Structure versus Property Relationship of Hybrid Silk/Flax Composites
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Composites
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Satyanarayana, K.G.; Arizaga, G.G.C.; Wypych, F. Biodegradable composites based on lignocellulosic fibers-An overview. Prog. Polym. Sci. 2009, 34, 982–1021. [Google Scholar] [CrossRef]
- Kandasamy, J.; Soundhar, A.; Rajesh, M.; Mallikarjuna Reddy, D.; Kar, V.R. Natural Fiber Composite for Structural Applications. In Structural Health Monitoring System for Synthetic, Hybrid and Natural Fiber Composites; Springer: Singapore, 2021; pp. 23–35. [Google Scholar]
- Ornaghi, H.L.; Monticeli, F.M.; Neves, R.M.; Zattera, A.J.; Cioffi, M.O.H.; Voorwald, H.J.C. Effect of stacking sequence and porosity on creep behavior of glass/epoxy and carbon/epoxy hybrid laminate composites. Compos. Commun. 2020, 19, 210–219. [Google Scholar] [CrossRef]
- Angrizani, C.C.; Ornaghi, H.L.; Zattera, A.J.; Amico, S.C. Thermal and Mechanical Investigation of Interlaminate Glass/Curaua Hybrid Polymer Composites. J. Nat. Fibers 2017, 14, 271–277. [Google Scholar] [CrossRef]
- Ornaghi, H.L.; Ornaghi, F.G.; de Carvalho Benini, K.C.C.; Bianchi, O. A comprehensive kinetic simulation of different types of plant fibers: Autocatalytic degradation mechanism. Cellulose 2019, 26, 7145–7157. [Google Scholar] [CrossRef]
- Thyavihalli Girijappa, Y.G.; Mavinkere Rangappa, S.; Parameswaranpillai, J.; Siengchin, S. Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review. Front. Mater. 2019, 6, 226. [Google Scholar] [CrossRef]
- Asim, M.; Paridah, M.T.; Chandrasekar, M.; Shahroze, R.M.; Jawaid, M.; Nasir, M.; Siakeng, R. Thermal stability of natural fibers and their polymer composites. Iran. Polym. J. 2020, 29, 625–648. [Google Scholar] [CrossRef]
- Chokshi, S.; Parmar, V.; Gohil, P.; Chaudhary, V. Chemical Composition and Mechanical Properties of Natural Fibers. J. Nat. Fibers 2022, 19, 3942–3953. [Google Scholar] [CrossRef]
- Ornaghi Jr, H.L.; Faccio, M.; Soares, M.R.F. Thermal degradation kinetics of natural fibers: Determination of the kinetic triplet and lifetime prediction. Polyssacharides 2024, 27, 169–183. [Google Scholar] [CrossRef]
- Neto, J.; Queiroz, H.; Aguiar, R.; Lima, R.; Cavalcanti, D.; Banea, M.D. A review of recent advances in hybrid natural fiber reinforced polymer composites. J. Renew. Mater. 2022, 10, 561–589. [Google Scholar] [CrossRef]
- Arslanoglu, F.; AytaÇ, S. The Important in Terms of Health of Flax (Linum usitatissimum L.). Int. J. Life Sci. Biotechnol. 2020, 3, 95–107. [Google Scholar] [CrossRef]
- More, A.P. Flax fiber–based polymer composites: A review. Adv. Compos. Hybrid Mater. 2022, 5, 1–20. [Google Scholar] [CrossRef]
- Moudood, A.; Rahman, A.; Öchsner, A.; Islam, M.; Francucci, G. Flax fiber and its composites: An overview of water and moisture absorption impact on their performance. J. Reinf. Plast. Compos. 2019, 38, 323–339. [Google Scholar] [CrossRef]
- Prashanth, M.; Gouda, P.S.S.; Manjunatha, T.S.; Banapurmath, N.R.; Edacheriane, A. Understanding the impact of fiber orientation on mechanical, interlaminar shear strength, and fracture properties of jute–banana hybrid composite laminates. Polym. Compos. 2021, 42, 5475–5489. [Google Scholar] [CrossRef]
- Mahesh, V.; Joladarashi, S.; Kulkarni, S.M. An experimental study on adhesion, flexibility, interlaminar shear strength, and damage mechanism of jute/rubber-based flexible “green” composite. J. Thermoplast. Compos. Mater. 2022, 35, 149–176. [Google Scholar] [CrossRef]
