Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies
Simple Summary
Abstract
1. Introduction
2. Unraveling the Mechanism: How siRNA Silences Gene Expression in Cancer Cells
3. Optimizing Synergistic Combinations: The Science Behind Rational siRNA and Drug Pairings
4. Next-Generation siRNA Therapeutics: Addressing Off-Target Challenges and Immune Responses
4.1. Chemical Modifications to siRNA
4.2. Nanoparticle-Based Delivery Systems for siRNA Therapeutics
4.3. Targeting Strategies to Minimize Off-Target Effects
4.4. Advances in Endosomal Escape Mechanisms for siRNA Delivery
5. Nanoparticle-Assisted Targeting of Oncogenes in Combinatorial Therapy
5.1. Suppressing Cancer Resistance Genes with siRNA: Enhancing Chemotherapy Efficacy
5.2. Enhancing Cancer Cell Death by Silencing Survival Genes with siRNA and Chemotherapy
5.3. Exploiting Tumor-Specific Gene Expression for Targeted Therapy
6. Regulatory Framework for siRNA-Based Combinatory Therapies in Cancer
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kumar, K.; Rani, V.; Mishra, M.; Chawla, R. New Paradigm in Combination Therapy of SiRNA with Chemotherapeutic Drugs for Effective Cancer Therapy. Curr. Res. Pharmacol. Drug Discov. 2022, 3, 100103. [Google Scholar] [CrossRef] [PubMed]
- Mokhtari, R.B.; Homayouni, T.S.; Baluch, N.; Morgatskaya, E.; Kumar, S.; Das, B.; Yeger, H. Combination Therapy in Combating Cancer. Oncotarget 2017, 8, 38022. [Google Scholar] [CrossRef]
- Palmer, A.C.; Sorger, P.K. Combination Cancer Therapy Can Confer Benefit via Patient-to-Patient Variability without Drug Additivity or Synergy. Cell 2017, 171, 1678. [Google Scholar] [CrossRef]
- Kilgallen, A.B.; Štibler, U.; Printezi, M.I.; Putker, M.; Punt, C.J.A.; Sluijter, J.P.G.; May, A.M.; van Laake, L.W. Comparing Conventional Chemotherapy to Chronomodulated Chemotherapy for Cancer Treatment: Protocol for a Systematic Review. JMIR Res. Protoc. 2020, 9, e18023. [Google Scholar] [CrossRef] [PubMed]
- Kiani Shahvandi, M.; Souri, M.; Tavasoli, S.; Moradi Kashkooli, F.; Kar, S.; Soltani, M. A Comparative Study between Conventional Chemotherapy and Photothermal Activated Nano-Sized Targeted Drug Delivery to Solid Tumor. Comput. Biol. Med. 2023, 166, 107574. [Google Scholar] [CrossRef] [PubMed]
- Anand, U.; Dey, A.; Chandel, A.K.S.; Sanyal, R.; Mishra, A.; Pandey, D.K.; De Falco, V.; Upadhyay, A.; Kandimalla, R.; Chaudhary, A.; et al. Cancer Chemotherapy and beyond: Current Status, Drug Candidates, Associated Risks and Progress in Targeted Therapeutics. Genes Dis. 2023, 10, 1367–1401. [Google Scholar] [CrossRef] [PubMed]
- Hu, B.; Zhong, L.; Weng, Y.; Peng, L.; Huang, Y.; Zhao, Y.; Liang, X.J. Therapeutic SiRNA: State of the Art. Signal Transduct. Target. Ther. 2020, 5, 101. [Google Scholar] [CrossRef] [PubMed]
- Subhan, M.A.; Torchilin, V.P. Efficient Nanocarriers of SiRNA Therapeutics for Cancer Treatment. Transl. Res. 2019, 214, 62–91. [Google Scholar] [CrossRef] [PubMed]
- Sajid, M.I.; Moazzam, M.; Kato, S.; Cho, K.Y.; Tiwari, R.K. Overcoming Barriers for SiRNA Therapeutics: From Bench to Bedside. Pharmaceuticals 2020, 13, 294. [Google Scholar] [CrossRef] [PubMed]
- Isazadeh, H.; Oruji, F.; Shabani, S.; Behroozi, J.; Nasiri, H.; Isazadeh, A.; Akbari, M. Advances in SiRNA Delivery Approaches in Cancer Therapy: Challenges and Opportunities. Mol. Biol. Rep. 2023, 50, 9529–9543. [Google Scholar] [CrossRef]
- Lin, Y.L.; Yuksel Durmaz, Y.; Nör, J.E.; Elsayed, M.E.H. Synergistic Combination of Small Molecule Inhibitor and RNA Interference Against Anti-Apoptotic Bcl-2 Protein in Head and Neck Cancer Cells. Mol. Pharm. 2013, 10, 2730. [Google Scholar] [CrossRef]
- Tunç, C.Ü.; Aydin, O. Co-Delivery of Bcl-2 SiRNA and Doxorubicin through Gold Nanoparticle-Based Delivery System for a Combined Cancer Therapy Approach. J. Drug Deliv. Sci. Technol. 2022, 74, 103603. [Google Scholar] [CrossRef]
- Sun, Q.; Wang, X.; Cui, C.; Li, J.; Wang, Y. Doxorubicin and Anti-VEGF SiRNA Co-Delivery via Nano-Graphene Oxide for Enhanced Cancer Therapy in Vitro and in Vivo. Int. J. Nanomed. 2018, 13, 3713–3728. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Zhao, Y.; Zhang, E.; Jiang, M.; Zhi, D.; Chen, H.; Cui, S.; Zhen, Y.; Cui, J.; Zhang, S. Co-Delivery of Paclitaxel and Anti-VEGF SiRNA by Tripeptide Lipid Nanoparticle to Enhance the Anti-Tumor Activity for Lung Cancer Therapy. Drug Deliv. 2020, 27, 1397–1411. [Google Scholar] [CrossRef]
- Jin, H.; Wang, L.; Bernards, R. Rational Combinations of Targeted Cancer Therapies: Background, Advances and Challenges. Nat. Rev. Drug Discov. 2022, 22, 213–234. [Google Scholar] [CrossRef]
- Babu, A.; Munshi, A.; Ramesh, R. Combinatorial Therapeutic Approaches with RNAi and Anticancer Drugs Using Nanodrug Delivery Systems. Drug Dev. Ind. Pharm. 2017, 43, 1391–1401. [Google Scholar] [CrossRef]
- Zhou, Z.; Edil, B.H.; Li, M. Combination Therapies for Cancer: Challenges and Opportunities. BMC Med. 2023, 21, 171. [Google Scholar] [CrossRef]
- Singh, A.; Trivedi, P.; Jain, N.K. Advances in SiRNA Delivery in Cancer Therapy. Artif. Cells Nanomed. Biotechnol. 2018, 46, 274–283. [Google Scholar] [CrossRef]
- Huang, L.; Guo, S. Nanoparticles Escaping RES and Endosome: Challenges for SiRNA Delivery for Cancer Therapy. J. Nanomater. 2011, 2011, 742895. [Google Scholar] [CrossRef]
