Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis
Abstract
:1. Introduction
1.1. Problem Statement
1.2. Current Gaps for Interacting Pedestrians and AVs
1.3. Aim of the Research
- -
- The primary objective of this review is to explore the latest advancements in methods and techniques for understanding pedestrian crossing behavior and their interactions with autonomous vehicles (AVs) without any driver. This synthesis addresses key questions regarding current practices and innovations in pedestrian dynamics to enhance safety and improve interaction outcomes. By examining these advancements, the review seeks to provide insights that can inform future research and development in pedestrian−AV interactions.
- -
- How is pedestrian behavior currently measured and modeled? Is this transferable to interactions with AVs?
- -
- Are pedestrians ready to confront AVs on the road?
- -
- What are the ethical aspects of AVs?
1.4. Structure of the Research
2. Methodology
3. Pedestrian Behavior Estimation
4. Pedestrian Road Crossing Behavior
4.1. Perception of a Pedestrian Gap Acceptance
4.2. Surrounding Environment Perspective
4.3. Effect of Traffic Density
4.4. Road Infrastructure Design Perspective
4.5. Exploring Pedestrian’s Risky Behaviors
5. Pedestrian’s Interactions with Autonomous Vehicles (AVs)
5.1. Intent Perception and Communication
5.2. Autonomous Vehicle Visual Signals Concepts
5.3. Investigating Safety Measures for Pedestrians in Autonomous Vehicle Contexts
5.4. Autonomous Vehicles and Pedestrian Trust
5.5. Role of eHMIs in Facilitating Pedestrian Crossing Decisions
6. Ethical Aspects of Autonomous Vehicles
7. Limitations and Drawbacks in Modeling AV−Pedestrian Interactions
8. Discussion
8.1. Policy and Practical Implementation for AV and Pedestrian Interaction
8.2. Future Direction
9. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Du, H.; Zhu, G.; Zheng, J. Why travelers trust and accept self-driving cars: An empirical study. Travel Behav. Soc. 2021, 22, 1–9. [Google Scholar] [CrossRef]
- Palmeiro, A.R.; van der Kint, S.; Vissers, L.; Farah, H.; de Winter, J.C.; Hagenzieker, M. Interaction between pedestrians and automated vehicles: A Wizard of Oz experiment. Transp. Res. Part F Traffic Psychol. Behav. 2018, 58, 1005–1020. [Google Scholar] [CrossRef]
- Hancock, P.A.; Nourbakhsh, I.; Stewart, J. On the future of transportation in an era of automated and autonomous vehicles. Proc. Natl. Acad. Sci. USA 2019, 116, 7684–7691. [Google Scholar] [CrossRef] [PubMed]
- J3016_201806; Definitions for Terms Related to Driving Automation Systems for On-Road Motor Vehicles. SAE International: Warrendale, PA, USA, 2016.
- Kalantari, A.H.; Yang, Y.; de Pedro, J.G.; Lee, Y.M.; Horrobin, A.; Solernou, A.; Holmes, C.; Merat, N.; Markkula, G. Who goes first? A distributed simulator study of vehicle–pedestrian interaction. Accid. Anal. Prev. 2023, 186, 107050. [Google Scholar] [CrossRef] [PubMed]
- The National Highway Traffic Safety Administration. 2016 Fatal Motor Vehicle Crashes: Overview; US Department of Transportation: Washington, DC, USA, 2017.
- National Highway Traffic Safety Administration. Automated Driving Systems 2.0: A Vision for Safety; US Department of Transportation: Washington, DC, USA, 2017; Volume 812, p. 442.
- Institute for Advanced Sustainability Studies. Are Societies Ready for Autonomous Vehicles? 2017. Available online: https://www.iass-potsdam.de/en/news/are-societies-ready-autonomous-vehicles (accessed on 13 November 2020).
- Hicks, D.J. The safety of autonomous vehicles: Lessons from philosophy of science. IEEE Technol. Soc. Mag. 2018, 37, 62–69. [Google Scholar] [CrossRef]
- Wu, J.D.; Miller, M.; Stoeltje, G.; Le, M.; Hwang, W.; Huang, T.; Hu, N.; Zalila-Wenkstern, R.; Torabi, B.; Li, X. Digitizing Traffic Control Infrastructure for Autonomous Vehicles (AV); Technical Report No. FHWA/TX-23/0-7128-R1; Texas A&M Transportation Institute: Bryan, TX, USA, 2024. [Google Scholar]
- Owens, N.D.; Armstrong, A.H.; Mitchell, C.; Brewster, R. Federal Highway Administration Focus States Initiative: Traffic Incident Management Performance Measures; Final Report No. FHWA-HOP-10-010; Federal Highway Administration: Washington, DC, USA, 2009.
- Turner, S.; Sandt, L.; Toole, J.; Benz, R.; Patten, R. Federal Highway Administration University Course on Bicycle and Pedestrian Transportation; No. FHWA-HRT-05-133; US Department of Transportation: Washington, DC, USA, 2006.