- Nightingale, C.; Day, R.J. Flexural and interlaminar shear strength properties of carbon fiber/epoxy composites cured thermally and with microwave radiation. Compos.-Part A Appl. Sci. Manuf. 2002, 33, 1021–1030. [Google Scholar]
- Jarukumjorn, K.; Suppakarn, N. Effect of glass fiber hybridization on properties of sisal fiber-polypropylene composites. Compos. Part. B Eng. 2009, 40, 623–627. [Google Scholar] [CrossRef]
- Monjon, A.; Santos, P.; Valvez, S.; Reis, P.N.B. Hybridization Effects on Bending and Interlaminar Shear Strength of Composite Laminates. Materials 2022, 15, 1302. [Google Scholar] [CrossRef]
- Sanjay, M.R.; Arpitha, G.R.; Senthamaraikannan, P.; Kathiresan, M.; Saibalaji, M.A.; Yogesha, B. The Hybrid Effect of Jute/Kenaf/E-Glass Woven Fabric Epoxy Composites for Medium Load Applications: Impact, Inter-Laminar Strength, and Failure Surface Characterization. J. Nat. Fibers 2019, 16, 600–612. [Google Scholar]
- Saidane, E.H.; Scida, D.; Pac, M.J.; Ayad, R. Mode-I interlaminar fracture toughness of flax, glass and hybrid flax-glass fiber woven composites: Failure mechanism evaluation using acoustic emission analysis. Polym. Test 2019, 75, 246–253. [Google Scholar] [CrossRef]
- Ranakoti, L.; Gupta, M.K.; Rakesh, P.K. Silk and Silk-Based Composites: Opportunities and Challenges. In Processing of Green Composites; Springer: Sinapore, 2019; pp. 91–106. [Google Scholar]
- Wu, C.; Egawa, S.; Kanno, T.; Kurita, H.; Wang, Z.; Iida, E.; Narita, F. Nanocellulose reinforced silkworm silk fibers for application to biodegradable polymers. Mater. Des. 2021, 202, 109537. [Google Scholar] [CrossRef]
- Yang, K.; Wu, Z.; Zhou, C.; Cai, S.; Wu, Z.; Tian, W.; Wu, S.; Ritchie, R.O.; Guan, J. Comparison of toughening mechanisms in natural silk-reinforced composites with three epoxy resin matrices. Compos. Part A Appl. Sci. Manuf. 2022, 154, 106760. [Google Scholar] [CrossRef]
- Guo, C.; Zhang, J.; Jordan, J.S.; Wang, X.; Henning, R.W.; Yarger, J.L. Structural Comparison of Various Silkworm Silks: An Insight into the Structure-Property Relationship. Biomacromolecules 2018, 19, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Ritchie, R.O.; Gu, Y.; Wu, S.J.; Guan, J. High volume-fraction silk fabric reinforcements can improve the key mechanical properties of epoxy resin composites. Mater. Des. 2016, 108, 470–478. [Google Scholar] [CrossRef]
- Das, S.; Natarajan, G. Chapter 10—Silk fiber composites in biomedical applications. In Materials for Biomedical Engineering; Elsevier: Amsterdam, The Netherlands, 2019; pp. 309–338. [Google Scholar]
- Hardy, J.G.; Scheibel, T.R. Composite materials based on silk proteins. Prog. Polym. Sci. 2010, 35, 1093–1115. [Google Scholar] [CrossRef]
- Li, Y.; Hu, C.; Yu, Y. Interfacial studies of sisal fiber reinforced high density polyethylene (HDPE) composites. Compos. Part A Appl. Sci. Manuf. 2008, 39, 570–578. [Google Scholar] [CrossRef]
- Bera, M.; Alagirusamy, R.; Das, A. A study on interfacial properties of jute-PP composites. J. Reinf. Plast. Compos. 2010, 29, 3155–3161. [Google Scholar] [CrossRef]
- Araujo, J.R.; Mano, B.; Teixeira, G.M.; Spinacé, M.A.S.; De Paoli, M.A. Biomicrofibrilar composites of high density polyethylene reinforced with curauá fibers: Mechanical, interfacial and morphological properties. Compos. Sci. Technol. 2010, 70, 1637–1644. [Google Scholar] [CrossRef]
- Karthi, N.; Kumaresan, K.; Sathish, S.; Gokulkumar, S.; Prabhu, L.; Vigneshkumar, N. An overview: Natural fiber reinforced hybrid composites, chemical treatments and application areas. Mater. Today Proc. 2019, 27, 2828–2834. [Google Scholar] [CrossRef]