- Gupta, N.; Rai, D.B.; Jangid, A.K.; Pooja, D.; Kulhari, H. Nanomaterials-Based SiRNA Delivery: Routes of Administration, Hurdles and Role of Nanocarriers. In Nanotechnology in Modern Animal Biotechnology: Recent Trends and Future Perspectives; Springer: Singapore, 2019; pp. 67–114. [Google Scholar] [CrossRef]
- Mahmoodi Chalbatani, G.; Dana, H.; Gharagouzloo, E.; Grijalvo, S.; Eritja, R.; Logsdon, C.D.; Memari, F.; Miri, S.R.; Rad, M.R.; Marmari, V. Small Interfering RNAs (SiRNAs) in Cancer Therapy: A Nano-Based Approach. Int. J. Nanomed. 2019, 14, 3111–3128. [Google Scholar] [CrossRef] [PubMed]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, S.; Iyer, A.K.; Weiler, J.; Morrissey, D.V.; Amiji, M.M. Combination of SiRNA-Directed Gene Silencing with Cisplatin Reverses Drug Resistance in Human Non-Small Cell Lung Cancer. Mol. Ther. Nucleic Acids 2013, 2, e110. [Google Scholar] [CrossRef]
- Creixell, M.; Peppas, N.A. Co-Delivery of SiRNA and Therapeutic Agents Using Nanocarriers to Overcome Cancer Resistance. Nano Today 2012, 7, 367–379. [Google Scholar] [CrossRef]
- Li, L.Y.; Guan, Y.D.; Chen, X.S.; Yang, J.M.; Cheng, Y. DNA Repair Pathways in Cancer Therapy and Resistance. Front. Pharmacol. 2020, 11, 629266. [Google Scholar] [CrossRef]
- Jurkovicova, D.; Neophytou, C.M.; Gašparović, A.Č.; Gonçalves, A.C. DNA Damage Response in Cancer Therapy and Resistance: Challenges and Opportunities. Int. J. Mol. Sci. 2022, 23, 14672. [Google Scholar] [CrossRef] [PubMed]
- Pote, M.S.; Gacche, R.N. ATP-Binding Cassette Efflux Transporters and MDR in Cancer. Drug Discov. Today 2023, 28, 103537. [Google Scholar] [CrossRef]
- Wang, D.; Xu, X.; Zhang, K.; Sun, B.; Wang, L.; Meng, L.; Liu, Q.; Zheng, C.; Yang, B.; Sun, H. Codelivery of Doxorubicin and MDR1-SiRNA by Mesoporous Silica Nanoparticles-Polymerpolyethylenimine to Improve Oral Squamous Carcinoma Treatment. Int. J. Nanomed. 2018, 13, 187. [Google Scholar] [CrossRef] [PubMed]
- Gao, B.; Russell, A.; Beesley, J.; Chen, X.Q.; Healey, S.; Henderson, M.; Wong, M.; Emmanuel, C.; Galletta, L.; Johnatty, S.E.; et al. Paclitaxel Sensitivity in Relation to ABCB1 Expression, Efflux and Single Nucleotide Polymorphisms in Ovarian Cancer. Sci. Rep. 2014, 4, 4669. [Google Scholar] [CrossRef]
- McMullen, M.; Karakasis, K.; Madariaga, A.; Oza, A.M. Overcoming Platinum and PARP-Inhibitor Resistance in Ovarian Cancer. Cancers 2020, 12, 1607. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.; Kong, Z.; Duan, X.; Zhu, H.; Li, S.; Zeng, S.; Liang, Y.; Iliakis, G.; Gui, Z.; Yang, D. Inhibition of PARP1 by Small Interfering RNA Enhances Docetaxel Activity against Human Prostate Cancer PC3 Cells. Biochem. Biophys. Res. Commun. 2013, 442, 127–132. [Google Scholar] [CrossRef]
- Vernooij, L.; Kamili, A.; Ober, K.; van Arkel, J.; Lankhorst, L.; Vermeulen, E.; Al-Khakany, H.; Tax, G.; van den Boogaard, M.L.; Fletcher, J.I.; et al. Preclinical Assessment of Combined BCL-2 and MCL-1 Inhibition in High-Risk Neuroblastoma. EJC Paediatr. Oncol. 2024, 3, 100168. [Google Scholar] [CrossRef]
- Gandhi, N.S.; Tekade, R.K.; Chougule, M.B. Nanocarrier Mediated Delivery of SiRNA/MiRNA in Combination with Chemotherapeutic Agents for Cancer Therapy: Current Progress and Advances. J. Control. Release 2014, 194, 238–256. [Google Scholar] [CrossRef]
- Anthiya, S.; Öztürk, S.C.; Yanik, H.; Tavukcuoglu, E.; Şahin, A.; Datta, D.; Charisse, K.; Álvarez, D.M.; Loza, M.I.; Calvo, A.; et al. Targeted SiRNA Lipid Nanoparticles for the Treatment of KRAS-Mutant Tumors. J. Control. Release 2023, 357, 67–83. [Google Scholar] [CrossRef] [PubMed]
- Zarredar, H.; Pashapour, S.; Ansarin, K.; Khalili, M.; Baghban, R.; Farajnia, S. Combination Therapy with KRAS SiRNA and EGFR Inhibitor AZD8931 Suppresses Lung Cancer Cell Growth in Vitro. J. Cell. Physiol. 2019, 234, 1560–1566. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M.; Zhang, M.; Wei, D.; Stueber, D.; Taratula, O.; Minko, T.; He, H. Co-Delivery of Doxorubicin and Bcl-2 SiRNA by Mesoporous Silica Nanoparticles Enhances the Efficacy of Chemotherapy in Multidrug-Resistant Cancer Cells. Small 2009, 5, 2673–2677. [Google Scholar] [CrossRef] [PubMed]
- Tabernero, J.; Shapiro, G.I.; LoRusso, P.M.; Cervantes, A.; Schwartz, G.K.; Weiss, G.J.; Paz-Ares, L.; Cho, D.C.; Infante, J.R.; Alsina, M.; et al. First-in-Humans Trial of an RNA Interference Therapeutic Targeting VEGF and KSP in Cancer Patients with Liver Involvement. Cancer Discov. 2013, 3, 406–417. [Google Scholar] [CrossRef] [PubMed]
- Horimoto, Y.; Ishizuka, Y.; Ueki, Y.; Higuchi, T.; Arakawa, A.; Saito, M. Comparison of Tumors with HER2 Overexpression versus HER2 Amplification in HER2-Positive Breast Cancer Patients. BMC Cancer 2022, 22, 242. [Google Scholar] [CrossRef]
- Ngamcherdtrakul, W.; Bejan, D.S.; Cruz-Muñoz, W.; Reda, M.; Zaidan, H.Y.; Siriwon, N.; Marshall, S.; Wang, R.; Nelson, M.A.; Rehwaldt, J.P.C.; et al. Targeted Nanoparticle for Co-Delivery of HER2 SiRNA and a Taxane to Mirror the Standard Treatment of HER2+ Breast Cancer: Efficacy in Breast Tumor and Brain Metastasis. Small 2022, 18, 2107550. [Google Scholar] [CrossRef]
- Chen, G.; Kronenberger, P.; Teugels, E.; Umelo, I.A.; De Grève, J. Effect of SiRNAs Targeting the EGFR T790M Mutation in a Non-Small Cell Lung Cancer Cell Line Resistant to EGFR Tyrosine Kinase Inhibitors and Combination with Various Agents. Biochem. Biophys. Res. Commun. 2013, 431, 623–629. [Google Scholar] [CrossRef] [PubMed]