- Rasouli, A.; Tsotsos, J.K. Autonomous vehicles that interact with pedestrians: A survey of theory and practice. IEEE Trans. Intell. Transp. Syst. 2019, 21, 900–918. [Google Scholar] [CrossRef]
- Dey, D.; Terken, J. Pedestrian interaction with vehicles: Roles of explicit and implicit communication. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications, Oldenburg, Germany, 24–27 September 2017; pp. 109–113. [Google Scholar]
- Lundgren, V.M.; Habibovic, A.; Andersson, J.; Lagström, T.; Nilsson, M.; Sirkka, A.; Fagerlönn, J.; Fredriksson, R.; Edgren, C.; Krupenia, S.; et al. Will there be new communication needs when introducing automated vehicles to the urban context? In Advances in Human Aspects of Transportation; Springer: Cham, Switzerland, 2017; pp. 485–497. [Google Scholar]
- Langton, S.R.; Watt, R.J.; Bruce, V. Do the eyes have it? Cues to the direction of social attention. Trends Cogn. Sci. 2000, 4, 50–59. [Google Scholar] [CrossRef] [PubMed]
- Beauchamp, É.; Saunier, N.; Cloutier, M.S. Study of automated shuttle interactions in city traffic using surrogate measures of safety. Transp. Res. Part C Emerg. Technol. 2022, 135, 103465. [Google Scholar] [CrossRef]
- Cunneen, M.; Mullins, M.; Murphy, F.; Shannon, D.; Furxhi, I.; Ryan, C. Autonomous vehicles and avoiding the trolley (dilemma): Vehicle perception, classification, and the challenges of framing decision ethics. Cybern. Syst. 2020, 51, 59–80. [Google Scholar] [CrossRef]
- Webster, J.; Watson, R.T. Analyzing the past to prepare for the future: Writing a literature review. MIS Q. 2002, 26, xiii–xxiii. [Google Scholar]
- Golchoubian, M.; Ghafurian, M.; Dautenhahn, K.; Azad, N.L. Pedestrian trajectory prediction in pedestrian-vehicle mixed environments: A systematic review. IEEE Trans. Intell. Transp. Syst. 2023, 24, 11544–11567. [Google Scholar] [CrossRef]
- Zhou, S.; Sun, X.; Liu, B.; Burnett, G. Factors affecting pedestrians’ trust in automated vehicles: Literature review and theoretical model. IEEE Trans. Hum.-Mach. Syst. 2021, 52, 490–500. [Google Scholar] [CrossRef]
- Dey, D.; Habibovic, A.; Löcken, A.; Wintersberger, P.; Pfleging, B.; Riener, A.; Martens, M.; Terken, J. Taming the eHMI jungle: A classification taxonomy to guide, compare, and assess the design principles of automated vehicles’ external human-machine interfaces. Transp. Res. Interdiscip. Perspect. 2020, 7, 100174. [Google Scholar] [CrossRef]
- Schulz, A.T.; Stiefelhagen, R. A controlled interactive multiple model filter for combined pedestrian intention recognition and path prediction. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 173–178. [Google Scholar]
- Köhler, S.; Goldhammer, M.; Zindler, K.; Doll, K.; Dietmeyer, K. Stereo-vision-based pedestrian’s intention detection in a moving vehicle. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 2317–2322. [Google Scholar]
- Bonnin, S.; Weisswange, T.H.; Kummert, F.; Schmüdderich, J. Pedestrian crossing prediction using multiple context-based models. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 378–385. [Google Scholar]
- Kooij, J.F.P.; Schneider, N.; Flohr, F.; Gavrila, D.M. Context-based pedestrian path prediction. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2014; pp. 618–633. [Google Scholar]
- Li, X.; Li, L.; Flohr, F.; Wang, J.; Xiong, H.; Bernhard, M.; Pan, S.; Gavrila, D.M.; Li, K. A unified framework for concurrent pedestrian and cyclist detection. IEEE Trans. Intell. Transp. Syst. 2016, 18, 269–281. [Google Scholar] [CrossRef]
- Ferguson, S.; Luders, B.; Grande, R.C.; How, J.P. Real-time predictive modeling and robust avoidance of pedestrians with uncertain, changing intentions. In Proceedings of the Algorithmic Foundations of Robotics XI, Istanbul, Turkey, 3–5 August 2014; Springer: Cham, Switzerland, 2015; pp. 161–177. [Google Scholar]
- Schneider, N.; Gavrila, D.M. Pedestrian path prediction with recursive Bayesian filters: A comparative study. In Proceedings of the German Conference on Pattern Recognition, Saarbrücken, Germany, 3–6 September 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 174–183. [Google Scholar]
- Keller, C.G.; Dang, T.; Fritz, H.; Joos, A.; Rabe, C.; Gavrila, D.M. Active pedestrian safety by automatic braking and evasive steering. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1292–1304. [Google Scholar] [CrossRef]
- Roth, M.; Flohr, F.; Gavrila, D.M. Driver and pedestrian awareness-based collision risk analysis. In Proceedings of the 2016 IEEE Intelligent Vehicles Symposium (IV), Gothenburg, Sweden, 19–22 June 2016; pp. 454–459. [Google Scholar]
- Bertozzi, M.; Castangia, L.; Cattani, S.; Prioletti, A.; Versari, P. 360 detection and tracking algorithm of both pedestrian and vehicle using fisheye images. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 132–137. [Google Scholar]
- Ye, Q.; Liang, J.; Jiao, J. Pedestrian detection in video images via error correcting output code classification of manifold subclasses. IEEE Trans. Intell. Transp. Syst. 2011, 13, 193–202. [Google Scholar] [CrossRef]
