | [mol/L] | [g] | [mol/L] | [g] | [mol/L] | ||
1.045 | 0.10 | 0.2505 | 0.05 | CoSO4(H2O)7 | 0.4216 | 0.05 | KVCoSOH |
1.045 | 0.10 | 0.2505 | 0.05 | NiSO4(H2O)7 | 0.4113 | 0.05 | KVNiSOH |
1.045 | 0.10 | 0.2505 | 0.05 | CuSO4(H2O)5 | 0.3745 | 0.05 | KVCuSOH |
1.045 | 0.10 | 0.2505 | 0.05 | ZnSO4(H2O)7 | 0.4313 | 0.05 | KVZnSOH |
Sample | KVCoSOH | KVNiSOH | KVCuSOH | KVZnSOH |
---|---|---|---|---|
Formula | H12K2V0.48Co0.52O14S2 | H12K2V0.47Ni0.53O14S2 | H12K2V0.44Cu0.56O14S2 | H12K2V0.49Zn0.51O14S2 |
Formula weight [g/mol] | 433.51 | 433.46 | 436.41 | 436.73 |
a [Å] | 9.033(4) | 8.985(3) | 9.094(2) | 9.028(7) |
b [Å] | 12.171(8) | 12.148(7) | 12.144(7) | 12.196(5) |
c [Å] | 6.144(7) | 6.118(8) | 6.164(9) | 6.154(7) |
α [°] | 90.00 | 90.00 | 90.00 | 90.00 |
β [°] | 104.78(7) | 104.97(4) | 104.41(6) | 104.64(9) |
γ [°] | 90.00 | 90.00 | 90.00 | 90.00 |
Volume [Å3] | 653.12(6) | 645.26(4) | 659.42(7) | 655.59(7) |
Crystalline system | Monoclinic | Monoclinic | Monoclinic | Monoclinic |
Space group | P21/a | P21/a | P21/a | P21/a |
Rwp [%] | 8.33 | 9.32 | 9.59 | 9.89 |
Rp [%] | 6.28 | 7.02 | 7.97 | 7.35 |
S | 1.11 | 1.07 | 1.65 | 1.10 |
KVCoSOH | KVNiSOH | KVCuSOH | KVZnSOH | ||||
---|---|---|---|---|---|---|---|
Bond | Length [Å] | Bond | Length [Å] | Bond | Length [Å] | Bond | Length [Å] |
V/Co–O5 | 2.116(7) | V/Ni–O5 | 2.071(2) | V/Cu–O5 | 2.129(3) | V/Zn–O5 | 2.122(2) |
V/Co–O6 | 2.127(8) | V/Ni–O6 | 2.079(8) | V/Cu–O6 | 2.133(4) | V/Zn–O6 | 2.129(3) |
V/Co–O7 | 2.031(2) | V/Ni–O7 | 2.014(5) | V/Cu–O7 | 2.030(1) | V/Zn–O7 | 2.029(3) |
S1–O1 | 1.472(5) | S1–O1 | 1.474(2) | S1–O1 | 1.470(2) | S1–O1 | 1.473(2) |
S1–O2 | 1.456(3) | S1–O2 | 1.463(2) | S1–O2 | 1.469(2) | S1–O2 | 1.462(2) |
S1–O3 | 1.471(9) | S1–O3 | 1.473(1) | S1–O3 | 1.485(2) | S1–O3 | 1.479(2) |
S1–O4 | 1.47(8) | S1–O4 | 1.479(2) | S1–O4 | 1.481(3) | S1–O4 | 1.479(3) |
Sample | Bond Angle [°] | |||
---|---|---|---|---|
M’ = Co, Ni, Cu, and Zn | KVCoSOH | KVCoSOH | KVCoSOH | KVCoSOH |
O5–V/M’–O5 * | 180.0(0) | 180.0(0) | 180.0(0) | 180.0(0) |
O5–V/M’–O6 * | 180.0(0) | 180.0(0) | 180.0(0) | 180.0(0) |
O5 *–V/M’–O6 * | 180.0(0) | 180.0(0) | 180.0(0) | 180.0(0) |
O5–V/M’–O6 | 180.0(0) | 180.0(0) | 180.0(0) | 180.0(0) |
O5 *–V/M’–O6 | 91.0(3) | 91.0(3) | 91.0(3) | 91.0(3) |
O5 *–V/M’–O7 * | 88.4(8) | 88.4(8) | 88.4(8) | 88.4(8) |
O5–V/M’–O7 | 89.3(3) | 89.3(3) | 89.3(3) | 89.3(3) |
O5–V/M’–O7 * | 91.3(4) | 91.3(4) | 91.3(4) | 91.3(4) |
O5 *–V/M’–O7 | 88.9(7) | 88.9(7) | 88.9(7) | 88.9(7) |
O6–V/M’–O6 * | 91.5(2) | 91.5(2) | 91.5(2) | 91.5(2) |
O6 *–V/M’–O7 * | 90.6(7) | 90.6(7) | 90.6(7) | 90.6(7) |
O6–V/M’–O7 * | 88.6(6) | 88.6(6) | 88.6(6) | 88.6(6) |
O6 *–V/M’–O7 | 88.9(7) | 88.9(7) | 88.9(7) | 88.9(7) |
O6–V/M’–O7 | 91.5(2) | 91.5(2) | 91.5(2) | 91.5(2) |
O1–S1–O2 | 90.6(7) | 90.6(7) | 90.6(7) | 90.6(7) |
O1–S1–O3 | 88.6(6) | 88.6(6) | 88.6(6) | 88.6(6) |
O1–S1–O4 | 91.0(3) | 91.0(3) | 91.0(3) | 91.0(3) |