- Suk, J.S.; Xu, Q.; Kim, N.; Hanes, J.; Ensign, L.M. PEGylation as a Strategy for Improving Nanoparticle-Based Drug and Gene Delivery. Adv. Drug Deliv. Rev. 2016, 99, 28–51. [Google Scholar] [CrossRef]
- Zhao, X.; Li, F.; Li, Y.; Wang, H.; Ren, H.; Chen, J.; Nie, G.; Hao, J. Co-Delivery of HIF1α SiRNA and Gemcitabine via Biocompatible Lipid-Polymer Hybrid Nanoparticles for Effective Treatment of Pancreatic Cancer. Biomaterials 2015, 46, 13–25. [Google Scholar] [CrossRef]
- Lonez, C.; Vandenbranden, M.; Ruysschaert, J.M. Cationic Lipids Activate Intracellular Signaling Pathways. Adv. Drug Deliv. Rev. 2012, 64, 1749–1758. [Google Scholar] [CrossRef] [PubMed]
- Miles, D.; Von Minckwitz, G.; Seidman, A.D. Combination Versus Sequential Single-Agent Therapy in Metastatic Breast Cancer. Oncologist 2002, 7, 13–19. [Google Scholar] [CrossRef] [PubMed]
- Michel, M.C.; Staskin, D. Study Designs for Evaluation of Combination Treatment: Focus on Individual Patient Benefit. Biomedicines 2022, 10, 270. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, M.; Alvarez-Lorenzo, C.; Concheiro, A.; Figueiras, A.; Santos, A.C.; Veiga, F. RNAi-Based Therapeutics for Lung Cancer: Biomarkers, MicroRNAs, and Nanocarriers. Expert Opin. Drug Deliv. 2018, 15, 965–982. [Google Scholar] [CrossRef] [PubMed]
- Yonezawa, S.; Koide, H.; Asai, T. Recent Advances in SiRNA Delivery Mediated by Lipid-Based Nanoparticles. Adv. Drug Deliv. Rev. 2020, 154–155, 64–78. [Google Scholar] [CrossRef]
- El Moukhtari, S.H.; Garbayo, E.; Amundarain, A.; Pascual-Gil, S.; Carrasco-León, A.; Prosper, F.; Agirre, X.; Blanco-Prieto, M.J. Lipid Nanoparticles for SiRNA Delivery in Cancer Treatment. J. Control. Release 2023, 361, 130–146. [Google Scholar] [CrossRef]
- Morgan, E.; Wupperfeld, D.; Morales, D.; Reich, N. Shape Matters: Gold Nanoparticle Shape Impacts the Biological Activity of SiRNA Delivery. Bioconjugate Chem. 2019, 30, 853–860. [Google Scholar] [CrossRef] [PubMed]
- Artiga, Á.; Serrano-Sevilla, I.; De Matteis, L.; Mitchell, S.G.; De La Fuente, J.M. Current Status and Future Perspectives of Gold Nanoparticle Vectors for SiRNA Delivery. J. Mater. Chem. B 2019, 7, 876–896. [Google Scholar] [CrossRef]
- Kanungo, A.; Tripathy, N.S.; Sahoo, L.; Acharya, S.; Dilnawaz, F. Theranostic SiRNA Loaded Mesoporous Silica Nanoplatforms: A Game Changer in Gene Therapy for Cancer Treatment. OpenNano 2024, 15, 100195. [Google Scholar] [CrossRef]
- Xie, X.; Yue, T.; Gu, W.; Cheng, W.Y.; He, L.; Ren, W.Y.; Li, F.; Piao, J.G. Recent Advances in Mesoporous Silica Nanoparticles Delivering SiRNA for Cancer Treatment. Pharmaceutics 2023, 15, 2483. [Google Scholar] [CrossRef] [PubMed]
- Mykhaylyk, O.; Sanchez-Antequera, Y.; Vlaskou, D.; Cerda, M.B.; Bokharaei, M.; Hammerschmid, E.; Anton, M.; Plank, C. Magnetic Nanoparticle and Magnetic Field Assisted SiRNA Delivery In Vitro. In RNA Interference: Challenges and Therapeutic Opportunities; Humana Press: New York, NY, USA, 2015; pp. 53–106. [Google Scholar] [CrossRef]
- Amiri, A.; Bagherifar, R.; Ansari Dezfouli, E.; Kiaie, S.H.; Jafari, R.; Ramezani, R. Exosomes as Bio-Inspired Nanocarriers for RNA Delivery: Preparation and Applications. J. Transl. Med. 2022, 20, 125. [Google Scholar] [CrossRef]
- Ubanako, P.; Mirza, S.; Ruff, P.; Penny, C. Exosome-Mediated Delivery of SiRNA Molecules in Cancer Therapy: Triumphs and Challenges. Front. Mol. Biosci. 2024, 11, 1447953. [Google Scholar] [CrossRef]
- Shi, J.; Xu, Y.; Xu, X.; Zhu, X.; Pridgen, E.; Wu, J.; Votruba, A.R.; Swami, A.; Zetter, B.R.; Farokhzad, O.C. Hybrid Lipid–Polymer Nanoparticles for Sustained SiRNA Delivery and Gene Silencing. Nanomedicine 2014, 10, e897–e900. [Google Scholar] [CrossRef] [PubMed]
- Behzadi, S.; Serpooshan, V.; Tao, W.; Hamaly, M.A.; Alkawareek, M.Y.; Dreaden, E.C.; Brown, D.; Alkilany, A.M.; Farokhzad, O.C.; Mahmoudi, M. Cellular Uptake of Nanoparticles: Journey inside the Cell. Chem. Soc. Rev. 2017, 46, 4218–4244. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Chen, S.; Hu, C.J.; Hong, X.; Shi, J.; Xiao, Y. Stimuli-Responsive Nanotechnology for RNA Delivery. Adv. Sci. 2023, 10, 2303597. [Google Scholar] [CrossRef] [PubMed]
- Eloy, J.O.; Petrilli, R.; Lopez, R.F.V.; Lee, R.J. Stimuli-Responsive Nanoparticles for SiRNA Delivery. Curr. Pharm. Des. 2015, 21, 4131–4144. [Google Scholar] [CrossRef]
- Moazzam, M.; Zhang, M.; Hussain, A.; Yu, X.; Huang, J.; Huang, Y. The Landscape of Nanoparticle-Based SiRNA Delivery and Therapeutic Development. Mol. Ther. 2024, 32, 284–312. [Google Scholar] [CrossRef]
- Ebrahimi, N.; Manavi, M.S.; Nazari, A.; Momayezi, A.; Faghihkhorasani, F.; Rasool Riyadh Abdulwahid, A.H.; Rezaei-Tazangi, F.; Kavei, M.; Rezaei, R.; Mobarak, H.; et al. Nano-Scale Delivery Systems for SiRNA Delivery in Cancer Therapy: New Era of Gene Therapy Empowered by Nanotechnology. Environ. Res. 2023, 239, 117263. [Google Scholar] [CrossRef] [PubMed]
- Smith, S.A.; Selby, L.I.; Johnston, A.P.R.; Such, G.K. The Endosomal Escape of Nanoparticles: Toward More Efficient Cellular Delivery. Bioconjugate Chem. 2019, 30, 263–272. [Google Scholar] [CrossRef]