- Meissner, D.; Reuter, S.; Dietmayer, K. Real-time detection and tracking of pedestrians at intersections using a network of laserscanners. In Proceedings of the 2012 IEEE Intelligent Vehicles Symposium, Alcala de Henares, Spain, 3–7 June 2012; pp. 630–635. [Google Scholar]
- Jin, L.; Niu, Q.; Hou, H.; Hu, S.; Wang, F. Study on vehicle front pedestrian detection based on 3D laser scanner. In Proceedings of the 2011 International Conference on Transportation, Mechanical, and Electrical Engineering (TMEE), Changchun, China, 16–18 December 2011; pp. 735–738. [Google Scholar]
- Lin, S.F.; Lee, C.H. Pedestrians and vehicles recognition based on image recognition and laser distance detection. In Proceedings of the 2016 16th International Conference on Control, Automation and Systems (ICCAS), Gyeongju, Republic of Korea, 16–19 October 2016; pp. 1232–1237. [Google Scholar]
- Schlosser, J.; Chow, C.K.; Kira, Z. Fusing lidar and images for pedestrian detection using convolutional neural networks. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2198–2205. [Google Scholar]
- Benenson, R.; Omran, M.; Hosang, J.; Schiele, B. Ten years of pedestrian detection, what have we learned? In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; Springer: Cham, Switzerland, 2015; pp. 613–627. [Google Scholar]
- Gandhi, T.; Trivedi, M.M. Computer vision and machine learning for enhancing pedestrian safety. In Computational Intelligence in Automotive Applications; Springer: Berlin/Heidelberg, Germany, 2008; pp. 59–77. [Google Scholar]
- Völz, B.; Behrendt, K.; Mielenz, H.; Gilitschenski, I.; Siegwart, R.; Nieto, J. A data-driven approach for pedestrian intention estimation. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2607–2612. [Google Scholar]
- Quintero, R.; Parra, I.; Llorca, D.F.; Sotelo, M.A. Pedestrian intention and pose prediction through dynamical models and behaviour classification. In Proceedings of the 2015 IEEE 18th International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 83–88. [Google Scholar]
- Shirazi, M.S.; Morris, B. Observing behaviors at intersections: A review of recent studies & developments. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Republic of Korea, 28 June–1 July 2015; pp. 1258–1263. [Google Scholar]
- Karasev, V.; Ayvaci, A.; Heisele, B.; Soatto, S. Intent-aware long-term prediction of pedestrian motion. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 2543–2549. [Google Scholar]
- Kitani, K.M.; Ziebart, B.D.; Bagnell, J.A.; Hebert, M. Activity forecasting. In Proceedings of the European Conference on Computer Vision, Florence, Italy, 7–13 October 2012; Springer: Berlin/Heidelberg, Germany, 2012; pp. 201–214. [Google Scholar]
- Deo, N.; Trivedi, M.M. Learning and predicting on-road pedestrian behavior around vehicles. In Proceedings of the 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Yokohama, Japan, 16–19 October 2017; pp. 1–6. [Google Scholar]
- Ezzati Amini, R.; Katrakazas, C.; Riener, A.; Antoniou, C. Interaction of automated driving systems with pedestrians: Challenges, current solutions, and recommendations for eHMIs. Transp. Rev. 2021, 41, 788–813. [Google Scholar] [CrossRef]
- Ezzati Amini, R.; Katrakazas, C.; Antoniou, C. Negotiation and decision-making for a pedestrian roadway crossing: A literature review. Sustainability 2019, 11, 6713. [Google Scholar] [CrossRef]
- Rehder, E.; Kloeden, H. Goal-directed pedestrian prediction. In Proceedings of the IEEE International Conference on Computer Vision Workshops, Santiago, Chile, 7–13 December 2015. [Google Scholar]
- Gavrila, D.M. The visual analysis of human movement: A survey. Comput. Vis. Image Underst. 1999, 73, 82–98. [Google Scholar] [CrossRef]
- Furuhashi, R.; Yamada, K. Estimation of street crossing intention from a pedestrian’s posture on a sidewalk using multiple image frames. In Proceedings of the First Asian Conference on Pattern Recognition, Beijing, China, 28 November 2011; pp. 17–21. [Google Scholar]
- Hariyono, J.; Jo, K.H. Pedestrian action recognition using motion type classification. In Proceedings of the 2015 IEEE 2nd International Conference on Cybernetics (CYBCONF), Gdynia, Poland, 24–26 June 2015; pp. 129–132. [Google Scholar]
- Quintero, R.; Parra, I.; Llorca, D.F.; Sotelo, M.A. Pedestrian path prediction based on body language and action classification. In Proceedings of the 17th International IEEE Conference on Intelligent Transportation Systems (ITSC), Qingdao, China, 8–11 October 2014; pp. 679–684. [Google Scholar]
- Stamatiadis, N.; Pappalardo, G.; Cafiso, S.; Nathanail, E.; Karakikes, I. Data Analytics: Paving the Way to Sustainable Urban Mobility. In Proceedings of the CSUM, Skiathos Island, Greece, 24–25 May 2018. Advances in Intelligent Systems and Computing. [Google Scholar]