- Neves, R.M.; Monticelli, F.M.; Almeida Jr, H.; Ornaghi Jr, H. Hybrid Vegetable/Glass Fiber Epoxy Composites: A Systematic Review. In Vegetable Fiber Composites and Their Technological Applications; Springer: Berlin/Heidelberg, Germany, 2021; p. 6. [Google Scholar]
- Saleem, A.; Medina, L.; Skrifvars, M.; Berglin, L. Hybrid Polymer Composites of Bio-Based Bast Fibers with Glass, Carbon and Basalt Fibers for Automotive Applications—A Review. Molecules 2020, 25, 4933. [Google Scholar] [CrossRef]
- Safri, S.N.A.; Sultan, M.T.H.; Jawaid, M.; Jayakrishna, K. Impact behaviour of hybrid composites for structural applications: A review. Compos. Part B Eng. 2018, 133, 112–121. [Google Scholar] [CrossRef]
- Darshan, S.M.; Suresha, B. Effect of basalt fiber hybridization on mechanical properties of silk fiber reinforced epoxy composites. Mater. Today Proc. 2020, 43, 986–994. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, M.; Ming, J.; Ning, X.; Bai, S. High-Strength and High-Toughness Silk Fibroin Hydrogels: A Strategy Using Dynamic Host-Guest Interactions. ACS Appl. Bio. Mater. 2020, 3, 7103–7112. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Yang, K.; Gu, Y.; Xu, J.; Ritchie, R.O.; Guan, J. Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibers. Compos. Part A Appl. Sci. Manuf. 2019, 117, 357–368. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, K.-Q. Silk Fiber—Molecular Formation Mechanism, Structure- Property Relationship and Advanced Applications. Oligomerization Chem. Biol. Compd. 2014, 3, 57611. [Google Scholar]
- Yang, K.; Gu, Y.; Xu, J.; Ritchie, R.O.; Guan, J. Data for: Mechanical properties and impact performance of silk-epoxy resin composites modulated by flax fibers. Mendeley Data 2018, V1, 17632. [Google Scholar]
- Baley, C. Analysis of the flax fibers tensile behaviour and analysis of the tensile stiffness. Compos. Part A 2002, 33, 939–948. [Google Scholar] [CrossRef]
- Menard, K.P.; Menard, N.R. Dynamic Mechanical Analysis; CRC Press: Boca Raton, FL, USA, 1990; Volume 31. [Google Scholar]
- Khandelwal, S.; Rhee, K.Y. Recent advances in basalt-fiber-reinforced composites: Tailoring the fiber-matrix interface. Compos. Part B Eng. 2020, 192, 108011. [Google Scholar] [CrossRef]
- Zhang, B.; Jia, L.; Tian, M.; Ning, N.; Zhang, L.; Wang, W. Surface and interface modification of aramid fiber and its reinforcement for polymer composites: A review. Eur. Polym. J. 2021, 147, 110352. [Google Scholar] [CrossRef]
- Ferry, J.D.; Myers, H.S. Viscoelastic Properties of Polymers; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1961; Volume 108. [Google Scholar]
- Poletto, M.; Ornaghi Júnior, H.L.; Visakh, P.M.; Arao, Y. Composites and Nanocomposites Based on Renewable and Sustainable Materials. Int. J. Polym. Sci. 2016, 2016, 2–4. [Google Scholar] [CrossRef]
- Ornaghi Júnior, H.L.; Zattera, A.J.; Amico, S.C. Dynamic Mechanical Properties and Correlation With Dynamic Fragility of Sisal Reinforced Composites. Polym. Compos. 2015, 36, 161–166. [Google Scholar] [CrossRef]
- Tham, M.W.; Fazita, M.N.; Abdul Khalil, H.P.S.; Mahmud Zuhudi, N.Z.; Jaafar, M.; Rizal, S.; Haafiz, M.M. Tensile properties prediction of natural fiber composites using rule of mixtures: A review. J. Reinf. Plast. Compos. 2019, 38, 211–248. [Google Scholar] [CrossRef]
- dos Reis, A.K.; Monticelli, F.M.; Neves, R.M.; de Paula Santos, L.F.; Botelho, E.C.; Luiz Ornaghi, H. Creep behavior of polyetherimide semipreg and epoxy prepreg composites: Structure vs. property relationship. J. Compos. Mater. 2020, 54, 4121–4131. [Google Scholar] [CrossRef]