- Grau, M.; Wagner, E. Strategies and Mechanisms for Endosomal Escape of Therapeutic Nucleic Acids. Curr. Opin. Chem. Biol. 2024, 81, 102506. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Pan, Y.; Xia, L.; Li, J. Non-Viral Vectors Combined Delivery of SiRNA and Anti-Cancer Drugs to Reverse Tumor Multidrug Resistance. Biomed. Pharmacother. 2024, 178, 117119. [Google Scholar] [CrossRef]
- Xue, X.; Liang, X.J. Overcoming Drug Efflux-Based Multidrug Resistance in Cancer with Nanotechnology. Chin. J. Cancer 2012, 31, 100. [Google Scholar] [CrossRef]
- Byeon, Y.; Lee, J.W.; Choi, W.S.; Won, J.E.; Kim, G.H.; Kim, M.G.; Wi, T.I.; Lee, J.M.; Kang, T.H.; Jung, I.D.; et al. CD44-Targeting PLGA Nanoparticles Incorporating Paclitaxel and FAK SiRNA Overcome Chemoresistance in Epithelial Ovarian Cancer. Cancer Res. 2018, 78, 6247–6256. [Google Scholar] [CrossRef] [PubMed]
- Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J.I.; Nel, A.E. Engineered Design of Mesoporous Silica Nanoparticles to Deliver Doxorubicin and P-Glycoprotein SiRNA to Overcome Drug Resistance in a Cancer Cell Line. ACS Nano 2010, 4, 4539–4550. [Google Scholar] [CrossRef] [PubMed]
- Mansoori, B.; Mohammadi, A.; Davudian, S.; Shirjang, S.; Baradaran, B. The Different Mechanisms of Cancer Drug Resistance: A Brief Review. Adv. Pharm. Bull. 2017, 7, 339–348. [Google Scholar] [CrossRef] [PubMed]
- Robey, R.W.; Pluchino, K.M.; Hall, M.D.; Fojo, A.T.; Bates, S.E.; Gottesman, M.M. Revisiting the role of ABC transporters in multidrug-resistant cancer. Nat. Rev. Cancer 2018, 18, 452. [Google Scholar] [CrossRef] [PubMed]
- Chen, H.K.; Chen, Y.L.; Wang, C.Y.; Chung, W.P.; Fang, J.H.; Lai, M.D.; Hsu, H.P. ABCB1 Regulates Immune Genes in Breast Cancer. Breast Cancer Targets Ther. 2023, 15, 801–811. [Google Scholar] [CrossRef]
- Lei, Z.N.; Teng, Q.X.; Wu, Z.X.; Ping, F.F.; Song, P.; Wurpel, J.N.D.; Chen, Z.S. Overcoming Multidrug Resistance by Knockout of ABCB1 Gene Using CRISPR/Cas9 System in SW620/Ad300 Colorectal Cancer Cells. MedComm 2021, 2, 765. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wang, Y.; Chen, S.; Zhang, S.; Cui, C. Cetuximab-Modified Human Serum Albumin Nanoparticles Co-Loaded with Doxorubicin and Mdr1 Sirna for the Treatment of Drug-Resistant Breast Tumors. Int. J. Nanomed. 2021, 16, 7051–7069. [Google Scholar] [CrossRef]
- Kukal, S.; Guin, D.; Rawat, C.; Bora, S.; Mishra, M.K.; Sharma, P.; Paul, P.R.; Kanojia, N.; Grewal, G.K.; Kukreti, S.; et al. Multidrug Efflux Transporter ABCG2: Expression and Regulation. Cell. Mol. Life Sci. 2021, 78, 6887. [Google Scholar] [CrossRef]
- Wu, Z.X.; Mai, Q.; Yang, Y.; Wang, J.Q.; Ma, H.; Zeng, L.; Chen, Z.S.; Pan, Y. Overexpression of Human ATP-Binding Cassette Transporter ABCG2 Contributes to Reducing the Cytotoxicity of GSK1070916 in Cancer Cells. Biomed. Pharmacother. 2021, 136, 111223. [Google Scholar] [CrossRef] [PubMed]
- Omori, M.; Noro, R.; Seike, M.; Matsuda, K.; Hirao, M.; Fukuizumi, A.; Takano, N.; Miyanaga, A.; Gemma, A. Inhibitors of ABCB1 and ABCG2 Overcame Resistance to Topoisomerase Inhibitors in Small Cell Lung Cancer. Thorac. Cancer 2022, 13, 2142. [Google Scholar] [CrossRef]
- Bai, M.; Shen, M.; Teng, Y.; Sun, Y.; Li, F.; Zhang, X.; Xu, Y.; Duan, Y.; Du, L. Enhanced Therapeutic Effect of Adriamycin on Multidrug Resistant Breast Cancer by the ABCG2-SiRNA Loaded Polymeric Nanoparticles Assisted with Ultrasound. Oncotarget 2015, 6, 43779–43790. [Google Scholar] [CrossRef]
- Gilabert, M.; Launay, S.; Ginestier, C.; Bertucci, F.; Audebert, S.; Pophillat, M.; Toiron, Y.; Baudelet, E.; Finetti, P.; Noguchi, T.; et al. Poly(ADP-Ribose) Polymerase 1 (PARP1) Overexpression in Human Breast Cancer Stem Cells and Resistance to Olaparib. PLoS ONE 2014, 9, e104302. [Google Scholar] [CrossRef]
- Michels, J.; Vitale, I.; Galluzzi, L.; Adam, J.; Olaussen, K.A.; Kepp, O.; Senovilla, L.; Talhaoui, I.; Guegan, J.; Enot, D.P.; et al. Cisplatin Resistance Associated with PARP Hyperactivation. Cancer Res. 2013, 73, 2271–2280. [Google Scholar] [CrossRef]
- Jackson, L.M.; Moldovan, G.L. Mechanisms of PARP1 Inhibitor Resistance and Their Implications for Cancer Treatment. NAR Cancer 2022, 4, zcac042. [Google Scholar] [CrossRef] [PubMed]
- Lai, Y.; Kong, Z.; Zeng, T.; Xu, S.; Duan, X.; Li, S.; Cai, C.; Zhao, Z.; Wu, W. PARP1-SiRNA Suppresses Human Prostate Cancer Cell Growth and Progression. Oncol. Rep. 2018, 39, 1901–1909. [Google Scholar] [CrossRef] [PubMed]
- D’Souza, A.; Blee, A.M.; Chazin, W.J. Mechanism of Action of Nucleotide Excision Repair Machinery. Biochem. Soc. Trans. 2022, 50, 375. [Google Scholar] [CrossRef]
- Simon, G.R.; Sharma, S.; Cantor, A.; Smith, P.; Bepler, G. ERCC1 Expression Is a Predictor of Survival in Resected Patients with Non-Small Cell Lung Cancer. Chest 2005, 127, 978–983. [Google Scholar] [CrossRef]
- Postel-Vinay, S.; Soria, J.C. ERCC1 as Predictor of Platinum Benefit in Non–Small-Cell Lung Cancer. J. Clin. Oncol. 2016, 35, 384–386. [Google Scholar] [CrossRef]
- Du, P.; Wang, Y.; Chen, L.; Gan, Y.; Wu, Q. High ERCC1 Expression Is Associated with Platinum-Resistance, but Not Survival in Patients with Epithelial Ovarian Cancer. Oncol. Lett. 2016, 12, 857. [Google Scholar] [CrossRef]
- Wan, J.; Chao, L.; Lee, A.C.; Chen, Q. Higher Expression of ERCC1 May Be Associated with Resistance to Adjuvant Platinum-Based Chemotherapy in Gastric Cancer. Cancer Investig. 2017, 35, 85–91. [Google Scholar] [CrossRef]