- Helbing, D.; Molnar, P. Social force model for pedestrian dynamics. Phys. Rev. E 1995, 51, 4282. [Google Scholar] [CrossRef]
- Tamura, Y.; Dai Le, P.; Hitomi, K.; Chandrasiri, N.P.; Bando, T.; Yamashita, A.; Asama, H. Development of pedestrian behavior model taking account of intention. In Proceedings of the 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, Vilamoura, Portugal, 7–12 October 2012; pp. 382–387. [Google Scholar]
- Zeng, W.; Chen, P.; Nakamura, H.; Iryo-Asano, M. Application of social force model to pedestrian behavior analysis at signalized crosswalk. Transp. Res. Part C Emerg. Technol. 2014, 40, 143–159. [Google Scholar] [CrossRef]
- Zou, F.; Ogle, J.; Jin, W.; Gerard, P.; Petty, D.; Robb, A. Pedestrian behavior interacting with autonomous vehicles during unmarked midblock multilane crossings: Role of infrastructure design, AV operations and signaling. Transp. Res. Part F Traffic Psychol. Behav. 2024, 100, 84–100. [Google Scholar] [CrossRef]
- Rezwana, S.; Jackson, E.; Filipovska, M.; Lownes, N. A Modified Social Force Model (SFM) for Pedestrian Behavior in the Presence of Autonomous Vehicles (AVs). In Proceedings of the International Conference on Transportation and Development, Seattle, WA, USA, 31 May–3 June 2022; pp. 51–63. [Google Scholar]
- Arellana, J.; Fernández, S.; Figueroa, M.; Cantillo, V. Analyzing pedestrian behavior when crossing urban roads by combining RP and SP data. Transp. Res. Part F Traffic Psychol. Behav. 2022, 85, 259–275. [Google Scholar] [CrossRef]
- Prédhumeau, M.; Spalanzani, A.; Dugdale, J. Pedestrian behavior in shared spaces with autonomous vehicles: An integrated framework and review. IEEE Trans. Intell. Veh. 2021, 8, 438–457. [Google Scholar] [CrossRef]
- Merat, N.; Lee, Y.M.; Markkula, G.; Uttley, J.; Camara, F.; Fox, C.; Dietrich, A.; Weber, F.; Schieben, A. How do we study pedestrian interaction with automated vehicles? Preliminary findings from the European interACT project. In Road Vehicle Automation 6; Springer International Publishing: Berlin/Heidelberg, Germany, 2019; pp. 21–33. [Google Scholar]
- Nordfjærn, T.; Zavareh, M.F. Individualism, collectivism and pedestrian safety: A comparative study of young adults from Iran and Pakistan. Saf. Sci. 2016, 87, 8–17. [Google Scholar] [CrossRef]
- Zhu, D.; Sze, N.N. Propensities of red light running of pedestrians at the two-stage crossings with split pedestrian signal phases. Accid. Anal. Prev. 2021, 151, 105958. [Google Scholar] [CrossRef]
- Soathong, A.; Chowdhury, S.; Wilson, D.; Ranjitkar, P. Investigating the motivation for pedestrians’ risky crossing behaviour at urban mid-block road sections. Travel Behav. Soc. 2021, 22, 155–165. [Google Scholar] [CrossRef]
- Bendak, S.; Alnaqbi, A.M.; Alzarooni, M.Y.; Aljanaahi, S.M.; Alsuwaidi, S.J. Factors affecting pedestrian behaviors at signalized crosswalks: An empirical study. J. Saf. Res. 2021, 76, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Arellana, J.; Garzón, L.; Estrada, J.; Cantillo, V. On the use of virtual immersive reality for discrete choice experiments to modelling pedestrian behaviour. J. Choice Model. 2020, 37, 100251. [Google Scholar] [CrossRef]
- McIlroy, R.C.; Plant, K.L.; Jikyong, U.; Nam, V.H.; Bunyasi, B.; Kokwaro, G.O.; Wu, J.; Hoque, M.S.; Preston, J.M.; Stanton, N.A. Vulnerable road users in low-, middle-, and high-income countries: Validation of a Pedestrian Behaviour Questionnaire. Accid. Anal. Prev. 2019, 131, 80–94. [Google Scholar] [CrossRef]
- Deb, S.; Warner, B.; Poudel, S.; Bhandari, S. Identification of external design preferences in autonomous vehicles. In Proceedings of the 2016 Industrial and Systems Engineering Research Conference, San Francisco, CA, USA, 13–14 October 2016; IISE: Anaheim, CA, USA, 2016; pp. 44–69. [Google Scholar]
- Rad, S.R.; de Almeida Correia, G.H.; Hagenzieker, M. Pedestrians’ road crossing behaviour in front of automated vehicles: Results from a pedestrian simulation experiment using agent-based modelling. Transp. Res. Part F Traffic Psychol. Behav. 2020, 69, 101–119. [Google Scholar]
- Papadimitriou, E.; Theofilatos, A.; Yannis, G.; Sardi, G.M.; Freeman, R.P. Road safety attitudes and perceptions of pedestrians in Europe. Procedia-Soc. Behav. Sci. 2012, 48, 2490–2500. [Google Scholar] [CrossRef]
- Demir, B. The Social Psychological Predictors of Pedestrian Behaviors. Graduate’s Thesis, Middle East Technical University, Ankara, Turkey, 2017. [Google Scholar]
- Schmidt, T.; Philipsen, R.; Ziefle, M. From V2X to control2trust: Why trust and control are major attributes in Vehicle2X Technologies. In Proceedings of the Human Aspects of Information Security, Privacy, and Trust: Third International Conference, HAS, Los Angeles, CA, USA, 2–7 August 2015; Proceedings 3. Springer International Publishing: Berlin/Heidelberg, Germany, 2015; pp. 570–581. [Google Scholar]