- Bosh, L.; Vandenoever MJ, A.; Petersat OC, J. Tensile and compressive properties of flax fibres.1023_A-1014925621252. J. Mater. Sci. 2002, 37, 1683–1692. [Google Scholar] [CrossRef]
- Xia, Z.; Okabe, T.; Curtin, W.A. Shear-lag versus finite element models for stress transfer in fiber-reinforced composites. Compos. Sci. Technol. 2002, 62, 1141–1149. [Google Scholar] [CrossRef]
- Swolfs, Y.; Verpoest, I.; Gorbatikh, L. Maximising the hybrid effect in unidirectional hybrid composites. Mater. Des. 2016, 93, 39–45. [Google Scholar] [CrossRef]
Composite | Vtotal (Fiber Volume Fraction) (%) | Vsilk (Silk Fiber Volume Fraction) (%) | Vflax (Flax Fiber Volume Fraction) (%) |
---|---|---|---|
Silk reinforced/SB | 50 | 50 | 0 |
Silk/flax hybrid fiber reinforced-FS1 | 48 | 20 | 28 |
Silk/flax hybrid fiber reinforced-FS2 | 51 | 15.3 | 35.7 |
Silk/flax hybrid fiber reinforced-FS3 | 47.5 | 10 | 37.5 |
Silk/flax hybrid fiber reinforced-HSH | 52 | 29.7 | 22.3 |
Silk/flax hybrid fiber reinforced-SHS | 51 | 38.2 | 12.8 |
Silk/flax hybrid fiber reinforced-SHI | 51 | 35 | 16 |
Flax reinforced/FF | 48 | 0 | 48 |
Pristine epoxy resin | 0 | 0 | 0 |
Composite | Young’s Modulus (GPa) | Tensile Strength (MPa) | Tensile Breaking Strain (%) |
---|---|---|---|
Silk-reinforced/SB | 5.90 ± 0.4 | 113.7 ± 2.4 | 6.6 ± 0.1 |
Silk/flax hybrid fiber-reinforced-FS1 | 12.8 ± 0.2 | 170.2 ± 3.5 | 4.1 ± 0.0 |
Silk/flax hybrid fiber-reinforced-FS2 | 20.7 ± 0.8 | 236.4 ± 6.3 | 3.5 ± 0.1 |
Silk/flax hybrid fiber-reinforced-FS3 | 22.2 ± 0.2 | 246.7 ± 11 | 3.1 ± 0.0 |
Silk/flax hybrid fiber-reinforced-HSH | 15.2 ± 0.2 | 187.6 ± 5.5 | 3.2 ± 0.0 |
Silk/flax hybrid fiber-reinforced-SHS | 11.2 ± 0.5 | 153.2 ± 2.1 | 3.3 ± 0.0 |
Silk/flax hybrid fiber-reinforced-SHI | 12.2 ± 0.0 | 165.3 ± 0.9 | 3.8 ± 0.0 |
Flax-reinforced/FF | 11.8 ± 0.1 | 153.2 ± 0.1 | 3.8 ± 0.0 |
Pristine epoxy resin | 3.00 ± 0.1 | 73.40 ± 0.2 | 16.1 ± 0.7 |
Composite | Reinforcement Coefficient | Tg (°C) | Constrained Region |
---|---|---|---|
Silk-reinforced/SB | 2.50 | 94 * | 0.74 |
Silk/flax hybrid fiber-reinforced-FS1 | 3.44 | 94 * | 0.65 |
Silk/flax hybrid fiber-reinforced-FS2 | 2.54 | 97 | 0.67 |
Silk/flax hybrid fiber-reinforced-FS3 | 2.69 | 96 | 0.69 |
Silk/flax hybrid fiber-reinforced-HSH | 2.31 | 96 | 0.67 |
Silk/flax hybrid fiber-reinforced-SHS | 2.50 | 96 | 0.72 |
Silk/flax hybrid fiber-reinforced-SHI | - | - | - |
Flax-reinforced/FF | - | - | - |
Epoxy resin | - | 95 * | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ornaghi, H.L., Jr.; Neves, R.M.; Dall Agnol, L.; Kerche, E.; Lazzari, L.K. Structure versus Property Relationship of Hybrid Silk/Flax Composites. Textiles 2024, 4, 344-355. https://doi.org/10.3390/textiles4030020
Ornaghi HL Jr., Neves RM, Dall Agnol L, Kerche E, Lazzari LK. Structure versus Property Relationship of Hybrid Silk/Flax Composites. Textiles. 2024; 4(3):344-355. https://doi.org/10.3390/textiles4030020
Chicago/Turabian StyleOrnaghi, Heitor L., Jr., Roberta M. Neves, Lucas Dall Agnol, Eduardo Kerche, and Lidia K. Lazzari. 2024. "Structure versus Property Relationship of Hybrid Silk/Flax Composites" Textiles 4, no. 3: 344-355. https://doi.org/10.3390/textiles4030020
APA StyleOrnaghi, H. L., Jr., Neves, R. M., Dall Agnol, L., Kerche, E., & Lazzari, L. K. (2024). Structure versus Property Relationship of Hybrid Silk/Flax Composites. Textiles, 4(3), 344-355. https://doi.org/10.3390/textiles4030020