- Xie, K.; Ni, X.; Lv, S.; Zhou, G.; He, H. Synergistic Effects of Olaparib Combined with ERCC1 on the Sensitivity of Cisplatin in Non-small Cell Lung Cancer. Oncol. Lett. 2021, 21, 365. [Google Scholar] [CrossRef]
- Zhao, T.; Ye, W.; Zhang, R.; Zhu, X.; Shi, Q.; Xu, X.; Chen, W.; Xu, L.; Meng, Y. Dual-regulated Oncolytic Adenovirus Carrying ERCC1-siRNA Gene Possesses Potent Antitumor Effect on Ovarian Cancer Cells. Mol. Med. Rep. 2024, 30, 120. [Google Scholar] [CrossRef]
- Roberts, A.W.; Wei, A.H.; Huang, D.C.S. BCL2 and MCL1 Inhibitors for Hematologic Malignancies. Blood 2021, 138, 1120–1136. [Google Scholar] [CrossRef]
- Widden, H.; Placzek, W.J. The Multiple Mechanisms of MCL1 in the Regulation of Cell Fate. Commun. Biol. 2021, 4, 1029. [Google Scholar] [CrossRef]
- Kaloni, D.; Diepstraten, S.T.; Strasser, A.; Kelly, G.L. BCL-2 Protein Family: Attractive Targets for Cancer Therapy. Apoptosis 2022, 28, 20–38. [Google Scholar] [CrossRef]
- Beale, P.J.; Rogers, P.; Boxall, F.; Sharp, S.Y.; Kelland, L.R. BCL-2 Family Protein Expression and Platinum Drug Resistance in Ovarian Carcinoma. Br. J. Cancer 1999, 82, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Perini, G.F.; Ribeiro, G.N.; Pinto Neto, J.V.; Campos, L.T.; Hamerschlak, N. BCL-2 as Therapeutic Target for Hematological Malignancies. J. Hematol. Oncol. 2018, 11, 65. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, X.; Xu, X.; Chen, X.; Zhang, X. Doxorubicin@Bcl-2 SiRNA Core@Shell Nanoparticles for Synergistic Anticancer Chemotherapy. ACS Appl. Bio Mater. 2018, 1, 289–297. [Google Scholar] [CrossRef]
- Vu, M.; Kassouf, N.; Ofili, R.; Lund, T.; Bell, C.; Appiah, S. Doxorubicin Selectively Induces Apoptosis through the Inhibition of a Novel Isoform of Bcl-2 in Acute Myeloid Leukaemia MOLM-13 Cells with Reduced Beclin 1 Expression. Int. J. Oncol. 2020, 57, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.M.; Cook, R.S. Bcl-2 Family Proteins in Breast Development and Cancer: Could Mcl-1 Targeting Overcome Therapeutic Resistance? Oncotarget 2015, 6, 3519. [Google Scholar] [CrossRef]
- Pengnam, S.; Charoensuksai, P.; Yingyongnarongkul, B.E.; Saeeng, R.; Uludağ, H.; Patrojanasophon, P.; Opanasopit, P.; Plianwong, S. SiRNA Targeting Mcl-1 Potentiates the Anticancer Activity of Andrographolide Nanosuspensions via Apoptosis in Breast Cancer Cells. Pharmaceutics 2022, 14, 1196. [Google Scholar] [CrossRef] [PubMed]
- Pengnam, S.; Plianwong, S.; Patrojanasophon, P.; Radchatawedchakoon, W.; Yingyongnarongkul, B.E.; Opanasopit, P.; Charoensuksai, P. Synergistic Effect of Doxorubicin and SiRNA-Mediated Silencing of Mcl-1 Using Cationic Niosomes against 3D MCF-7 Spheroids. Pharmaceutics 2021, 13, 550. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, F.; Jiang, X.; Zhao, X.; Wang, Y.; Kuai, Q.; Nie, G.; He, M.; Pan, Y.; Shi, W.; et al. Co-Delivery of Gemcitabine and Mcl-1 SiRNA via Cationic Liposome-Based System Enhances the Efficacy of Chemotherapy in Pancreatic Cancer. J. Biomed. Nanotechnol. 2019, 15, 966–978. [Google Scholar] [CrossRef]
- Dey, N.; De, P.; Leyland-Jones, B. PI3K-AKT-MTOR Inhibitors in Breast Cancers: From Tumor Cell Signaling to Clinical Trials. Pharmacol. Ther. 2017, 175, 91–106. [Google Scholar] [CrossRef]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/MTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Sousa, C.; Silva-Lima, B.; Videira, M. Akt/MTOR Activation in Lung Cancer Tumorigenic Regulators and Their Potential Value as Biomarkers. Onco 2022, 2, 36–55. [Google Scholar] [CrossRef]
- Huang, C.; Zhang, X.; Jiang, L.; Zhang, L.; Xiang, M.; Ren, H. FoxM1 Induced Paclitaxel Resistance via Activation of the FoxM1/PHB1/RAF-MEK-ERK Pathway and Enhancement of the ABCA2 Transporter. Mol. Ther. Oncolytics 2019, 14, 196–212. [Google Scholar] [CrossRef]
- Kim, M.J.; Lee, S.J.; Ryu, J.H.; Kim, S.H.; Kwon, I.C.; Roberts, T.M. Combination of KRAS Gene Silencing and PI3K Inhibition for Ovarian Cancer Treatment. J. Control. Release 2020, 318, 98–108. [Google Scholar] [CrossRef]
- Manning, B.D.; Toker, A. AKT/PKB Signaling: Navigating the Network. Cell 2017, 169, 381–405. [Google Scholar] [CrossRef]
- Gupte, A.; Baker, E.K.; Wan, S.S.; Stewart, E.; Loh, A.; Shelat, A.A.; Gould, C.M.; Chalk, A.M.; Taylor, S.; Lackovic, K.; et al. Systematic Screening Identifies Dual PI3K and MTOR Inhibition as a Conserved Therapeutic Vulnerability in Osteosarcoma. Clin. Cancer Res. 2015, 21, 3216–3229. [Google Scholar] [CrossRef] [PubMed]
- Datta, S.R.; Brunet, A.; Greenberg, M.E. Cellular Survival: A Play in Three Akts. Genes Dev. 1999, 13, 2905–2927. [Google Scholar] [CrossRef] [PubMed]
- Itoh, N.; Semba, S.; Ito, M.; Takeda, H.; Kawata, S.; Yamakawa, M. Phosphorylation of Akt/PKB Is Required for Suppression of Cancer Cell Apoptosis and Tumor Progression in Human Colorectal Carcinoma. Cancer 2002, 94, 3127–3134. [Google Scholar] [CrossRef]
- Stephens, D.M. Testing Early Treatment for Patients with High-Risk Chronic Lymphocytic Leukemia (CLL) or Small Lymphocytic Leukemia (SLL), EVOLVE CLL/SLL Study. NCI. Available online: https://www.cancer.gov/research/participate/clinical-trials-search/v?id=NCT04269902 (accessed on 19 December 2024).