- Merat, N.; Louw, T.; Madigan, R.; Wilbrink, M.; Schieben, A. What externally presented information do VRUs require when interacting with fully Automated Road Transport Systems in shared space? Accid. Anal. Prev. 2018, 118, 244–252. [Google Scholar] [CrossRef] [PubMed]
- Hulse, L.M.; Xie, H.; Galea, E.R. Perceptions of autonomous vehicles: Relationships with road users, risk, gender and age. Saf. Sci. 2018, 102, 1–13. [Google Scholar] [CrossRef]
- Rosenbloom, T.; Nemrodov, D.; Barkan, H. For heaven’s sake follow the rules: Pedestrians’ behavior in an ultra-orthodox and a non-orthodox city. Transp. Res. Part F Traffic Psychol. Behav. 2004, 7, 395–404. [Google Scholar] [CrossRef]
- Yagil, D. Beliefs, motives and situational factors related to pedestrians’ self-reported behavior at signal-controlled crossings. Transp. Res. Part F Traffic Psychol. Behav. 2000, 3, 1–13. [Google Scholar] [CrossRef]
- Patterson, M.L.; Iizuka, Y.; Tubbs, M.E.; Ansel, J.; Tsutsumi, M.; Anson, J. Passing encounters east and west: Comparing Japanese and American pedestrian interactions. J. Nonverbal Behav. 2007, 31, 155–166. [Google Scholar] [CrossRef]
- Lefkowitz, M.; Blake, R.R.; Mouton, J.S. Status factors in pedestrian violation of traffic signals. J. Abnorm. Soc. Psychol. 1955, 51, 704. [Google Scholar] [CrossRef] [PubMed]
- Dolphin, J.; Kennedy, L.; O’Donnell, S.; Wilde, G.J.S. Factors Influencing Pedestrian Violations; Queens University: Kingston, ON, Canada, 1970; unpublished manuscript. [Google Scholar]
- Heimstra, N.W.; Nichols, J.; Martin, G. An experimental methodology for analysis of child pedestrian behavior. Pediatrics 1969, 44, 832–838. [Google Scholar] [CrossRef]
- Harrell, W.A. Factors influencing pedestrian cautiousness in crossing streets. J. Soc. Psychol. 1991, 131, 367–372. [Google Scholar] [CrossRef]
- Theofilatos, A.; Ziakopoulos, A.; Oviedo-Trespalacios, O.; Timmis, A. To cross or not to cross? Review and meta-analysis of pedestrian gap acceptance decisions at midblock street crossings. J. Transp. Health 2021, 22, 101108. [Google Scholar] [CrossRef]
- Zhao, X.; Li, X.; Rakotonirainy, A.; Bourgeois-Bougrine, S.; Zhu, Z.; Delhomme, P. Crossing roads in a social context: How behaviors of others shape pedestrian interaction with automated vehicles. Transp. Res. Part F Traffic Psychol. Behav. 2024, 102, 88–106. [Google Scholar] [CrossRef]
- Shaaban, K.; Muley, D.; Mohammed, A. Modeling pedestrian gap acceptance behavior at a six-lane urban road. J. Transp. Saf. Secur. 2021, 13, 842–859. [Google Scholar] [CrossRef]
- Schmidt, S.; Faerber, B. Pedestrians at the kerb–Recognising the action intentions of humans. Transp. Res. Part F Traffic Psychol. Behav. 2009, 12, 300–310. [Google Scholar] [CrossRef]
- Holland, C.; Hill, R. The effect of age, gender and driver status on pedestrians’ intentions to cross the road in risky situations. Accid. Anal. Prev. 2007, 39, 224–237. [Google Scholar] [CrossRef] [PubMed]
- Rasouli, A.; Kotseruba, I.; Tsotsos, J.K. Are they going to cross? A benchmark dataset and baseline for pedestrian crosswalk behavior . In Proceedings of the IEEE International Conference on Computer Vision Workshops, Venice, Italy, 22–29 October 2017; pp. 206–213. [Google Scholar]
- Ishaque, M.M.; Noland, R.B. Behavioural issues in pedestrian speed choice and street crossing behaviour: A review. Transp. Rev. 2008, 28, 61–85. [Google Scholar] [CrossRef]
- Tom, A.; Granié, M.A. Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads. Accid. Anal. Prev. 2011, 43, 1794–1801. [Google Scholar] [CrossRef]
- Wang, P.; Motamedi, S.; Qi, S.; Zhou, X.; Zhang, T.; Chan, C.-Y. Pedestrian interaction with automated vehicles at uncontrolled intersections. Transp. Res. Part F: Traffic Psychol. Behav. 2021, 77, 10–25. [Google Scholar] [CrossRef]
- Gupta, S. Negotiations Between Self-Driving Vehicles and Pedestrians for the Right of Way at Unmarked Intersections. Ph.D. Thesis, Department of Infrastructure Engineering, The University of Melbourne, Melbourne, Australia, 2019. [Google Scholar]
- Gupta, S.; Vasardani, M.; Lohani, B.; Winter, S. Pedestrian’s risk-based negotiation model for self-driving vehicles to get the right of way. Accid. Anal. Prev. 2019, 124, 163–173. [Google Scholar] [CrossRef]
- Deb, S.; Strawderman, L.; Carruth, D.W.; DuBien, J.; Smith, B.; Garrison, T.M. Development and validation of a questionnaire to assess pedestrian receptivity toward fully autonomous vehicles. Transp. Res. Part C Emerg. Technol. 2017, 84, 178–195. [Google Scholar] [CrossRef]
- Crompton, D. Pedestrian delay, annoyance and risk: Preliminary results from a 2 years study. In Proceedings of PTRC Summer Annual Meeting, Warwick, UK, 9–12 July 1979; pp. 275–299. [Google Scholar]
- US Department of Transportation. Manual on Uniform Traffic Control Devices; US Department of Transportation: Washington, DC, USA; Federal Highway Administration: Washington, DC, USA, 2009.
- Federal Highway Administration. Manual on Uniform Traffic Control Devices for Streets and Highways; US Department of Transportation: Washington, DC, USA, 1988.