O2–S1–O3 | 88.4(8) | 88.4(8) | 88.4(8) | 88.4(8) |
O2–S1–O4 | 89.3(3) | 89.3(3) | 89.3(3) | 89.3(3) |
O3–S1–O4 | 91.3(4) | 91.3(4) | 91.3(4) | 91.3(4) |
Sample | Unit Cell [Å3] | Voids [Å3] | Voids [%] | Voids Surface Area [Å2] | Globularity | Asphericity |
---|---|---|---|---|---|---|
KVCoSOH | 653.12 | 4.13 | 0.63 | 24.17 | 0.51 | 0.46 |
KVNiSOH | 645.26 | 3.41 | 0.53 | 21.32 | 0.46 | 0.47 |
KVCuSOH | 659.42 | 5.31 | 0.81 | 28.52 | 0.51 | 0.43 |
KVZnSOH | 655.59 | 4.98 | 0.76 | 27.42 | 0.47 | 0.44 |
Sample | TG | DTA | ||||
---|---|---|---|---|---|---|
ΔT [°C] | Weight Loss [%] | Weight Loss [g/mol] | Molecular Fragment | Tpeak [°C] | Thermal Event | |
KVCoSOH | 74–220 | 24.37 | 105.6 | ≈6 H2O | 85 | dehydration |
134 | dehydration | |||||
187 | dehydration | |||||
220–900 | 23.65 | 102.5 | ≈SO3 + O | 316 | crystallization | |
749 | transition | |||||
765 | V/CoSO4 melting | |||||
KVNiSOH | 85–200 | 24.01 | 104.3 | ≈6 H2O | 138 | dehydration |
200–900 | 19.98 | 73.6 | ≈SO3 | 378 | crystallization | |
520 | -- | |||||
575 | transition | |||||
635 | V/NiSO4 melting | |||||
798 | decomposition | |||||
KVCuSOH | 57–220 | 24.55 | 107.1 | ≈6 H2O | 71 | dehydration |
141 | dehydration | |||||
220–900 | 16.88 | 73.6 | ≈SO3 | 528 | transition | |
KVZnSOH | 55–220 | 25.01 | 109.18 | ≈6 H2O | 85 | dehydration |
130 | dehydration | |||||
220–900 | 19.92 | 86.99 | ≈SO3 | 499 | -- | |
515 | transition | |||||
565 | V/ZnSO4 melting |
Sample | Tpeak [°C] | ΔHexp [kJ/mol] | ΔHexp [kJ/H2O mol] | MMSalt [g/mol] | ρSalt [g/cm3] | ΔHV [GJ/m3] |
---|---|---|---|---|---|---|
KVCoSOH | 87, 161, and 172 | 189.50 | 31.58 | 433.495 | 2.224 | 0.972 |
KVNiSOH | 135 | 360.09 | 60.02 | 433.448 | 2.210 | 1.836 |
KVCuSOH | 67 and 128 | 220.30 | 36.72 | 436.398 | 2.163 | 1.091 |
KVZnSOH | 90 and 126 | 145.85 | 24.31 | 436.703 | 2.248 | 0.751 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Oliveira Neto, J.G.d.; Marques, J.V.; Santos, J.C.d.; Santos, A.O.d.; Lang, R. Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials. Physchem 2024, 4, 319-333. https://doi.org/10.3390/physchem4030022
Oliveira Neto JGd, Marques JV, Santos JCd, Santos AOd, Lang R. Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials. Physchem. 2024; 4(3):319-333. https://doi.org/10.3390/physchem4030022
Chicago/Turabian StyleOliveira Neto, João G. de, Jacivan V. Marques, Jayson C. dos Santos, Adenilson O. dos Santos, and Rossano Lang. 2024. "Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials" Physchem 4, no. 3: 319-333. https://doi.org/10.3390/physchem4030022
APA StyleOliveira Neto, J. G. d., Marques, J. V., Santos, J. C. d., Santos, A. O. d., & Lang, R. (2024). Exploring the Diversity and Dehydration Performance of New Mixed Tutton Salts (K2V1−xM’x(SO4)2(H2O)6, Where M’ = Co, Ni, Cu, and Zn) as Thermochemical Heat Storage Materials. Physchem, 4(3), 319-333. https://doi.org/10.3390/physchem4030022