- Kater, A.P.; Wu, J.Q.; Kipps, T.; Eichhorst, B.; Hillmen, P.; D’Rozario, J.; Assouline, S.; Owen, C.; Robak, T.; de la Serna, J.; et al. Venetoclax plus Rituximab in Relapsed Chronic Lymphocytic Leukemia: 4-Year Results and Evaluation of Impact of Genomic Complexity and Gene Mutations from the MURANO Phase III Study. J. Clin. Oncol. 2020, 38, 4042–4054. [Google Scholar] [CrossRef] [PubMed]
- Ewald, L.; Dittmann, J.; Vogler, M.; Fulda, S. Side-by-Side Comparison of BH3-Mimetics Identifies MCL-1 as a Key Therapeutic Target in AML. Cell Death Dis. 2019, 10, 917. [Google Scholar] [CrossRef]
- Gomez-Bougie, P.; Wuillème-Toumi, S.; Ménoret, E.; Trichet, V.; Robillard, N.; Philippe, M.; Bataille, R.; Amiot, M. Noxa Up-Regulation and Mcl-1 Cleavage Are Associated to Apoptosis Induction by Bortezomib in Multiple Myeloma. Cancer Res. 2007, 67, 5418–5424. [Google Scholar] [CrossRef] [PubMed]
- Yuda, J.; Will, C.; Phillips, D.C.; Abraham, L.; Alvey, C.; Avigdor, A.; Buck, W.; Besenhofer, L.; Boghaert, E.; Cheng, D.; et al. Selective MCL-1 Inhibitor ABBV-467 Is Efficacious in Tumor Models but Is Associated with Cardiac Troponin Increases in Patients. Commun. Med. 2023, 3, 154. [Google Scholar] [CrossRef]
- Nachmias, B.; Ashhab, Y.; Ben-Yehuda, D. The Inhibitor of Apoptosis Protein Family (IAPs): An Emerging Therapeutic Target in Cancer. Semin. Cancer Biol. 2004, 14, 231–243. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Zhao, W.; Tong, P.; Li, P.; Zhao, Y.; Li, H.; Liang, J. Comprehensive Molecular Characterization of Inhibitors of Apoptosis Proteins (IAPs) for Therapeutic Targeting in Cancer. BMC Med. Genom. 2020, 13, 7. [Google Scholar] [CrossRef] [PubMed]
- Sakthivel, R.; Ramamoorthy, A.; Jeddy, N.; Singaram, M. Evaluation and Expression of Survivin in Potentially Malignant Lesions and Squamous Cell Carcinoma: A Comparative Study. Cureus 2020, 12, e7551. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, P.K.; Goel, A.; Mittal, R.D. Survivin: A Molecular Biomarker in Cancer. Indian J. Med. Res. 2015, 141, 389. [Google Scholar] [CrossRef]
- Garg, H.; Suri, P.; Gupta, J.C.; Talwar, G.P.; Dubey, S. Survivin: A Unique Target for Tumor Therapy. Cancer Cell Int. 2016, 16, 49. [Google Scholar] [CrossRef]
- Li, Y.; Lu, W.; Yang, J.; Edwards, M.; Jiang, S. Survivin as a Biological Biomarker for Diagnosis and Therapy. Expert Opin. Biol. Ther. 2021, 21, 1429–1441. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Wang, T.; Liu, Z.; Tang, S.; Yue, M.; Feng, S.; Hu, M.; Xuan, L.; Chen, Y. Small Interfering RNA Targeting of the Survivin Gene Inhibits Human Tumor Cell Growth in Vitro. Exp. Ther. Med. 2017, 14, 35. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Liu, D.; Zhou, Y.; Li, Y.; Xie, J.; Lee, R.J.; Cai, Y.; Teng, L. Silencing of Survivin Expression Leads to Reduced Proliferation and Cell Cycle Arrest in Cancer Cells. J. Cancer 2015, 6, 1187. [Google Scholar] [CrossRef] [PubMed]
- Kesharwani, P.; Sheikh, A.; Abourehab, M.A.S.; Salve, R.; Gajbhiye, V. A Combinatorial Delivery of Survivin Targeted SiRNA Using Cancer Selective Nanoparticles for Triple Negative Breast Cancer Therapy. J. Drug Deliv. Sci. Technol. 2023, 80, 104164. [Google Scholar] [CrossRef]
- Akbaba, H.; Erel-Akbaba, G.; Kotmakçı, M.; Başpınar, Y. Enhanced Cellular Uptake and Gene Silencing Activity of Survivin-SiRNA via Ultrasound-Mediated Nanobubbles in Lung Cancer Cells. Pharm. Res. 2020, 37, 165. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Zhi, D.; Zhao, Y.; Cui, S.; Cui, J. Co-Delivery of Paclitaxel and Survivin SiRNA with Cationic Liposome for Lung Cancer Therapy. Colloids Surf. A Physicochem. Eng. Asp. 2020, 585, 124054. [Google Scholar] [CrossRef]
- Tanioka, M.; Nokihara, H.; Yamamoto, N.; Yamada, Y.; Yamada, K.; Goto, Y.; Fujimoto, T.; Sekiguchi, R.; Uenaka, K.; Callies, S.; et al. Phase i Study of LY2181308, an Antisense Oligonucleotide against Survivin, in Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2011, 68, 505–511. [Google Scholar] [CrossRef]
- Xie, S.; Yin, S.; Li, D.; Nie, D.; Li, Y.; Ma, L.; Wang, X.; Xiao, J. The Effect of SiRNA Down-Regulating XIAP On the Apoptosis and Chemo-Sensitivity of K562 Cells in Vitro. Blood 2009, 114, 5053. [Google Scholar] [CrossRef]
- Chen, J.; Xiao, X.Q.; Deng, C.M.; Su, X.S.; Li, G.Y. Downregulation of XIAP Expression by Small Interfering RNA Inhibits Cellular Viability and Increases Chemosensitivity to Methotrexate in Human Hepatoma Cell Line HepG2. J. Chemother. 2006, 18, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Jian, Z.; Xia, K.; Li, X.; Lv, X.; Pei, H.; Chen, Z.; Li, J. XIAP Is Related to the Chemoresistance and Inhibited Its Expression by RNA Interference Sensitize Pancreatic Carcinoma Cells to Chemotherapeutics. Pancreas 2006, 32, 288–296. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Zhang, L.; Guo, Y.; Bai, L.; Luo, Y.; Wang, B.; Kuang, M.; Liu, X.; Sun, M.; Wang, C.; et al. Nanoemulsion Co-Loaded with XIAP SiRNA and Gambogic Acid for Inhalation Therapy of Lung Cancer. Int. J. Mol. Sci. 2022, 23, 14294. [Google Scholar] [CrossRef]
- Chen, Z.; Han, F.; Du, Y.; Shi, H.; Zhou, W. Hypoxic Microenvironment in Cancer: Molecular Mechanisms and Therapeutic Interventions. Signal Transduct. Target. Ther. 2023, 8, 70. [Google Scholar] [CrossRef]
- Infantino, V.; Santarsiero, A.; Convertini, P.; Todisco, S.; Iacobazzi, V. Cancer Cell Metabolism in Hypoxia: Role of HIF-1 as Key Regulator and Therapeutic Target. Int. J. Mol. Sci. 2021, 22, 5703. [Google Scholar] [CrossRef]
- Zhao, Y.; Xing, C.; Deng, Y.; Ye, C.; Peng, H. HIF-1α Signaling: Essential Roles in Tumorigenesis and Implications in Targeted Therapies. Genes Dis. 2024, 11, 234–251. [Google Scholar] [CrossRef] [PubMed]
- Yan, Y.; Li, H.; Yao, H.; Cheng, X. Nanodelivery Systems Delivering Hypoxia-Inducible Factor-1 Alpha Short Interfering RNA and Antisense Oligonucleotide for Cancer Treatment. Front. Nanotechnol. 2022, 4, 932976. [Google Scholar] [CrossRef]
- Liao, H.; Wang, G.; Huang, S.; Li, Y.; Cai, S.; Zhang, J.; Chen, H.; Wu, W. HIF-1α Silencing Suppresses Growth of Lung Adenocarcinoma A549 Cells through Induction of Apoptosis. Mol. Med. Rep. 2014, 9, 911–915. [Google Scholar] [CrossRef]