- Bennett, S.; Felton, A.; Akçelik, R. Pedestrian movement characteristics at signalised intersections. In Proceedings of the 23rd Conference of Australian Institutes of Transport Research (CAITR 2001), Melbourne, Australia, 10–12 December 2001. [Google Scholar]
- Schneider, R.J.; Sanders, R.L. Pedestrian safety practitioners’ perspectives of driver yielding behavior across North America. Transp. Res. Rec. 2015, 2519, 39–50. [Google Scholar] [CrossRef]
- Tarawneh, M.S. Evaluation of pedestrian speed in Jordan with investigation of some contributing factors. J. Saf. Res. 2001, 32, 229–236. [Google Scholar] [CrossRef]
- Goh, B.H.; Subramaniam, K.; Wai, Y.T.; Mohamed, A.A.; Ali, A. Pedestrian crossing speed: The case of Malaysia. Int. J. Traffic Transp. Eng. 2012, 2, 323–332. [Google Scholar] [CrossRef] [PubMed]
- Turkish Standards Institute. Urban Roads—Design Criteria on Sidewalks and Pedestrian Areas; Technical Report; Turkish Standards Institute: Ankara, Turkey, 2012. [Google Scholar]
- Lobjois, R.; Cavallo, V. Age-related differences in street-crossing decisions: The effects of vehicle speed and time constraints on gap selection in an estimation task. Accid. Anal. Prev. 2007, 39, 934–943. [Google Scholar] [CrossRef] [PubMed]
- Himanen, V.; Kulmala, R. An application of logit models in analysing the behaviour of pedestrians and car drivers on pedestrian crossings. Accid. Anal. Prev. 1988, 20, 187–197. [Google Scholar] [CrossRef] [PubMed]
- Clay, D. Driver Attitude and Attribution: Implications for Accident Prevention. Ph.D. Thesis, Cranfield University, Cranfield, UK, 1995. [Google Scholar]
- Sun, R.; Zhuang, X.; Wu, C.; Zhao, G.; Zhang, K. The estimation of vehicle speed and stopping distance by pedestrians crossing streets in a naturalistic traffic environment. Transp. Res. Part F Traffic Psychol. Behav. 2015, 30, 97–106. [Google Scholar] [CrossRef]
- Das, S.; Manski, C.F.; Manuszak, M.D. Walk or wait? An empirical analysis of street crossing decisions. J. Appl. Econom. 2005, 20, 529–548. [Google Scholar] [CrossRef]
- Caird, J.K.; Hancock, P.A. The perception of arrival time for different oncoming vehicles at an intersection. Ecol. Psychol. 1994, 6, 83–109. [Google Scholar] [CrossRef]
- Burstedde, C.; Klauck, K.; Schadschneider, A.; Zittartz, J. Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Its Appl. 2001, 295, 507–525. [Google Scholar] [CrossRef]
- De Lavalette, B.C.; Tijus, C.; Poitrenaud, S.; Leproux, C.; Bergeron, J.; Thouez, J.P. Pedestrian crossing decision-making: A situational and behavioral approach. Saf. Sci. 2009, 47, 1248–1253. [Google Scholar] [CrossRef]
- Sucha, M.; Dostal, D.; Risser, R. Pedestrian-driver communication and decision strategies at marked crossings. Accid. Anal. Prev. 2017, 102, 41–50. [Google Scholar] [CrossRef] [PubMed]
- Zou, F. Studying Pedestrian’s Unmarked Midblock Crossing Behavior on a Multilane Road When Interacting with Autonomous Vehicles Using Virtual Reality. Ph.D. Thesis, Clemson University, Clemson, SC, USA, 2019. [Google Scholar]
- Gkyrtis, K.; Kokkalis, A. An Overview of the Efficiency of Roundabouts: Design Aspects and Contribution toward Safer Vehicle Movement. Vehicles 2024, 6, 433–449. [Google Scholar] [CrossRef]
- Tian, R.; Du, E.Y.; Yang, K.; Jiang, P.; Jiang, F.; Chen, Y.; Sherony, R.; Takahashi, H. Pilot study on pedestrian step frequency in naturalistic driving environment. In Proceedings of the 2013 IEEE Intelligent Vehicles Symposium (IV), Gold Coast City, Australia, 23 June 2013; pp. 1215–1220. [Google Scholar]
- Sun, D.; Ukkusuri, S.V.S.K.; Benekohal, R.F.; Waller, S.T. Modeling of motorist-pedestrian interaction at uncontrolled mid-block crosswalks. In Proceedings of the Transportation Research Record, TRB Annual Meeting CD-ROM, Washington, DC, USA, 12–16 January 2003. [Google Scholar]
- Wang, T.; Wu, J.; Zheng, P.; McDonald, M. Study of pedestrians’ gap acceptance behavior when they jaywalk outside crossing facilities. In Proceedings of the 13th International IEEE Conference on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 1295–1300. [Google Scholar]
- Ghadirzadeh, S.; Mirbaha, B.; Rassafi, A.A. Analysing pedestrian–vehicle conflict behaviours at urban pedestrian crossings. In Proceedings of the Institution of Civil Engineers-Municipal Engineer, 2022; Thomas Telford Ltd.: London, UK, 2022; Volume 175, pp. 107–118. [Google Scholar]
- Lownes, N.; Rezwana, S.; Shaon, R.; Razaur, M.; Jackson, E. Pedestrian Behavior and Interaction with Autonomous Vehicles; No. CAMMSE-UNCC-2021-UTC-Project-06; Center for Advanced Multimodal Mobility Solutions and Education: Charlotte, NC, USA, 2022. [Google Scholar]
- Lagstrom, T.; Lundgren, V.M. AVIP-Autonomous vehicles interaction with pedestrians. Master’s Thesis, Chalmers University of Technology, Göteborg, Sweden, 2015. [Google Scholar]
- Li, B. A model of pedestrians’ intended waiting times for street crossings at signalized intersections. Transp. Res. Part B Methodol. 2013, 51, 17–28. [Google Scholar] [CrossRef]
- Li, B. A bilevel model for multivariate risk analysis of pedestrians’ crossing behavior at signalized intersections. Transp. Res. Part B Methodol. 2014, 65, 18–30. [Google Scholar] [CrossRef]