- Jeong, W.; Rapisarda, A.; Park, S.R.; Kinders, R.J.; Chen, A.; Melillo, G.; Turkbey, B.; Steinberg, S.M.; Choyke, P.; Doroshow, J.H.; et al. Pilot Trial of EZN-2968, an Antisense Oligonucleotide Inhibitor of Hypoxia-Inducible Factor-1 Alpha (HIF-1α), in Patients with Refractory Solid Tumors. Cancer Chemother. Pharmacol. 2014, 73, 343. [Google Scholar] [CrossRef] [PubMed]
- Montaño-Samaniego, M.; Bravo-Estupiñan, D.M.; Méndez-Guerrero, O.; Alarcón-Hernández, E.; Ibáñez-Hernández, M. Strategies for Targeting Gene Therapy in Cancer Cells with Tumor-Specific Promoters. Front. Oncol. 2020, 10, 605380. [Google Scholar] [CrossRef]
- Kumar, A.; Das, S.K.; Emdad, L.; Fisher, P.B. Applications of Tissue-Specific and Cancer-Selective Gene Promoters for Cancer Diagnosis and Therapy. Adv. Cancer Res. 2023, 160, 253–315. [Google Scholar] [CrossRef]
- Yang, Y.; Cao, Y. The Impact of VEGF on Cancer Metastasis and Systemic Disease. Semin. Cancer Biol. 2022, 86, 251–261. [Google Scholar] [CrossRef] [PubMed]
- Duffy, A.M.; Bouchier-Hayes, D.J.; Harmey, J.H. Vascular Endothelial Growth Factor (VEGF) and Its Role in Non-Endothelial Cells: Autocrine Signalling by VEGF. In Madame Curie Bioscience Database [Internet]; Landes Bioscience: Austin, TX, USA, 2013. [Google Scholar]
- Jin, M.; Zeng, B.; Liu, Y.; Jin, L.; Hou, Y.; Liu, C.; Liu, W.; Wu, H.; Chen, L.; Gao, Z.; et al. Co-Delivery of Repurposing Itraconazole and VEGF SiRNA by Composite Nanoparticulate System for Collaborative Anti-Angiogenesis and Anti-Tumor Efficacy against Breast Cancer. Pharmaceutics 2022, 14, 1369. [Google Scholar] [CrossRef]
- Li, F.; Wang, Y.; Chen, W.L.; Wang, D.D.; Zhou, Y.J.; You, B.G.; Liu, Y.; Qu, C.X.; Yang, S.D.; Chen, M.T.; et al. Co-Delivery of VEGF SiRNA and Etoposide for Enhanced Anti-Angiogenesis and Anti-Proliferation Effect via Multi-Functional Nanoparticles for Orthotopic Non-Small Cell Lung Cancer Treatment. Theranostics 2019, 9, 5886–5898. [Google Scholar] [CrossRef] [PubMed]
- Uribe, M.L.; Marrocco, I.; Yarden, Y. EGFR in Cancer: Signaling Mechanisms, Drugs, and Acquired Resistance. Cancers 2021, 13, 2748. [Google Scholar] [CrossRef] [PubMed]
- Thomas, R.; Weihua, Z. Rethink of EGFR in Cancer with Its Kinase Independent Function on Board. Front. Oncol. 2019, 9, 468754. [Google Scholar] [CrossRef]
- Videira, M.A.; Llop, J.; Sousa, C.; Kreutzer, B.; Cossío, U.; Forbes, B.; Vieira, I.; Gil, N.; Silva-Lima, B. Pulmonary Administration: Strengthening the Value of Therapeutic Proximity. Front. Med. 2020, 7, 50. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Liu, L.; Wang, Y.; Li, F.; Zhang, J.; Ye, M.; Zhao, H.; Zhang, X.; Zhang, M.; Zhao, J.; et al. SiRNA Delivered by EGFR-Specific ScFv Sensitizes EGFR-TKI-Resistant Human Lung Cancer Cells. Biomaterials 2016, 76, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Majumder, J.; Minko, T. Multifunctional Lipid-Based Nanoparticles for Codelivery of Anticancer Drugs and Sirna for Treatment of Non-Small Cell Lung Cancer with Different Level of Resistance and Egfr Mutations. Pharmaceutics 2021, 13, 1063. [Google Scholar] [CrossRef] [PubMed]
- Qing, L.; Li, Q.; Dong, Z. MUC1: An Emerging Target in Cancer Treatment and Diagnosis. Bull. Cancer. 2022, 109, 1202–1216. [Google Scholar] [CrossRef] [PubMed]
- Lan, Y.; Ni, W.; Tai, G. Expression of MUC1 in Different Tumours and Its Clinical Significance. Mol. Clin. Oncol. 2022, 17, 161. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Sandrine, I.K.; Yang, M.; Tu, J.; Yuan, X. MUC1 and MUC16: Critical for Immune Modulation in Cancer Therapeutics. Front. Immunol. 2024, 15, 1356913. [Google Scholar] [CrossRef]
- Ham, S.Y.; Kwon, T.; Bak, Y.; Yu, J.H.; Hong, J.; Lee, S.K.; Yu, D.Y.; Yoon, D.Y. Mucin 1-Mediated Chemo-Resistance in Lung Cancer Cells. Oncogenesis 2016, 5, e185. [Google Scholar] [CrossRef] [PubMed]
- Hosseinzadeh, A.; Merikhian, P.; Naseri, N.; Eisavand, M.R.; Farahmand, L. MUC1 Is a Potential Target to Overcome Trastuzumab Resistance in Breast Cancer Therapy. Cancer Cell Int. 2022, 22, 110. [Google Scholar] [CrossRef]
- Engel, B.J.; Bowser, J.L.; Broaddus, R.R.; Carson, D.D. MUC1 Stimulates EGFR Expression and Function in Endometrial Cancer. Oncotarget 2016, 7, 32796–32809. [Google Scholar] [CrossRef]
- Hattrup, C.L.; Gendler, S.J. MUC1 Alters Oncogenic Events and Transcription in Human Breast Cancer Cells. Breast Cancer Res. 2006, 8, R37. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Wang, Y.; Miao, L.; Liu, Q.; Musetti, S.; Li, J.; Huang, L. Combination Immunotherapy of MUC1 MRNA Nano-Vaccine and CTLA-4 Blockade Effectively Inhibits Growth of Triple Negative Breast Cancer. Mol. Ther. 2018, 26, 45–55. [Google Scholar] [CrossRef]
- Zhang, Y.; Xia, M.; Jin, K.; Wang, S.; Wei, H.; Fan, C.; Wu, Y.; Li, X.; Li, X.; Li, G.; et al. Function of the C-Met Receptor Tyrosine Kinase in Carcinogenesis and Associated Therapeutic Opportunities. Mol. Cancer 2018, 17, 45. [Google Scholar] [CrossRef]
- Raj, S.; Kesari, K.K.; Kumar, A.; Rathi, B.; Sharma, A.; Gupta, P.K.; Jha, S.K.; Jha, N.K.; Slama, P.; Roychoudhury, S.; et al. Molecular Mechanism(s) of Regulation(s) of c-MET/HGF Signaling in Head and Neck Cancer. Mol. Cancer 2022, 21, 45. [Google Scholar] [CrossRef]
- Faiella, A.; Riccardi, F.; Cartenì, G.; Chiurazzi, M.; Onofrio, L. The Emerging Role of C-Met in Carcinogenesis and Clinical Implications as a Possible Therapeutic Target. J. Oncol. 2022, 2022, 5179182. [Google Scholar] [CrossRef]
- Xie, B.; Xing, R.; Chen, P.; Gou, Y.; Li, S.; Xiao, J.; Dong, J. Down-Regulation of c-Met Expression Inhibits Human HCC Cells Growth and Invasion by RNA Interference. J. Surg. Res. 2010, 162, 231–238. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Hu, C.; Li, W.; Ren, J.; Zou, F.; Zhou, D.; Zou, W.; Wei, Y.; Zhou, Y. Downregulation of C-Met Expression Does Not Enhance the Sensitivity of Gastric Cancer Cell Line MKN-45 to Gefitinib. Mol. Med. Rep. 2014, 11, 2269–2275. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhang, H.; Ning, T.; Liu, D.; Deng, T.; Liu, R.; Bai, M.; Zhu, K.; Li, J.; Fan, Q.; et al. Exosome-Delivered c-Met SiRNA Could Reverse Chemoresistance to Cisplatin in Gastric Cancer. Int. J. Nanomed. 2020, 15, 2323. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Li, X.; Chen, J.; Ma, S.; Mu, D.; Hu, J.; Lu, S. Phase 1 Study of the Selective C-MET Inhibitor, HS-10241, in Patients With Advanced Solid Tumors. JTO Clin. Res. Rep. 2023, 4, 100449. [Google Scholar] [CrossRef]