- Faria, J.J.; Krause, S.; Krause, J. Collective behavior in road crossing pedestrians: The role of social information. Behav. Ecol. 2010, 21, 1236–1242. [Google Scholar] [CrossRef]
- Guéguen, N.; Meineri, S.; Eyssartier, C. A pedestrian’s stare and drivers’ stopping behavior: A field experiment at the pedestrian crossing. Saf. Sci. 2015, 75, 87–89. [Google Scholar] [CrossRef]
- Nathanael, D.; Portouli, E.; Papakostopoulos, V.; Gkikas, K.; Amditis, A. Naturalistic observation of interactions between car drivers and pedestrians in high density urban settings. In Proceedings of the Congress of the International Ergonomics Association, Florence, Italy, 26–30 August 2018; Springer: Cham, Switzerland, 2018; pp. 389–397. [Google Scholar]
- Keferböck, F.; Riener, A. Strategies for negotiation between autonomous vehicles and pedestrians. In Mensch und Computer 2015—Workshopband; Oldenbourg Wissenschaftsverlag: Stuttgart, Germany, 2015. [Google Scholar]
- Rezwana, S.; Shaon, M.R.R.; Lownes, N. Understanding the Changes in Public Perception toward Autonomous Vehicles over Time. In Proceedings of the International Conference on Transportation and Development, Austin, TX, USA, 14–17 June 2023; pp. 361–372. [Google Scholar]
- Kitazaki, S.; Myhre, M.J. Effects of non-verbal communication cues on decisions and confidence of drivers at an uncontrolled intersection. In Proceedings of the Driving Assesment Conference, Salt Lake City, UT, USA, 22–25 June 2015; University of Iowa: Iowa City, IA, USA, 2015; Volume 8. [Google Scholar]
- Brouwer, N.; Kloeden, H.; Stiller, C. Comparison and evaluation of pedestrian motion models for vehicle safety systems. In Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil, 1–4 November 2016; pp. 2207–2212. [Google Scholar]
- Mahadevan, K.; Somanath, S.; Sharlin, E. Communicating awareness and intent in autonomous vehicle-pedestrian interaction. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, QC, Canada, 21–26 April 2018; pp. 1–12. [Google Scholar]
- Rothenbücher, D.; Li, J.; Sirkin, D.; Mok, B.; Ju, W. Ghost driver: A field study investigating the interaction between pedestrians and driverless vehicles. In Proceedings of the 2016 25th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN), New York, NY, USA, 26–31 August 2016; pp. 795–802. [Google Scholar]
- The Smiling Car. Available online: https://semcon.com/smilingcar/ (accessed on 23 January 2022).
- Joisten, P.; Liu, Z.; Theobald, N.; Webler, A.; Abendroth, B. Communication of automated vehicles and pedestrian groups: An intercultural study on pedestrians’ street crossing decisions. In Proceedings of the Mensch und Computer, Ingolstadt, Germany, 5–8 September 2021; pp. 49–53. [Google Scholar]
- Fridman, L.; Mehler, B.; Xia, L.; Yang, Y.; Facusse, L.Y.; Reimer, B. To walk or not to walk: Crowdsourced assessment of external vehicle-to-pedestrian displays. arXiv 2017, arXiv:1707.02698 2017. [Google Scholar]
- Clamann, M.; Aubert, M.; Cummings, M.L. Evaluation of vehicle-to-pedestrian communication displays for autonomous vehicles. In Proceedings of the 96th Annual Transportation Research Board Meeting, Washington, DC, USA, 8–12 January 2017 . No. 17-02119. [Google Scholar]
- Deb, S.; Carruth, D.W.; Sween, R.; Strawderman, L.; Garrison, T.M. Efficacy of virtual reality in pedestrian safety research. Appl. Ergon. 2017, 65, 449–460. [Google Scholar] [CrossRef] [PubMed]
- Furuya, H.; Kim, K.; Bruder, G.; Wisniewski, P.J.; Welch, G.F. Autonomous vehicle visual embodiment for pedestrian interactions in crossing scenarios: Virtual drivers in AVs for pedestrian crossing. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems, Online, 8–13 May 2021. Extended Abstracts. [Google Scholar]
- Tran, T.T.M.; Parker, C.; Tomitsch, M. A review of virtual reality studies on autonomous vehicle–pedestrian interaction. IEEE Trans. Hum.-Mach. Syst. 2021, 51, 641–652. [Google Scholar] [CrossRef]
- Kutela, B.; Das, S.; Dadashova, B. Mining patterns of autonomous vehicle crashes involving vulnerable road users to understand the associated factors. Accid. Anal. Prev. 2022, 165, 106473. [Google Scholar] [CrossRef]
- Zou, F.; Ogle, J.H.; Gerard, P.; Jin, W. How Do Pedestrians’ Perception Change toward Autonomous Vehicles during Unmarked Midblock Multilane Crossings: Role of AV Operation and Signal Indication. arXiv 2024, arXiv:2401.02339 2024. [Google Scholar]
- Alozi, A.R.; Hussein, M. Evaluating the safety of autonomous vehicle–pedestrian interactions: An extreme value theory approach. Anal. Methods Accid. Res. 2022, 35, 100230. [Google Scholar] [CrossRef]
- Zhu, Z.; Hu, Z.; Dai, W.; Chen, H.; Lv, Z. Deep learning for autonomous vehicle and pedestrian interaction safety. Saf. Sci. 2022, 145, 105479. [Google Scholar] [CrossRef]
- Aleva, T.K.; Tabone, W.; Dodou, D.; de Winter, J.C.F. Augmented reality for supporting the interaction between pedestrians and automated vehicles: An experimental outdoor study. Front. Robot. AI 2024, 11, 1324060. [Google Scholar] [CrossRef] [PubMed]
- Teknomo, K. Application of microscopic pedestrian simulation model. Transp. Res. Part F Traffic Psychol. Behav. 2006, 9, 15–27. [Google Scholar] [CrossRef]
- Chen, X.; Li, S.; Yang, W.; Chen, Y.; Wang, H. Enhanced microsimulation framework for right-turning vehicle-pedestrian interactions at signalized intersection. Simul. Model. Pract. Theory 2024, 134, 102930. [Google Scholar] [CrossRef]
- Dey, D.; Martens, M.; Eggen, B.; Terken, J. Pedestrian road-crossing willingness as a function of vehicle automation, external appearance, and driving behaviour. Transp. Res. Part F Traffic Psychol. Behav. 2019, 65, 191–205. [Google Scholar] [CrossRef]
- Madigan, R.; Nordhoff, S.; Fox, C.; Amini, R.E.; Louw, T.; Wilbrink, M.; Schieben, A.; Merat, N. Understanding interactions between Automated Road Transport Systems and other road users: A video analysis. Transp. Res. Part F Traffic Psychol. Behav. 2019, 66, 196–213. [Google Scholar] [CrossRef]
- Haspiel, J.; Du, N.; Meyerson, J.; Robert, L.P., Jr.; Tilbury, D.; Yang, X.J.; Pradhan, A.K. Explanations and expectations: Trust building in automated vehicles. In Proceedings of the Companion of the 2018 ACM/IEEE International Conference on Human-Robot Interaction, Chicago, IL, USA, 5–8 March 2018; pp. 119–120. [Google Scholar]
- Salem, M.; Lakatos, G.; Amirabdollahian, F.; Dautenhahn, K. Would you trust a (faulty) robot? Effects of error, task type and personality on human-robot cooperation and trust. In Proceedings of the 2015 10th ACM/IEEE International Conference on Human-Robot Interaction (HRI), Portland, OR, USA, 2–5 March 2015; pp. 1–8. [Google Scholar]
- Rossi, A.; Holthaus, P.; Dautenhahn, K.; Koay, K.L.; Walters, M.L. Getting to know Pepper: Effects of people’s awareness of a robot’s capabilities on their trust in the robot. In Proceedings of the 6th International Conference on Human-Agent Interaction, Southampton, UK, 15–18 December 2018; pp. 246–252. [Google Scholar]
- Solmazer, G.; Azık, D.; Fındık, G.; Üzümcüoğlu, Y.; Ersan, Ö.; Kaçan, B.; Özkan, T.; Lajunen, T.; Öz, B.; Pashkevich, A.; et al. Cross-cultural differences in pedestrian behaviors in relation to values: A comparison of five countries. Accid. Anal. Prev. 2020, 138, 105459. [Google Scholar] [CrossRef]
- Lee, Y.M.; Madigan, R.; Giles, O.; Garach-Morcillo, L.; Markkula, G.; Fox, C.; Camara, F.; Rothmueller, M.; Vendelbo-Larsen, S.A.; Rasmussen, P.H.; et al. Road users rarely use explicit communication when interacting in today’s traffic: Implications for automated vehicles. Cogn. Technol. Work. 2021, 23, 367–380. [Google Scholar] [CrossRef]
- Adnan, N.; Nordin, S.M.; bin Bahruddin, M.A.; Ali, M. How trust can drive forward the user acceptance to the technology? In-vehicle technology for autonomous vehicle. Transp. Res. Part A Policy Pract. 2018, 118, 819–836. [Google Scholar] [CrossRef]
- Thomson, J.J. The trolley problem. Yale Law J. 1985, 94, 1395–1415. [Google Scholar] [CrossRef]
- Goodall, N.J. Machine ethics and automated vehicles. In Road Vehicle Automation; Springer: Cham, Switzerland, 2014; pp. 93–102. [Google Scholar]
- Applin, S.A.; Fischer, M.D. New technologies and mixed-use convergence: How humans and algorithms are adapting to each other. In Proceedings of the 2015 IEEE International Symposium on Technology and Society (ISTAS), Dublin, Ireland, 11–12 November 2015; pp. 1–6. [Google Scholar]
- Hevelke, A.; Nida-Rümelin, J. Responsibility for crashes of autonomous vehicles: An ethical analysis. Sci. Eng. Ethics 2015, 21, 619–630. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, J.C.; Thornton, S.M. Implementable ethics for autonomous vehicles. In Autonomes Fahren; Springer: Berlin/Heidelberg, Germany, 2015; pp. 87–102. [Google Scholar]
- Luetge, C. The German ethics code for automated and connected driving. Philos. Technol. 2017, 30, 547–558. [Google Scholar] [CrossRef]
- Song, Y.; Jiang, Q.; Chen, W.; Zhuang, X.; Ma, G. Pedestrians’ road-crossing behavior towards eHMI-equipped autonomous vehicles driving in segregated and mixed traffic conditions. Accid. Anal. Prev. 2023, 188, 107115. [Google Scholar] [CrossRef]
- Lownes, N.; Rezwana, S.; Shaon, R.; Razaur, M.; Jackson, E. Pedestrian Behavior and Interaction with Autonomous Vehicles (Phase II); Center for Advanced Multimodal Mobility Solutions and Education: Charlotte, NC, USA, 2023. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rezwana, S.; Lownes, N. Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis. Future Transp. 2024, 4, 722-745. https://doi.org/10.3390/futuretransp4030034
Rezwana S, Lownes N. Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis. Future Transportation. 2024; 4(3):722-745. https://doi.org/10.3390/futuretransp4030034
Chicago/Turabian StyleRezwana, Saki, and Nicholas Lownes. 2024. "Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis" Future Transportation 4, no. 3: 722-745. https://doi.org/10.3390/futuretransp4030034
APA StyleRezwana, S., & Lownes, N. (2024). Interactions and Behaviors of Pedestrians with Autonomous Vehicles: A Synthesis. Future Transportation, 4(3), 722-745. https://doi.org/10.3390/futuretransp4030034