- Lee, D.H.; Roohullah, A.; Cho, B.C.; Lemech, C.R.; de Souza, P.L.; Millward, M.; Choi, J.Y.; Park, K.E.; Kim, N.Y.; Kim, E.; et al. A Phase 1 Dose-Escalation Study of the ABN401 (c-MET Inhibitor) in Patients with Solid Tumors. J. Clin. Oncol. 2022, 40, 3105. [Google Scholar] [CrossRef]
- Galogre, M.; Rodin, D.; Pyatnitskiy, M.; Mackelprang, M.; Koman, I. A Review of HER2 Overexpression and Somatic Mutations in Cancers. Crit. Rev. Oncol. Hematol. 2023, 186, 103997. [Google Scholar] [CrossRef]
- Cheng, X. A Comprehensive Review of HER2 in Cancer Biology and Therapeutics. Genes 2024, 15, 903. [Google Scholar] [CrossRef] [PubMed]
- Faltus, T.; Yuan, J.; Zimmer, B.; Krämer, A.; Loibl, S.; Kaufmann, M.; Strebhardt, K. Silencing of the HER2/Neu Gene by SiRNA Inhibits Proliferation and Induces Apoptosis in HER2/Neu-Overexpressing Breast Cancer Cells. Neoplasia 2004, 6, 786. [Google Scholar] [CrossRef]
- Balgobind, A.; Daniels, A.; Ariatti, M.; Singh, M. HER2/Neu Oncogene Silencing in a Breast Cancer Cell Model Using Cationic Lipid-Based Delivery Systems. Pharmaceutics 2023, 15, 1190. [Google Scholar] [CrossRef] [PubMed]
- Gu, S.; Hu, Z.; Ngamcherdtrakul, W.; Castro, D.J.; Morry, J.; Reda, M.M.; Gray, J.W.; Yantasee, W. Therapeutic SiRNA for Drug-Resistant HER2-Positive Breast Cancer. Oncotarget 2016, 7, 14727. [Google Scholar] [CrossRef]
- Archana, M.G.; Anusree, K.S.; Unnikrishnan, B.S.; Reshma, P.L.; Syama, H.P.; Sreekutty, J.; Joseph, M.M.; Sreelekha, T.T. HER2 SiRNA Facilitated Gene Silencing Coupled with Doxorubicin Delivery: A Dual Responsive Nanoplatform Abrogates Breast Cancer. ACS Appl. Mater. Interfaces 2024, 16, 25710–25726. [Google Scholar] [CrossRef]
- Vervaeke, P.; Borgos, S.E.; Sanders, N.N.; Combes, F. Regulatory Guidelines and Preclinical Tools to Study the Biodistribution of RNA Therapeutics. Adv. Drug Deliv. Rev. 2022, 184, 114236. [Google Scholar] [CrossRef]
- Sharma, P.; Jhawat, V.; Mathur, P.; Dutt, R. Innovation in Cancer Therapeutics and Regulatory Perspectives. Med. Oncol. 2022, 39, 76. [Google Scholar] [CrossRef] [PubMed]
- Jones, P.S.; Jones, D. New Regulatory Framework for Cancer Drug Development. Drug Discov. Today 2012, 17, 227–231. [Google Scholar] [CrossRef] [PubMed]
- Committee for Advanced Therapies (CAT). ICH Q5E Biotechnological/Biological Products Subject to Changes in Their Manufacturing Process: Comparability of Biotechnological/Biological Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2005. [Google Scholar]
- Committee for Advanced Therapies (CAT). ICH Q6B Specifications: Test Procedures and Acceptance Criteria for Biotechnological/Biological Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 1999. [Google Scholar]
- Center for Drug Evaluation and Research. Clinical Pharmacology Considerations for the Development of Oligonucleotide Therapeutics; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Committee for Advanced Therapies (CAT). Gene Therapy Product Quality Aspects in the Production of Vectors and Genetically Modified Somatic Cells—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 1995. [Google Scholar]
- Center for Biologics Evaluation and Research. Considerations for the Design of Early-Phase Clinical Trials of Cellular and Gene Therapy Products; European Medicines Agency: Amsterdam, The Netherlands, 2015. [Google Scholar]
- Center for Biologics Evaluation and Research. Considerations for the Use of Human-and Animal-Derived Materials in the Manufacture of Cell and Gene Therapy and Tissue-Engineered Medical Products; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Committee for Advanced Therapies (CAT). ICH Q11 Development and Manufacture of Drug Substances (Chemical Entities and Biotechnological/Biological Entities)—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2012. [Google Scholar]
- Committee for Advanced Therapies (CAT). Quality, Preclinical and Clinical Aspects of Gene Therapy Medicinal Products—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2014. [Google Scholar]
- Center for Biologics Evaluation and Research. Human Gene Therapy Products Incorporating Human Genome Editing; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Center for Biologics Evaluation and Research; Center for Drug Evaluation and Research. Adaptive Design Clinical Trials for Drugs and Biologics Guidance for Industry; European Medicines Agency: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Committee for Medicinal Products for Human Use (CHMP). Methodological Issues in Confirmatory Clinical Trials Planned with an Adaptive Design—Scientific Guideline; European Medicines Agency: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Committee for Veterinary Medicinal Products (CVMP). Development of a Guideline on the Safety of Nanoparticles—In the Context of the Establishment of Maximum Residue Limits and Veterinary Marketing Authorisations; European Medicines Agency: Amsterdam, The Netherlands, 2024. [Google Scholar]
- Food and Drug Administration. Fast Track, Breakthrough Therapy, Accelerated Approval, Priority Review. Available online: https://www.fda.gov/patients/learn-about-drug-and-device-approvals/fast-track-breakthrough-therapy-accelerated-approval-priority-review (accessed on 28 September 2024).
- European Medicines Agency. PRIME: Priority Medicines. Available online: https://www.ema.europa.eu/en/human-regulatory-overview/research-development/prime-priority-medicines (accessed on 28 September 2024).
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sousa, C.; Videira, M. Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco 2025, 5, 2. https://doi.org/10.3390/onco5010002
Sousa C, Videira M. Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco. 2025; 5(1):2. https://doi.org/10.3390/onco5010002
Chicago/Turabian StyleSousa, Carolina, and Mafalda Videira. 2025. "Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies" Onco 5, no. 1: 2. https://doi.org/10.3390/onco5010002
APA StyleSousa, C., & Videira, M. (2025). Dual Approaches in Oncology: The Promise of siRNA and Chemotherapy Combinations in Cancer Therapies. Onco, 5(1), 2. https://doi.org/10.3390/onco5010002