Efficient Operation of Metropolitan Corridors: Pivotal Role of Lane Management Strategies
Abstract
:1. Introduction
2. Methodology
2.1. Databases and Keywords
2.2. Bibliographic Analysis
3. Lane Management Strategies: Concept and Types
4. Evidence of the Impact of Lane Management Strategies on Metropolitan Corridors
4.1. Congestion Management
4.2. Emissions Management
4.3. Safety
4.4. Equity
5. Challenges and Limitations of Lane Management Strategies in Metropolitan Corridors
6. Evaluation of the Suitability of Managed Lane Strategies for a Particular Corridor
7. Limitations Found in Existing Research on Managed Lane Strategies
8. Discussion and Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Whebell, C.F.J. Corridors: A Theory of Urban Systems. Ann. Assoc. Am. Geogr. 1969, 59, 1–26. [Google Scholar] [CrossRef]
- Sanz, J.M. The Railway Corridor as a Functional Subsystem for Rebalancing Socially and Environmentally Metropolitan Areas. WIT Trans. Built Environ. 2020, 200, 91–101. [Google Scholar]
- Chorus, P.; Bertolini, L. Developing Transit-Oriented Corridors: Insights from Tokyo. Int. J. Sustain. Transp. 2016, 10, 86–95. [Google Scholar] [CrossRef]
- Pham, K. Beyond Borders: Steering Metropolitan Growth Priorities through Spatial Imaginaries. Aust. Plan. 2020, 56, 103–113. [Google Scholar] [CrossRef]
- Rader Olsson, A.; Cars, G. Polycentric Spatial Development: Institutional Challenges to Intermunicipal Cooperation. Jahrb. Reg. 2011, 31, 155–171. [Google Scholar] [CrossRef]
- Rahim Rahnama, M.; Wyatt, R. Corridor Development of Melbourne Metropolitan Area, Australia. Int. J. Adv. Stud. Humanit. Soc. Sci. 2013, 1, 1195–1208. [Google Scholar]
- Carmona, M. London’s Local High Streets: The Problems, Potential and Complexities of Mixed Street Corridors. Prog. Plan. 2015, 100, 1–84. [Google Scholar] [CrossRef]
- Florida Department of Transportation. Managed Lanes Guidebook; Florida Department of Transportation: Tallahassee, FL, USA, 2023.
- Zeng, J.; Qian, Y.; Yin, F.; Zhu, L.; Xu, D. A Multi-Value Cellular Automata Model for Multi-Lane Traffic Flow under Lagrange Coordinate. Comput. Math. Organ. Theory 2022, 28, 178–192. [Google Scholar] [CrossRef]
- Casquero, D.; Monzon, A.; García, M.; Martínez, O. Key Elements of Mobility Apps for Improving Urban Travel Patterns: A Literature Review. Future Transp. 2022, 2, 1–23. [Google Scholar] [CrossRef]
- Kriswardhana, W.; Esztergár-Kiss, D. A Systematic Literature Review of Mobility as a Service: Examining the Socio-Technical Factors in MaaS Adoption and Bundling Packages. Travel. Behav. Soc. 2023, 31, 232–243. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C. Bibliometrix: An R-Tool for Comprehensive Science Mapping Analysis. J. Inf. 2017, 11, 959–975. [Google Scholar] [CrossRef]
- Pons, P.; Latapy, M. Computing Communities in Large Networks Using Random Walks. In Computer and Information Sciences-ISCIS 2005, Proceedings of the 20th International Symposium, Istanbul, Turkey, 26–28 October 2005; Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics); Springer: Berlin/Heidelberg, Germany, 2005; Volume 3733 LNCS, pp. 284–293. [Google Scholar] [CrossRef]
- Collier, T.; Goodin, G. Managed Lanes: A Cross-Cutting Study; Federal Highway Administration: Washington, DC, USA, 2004.
- Gomez-Ibanez, J.A.; Casady, C.B.; Fagan, M.; Foote, J.; Marsh, E. Toll-Managed Lanes: Benefit-Cost Analyses of Seven Projects; New England University Transportation Center: Cambridge, MA, USA, 2018. [Google Scholar]
- United States Department of Transportation, Federal Highway Administration. Managed Lanes and HOV Facilities. Available online: https://ops.fhwa.dot.gov/freewaymgmt/mngd_lns_hov.htm (accessed on 24 August 2023).
- Chang, M.; Wiegmann, J.; Smith, A. A Review of HOV Lane Performance and Policy Options in the United States; Federal Highway Administration (USA): Washington, DC, USA, 2008. Available online: https://rosap.ntl.bts.gov/view/dot/866 (accessed on 23 October 2023).
- Xie, X.; Chiabaut, N.; Leclercq, L. Improving Bus Transit in Cities with Appropriate Dynamic Lane Allocating Strategies. Procedia Soc. Behav. Sci. 2012, 48, 1472–1481. [Google Scholar] [CrossRef]
- Eichler, M.; Daganzo, C.F. Bus Lanes with Intermittent Priority: Strategy Formulae and an Evaluation. Transp. Res. Part B Methodol. 2006, 40, 731–744. [Google Scholar] [CrossRef]
- Fielding, G.J.; Klein, D.B. High Occupancy/Toll Lanes: Phasing in Congestion Pricing a Lane at a Time. Reason Foundation, Policy Study No. 170. 1993. Available online: https://escholarship.org/uc/item/2fv1c5p3 (accessed on 5 March 2024).
- Dahlgren, J. High-Occupancy/Toll Lanes: Where Should They Be Implemented? Transp. Res. Part A 2000, 36, 239–255. [Google Scholar] [CrossRef]
- Yuan, F.; Wang, X.; Chen, Z. Assessing the Impact of Ride-Sourcing Vehicles on HOV-Lane Efficacy and Management Strategies. Transp. Policy 2024, 150, 35–52. [Google Scholar] [CrossRef]
- Yin, Y.; Lou, Y. Dynamic Tolling Strategies for Managed Lanes. J. Transp. Eng. 2009, 135, 45–52. [Google Scholar] [CrossRef]
- Dong, J.; Mahmassani, H.S.; Erdoĝan, S.; Lu, C.C. State-Dependent Pricing for Real-Time Freeway Management: Anticipatory versus Reactive Strategies. Transp. Res. Part C Emerg. Technol. 2011, 19, 644–657. [Google Scholar] [CrossRef]
- Tettamanti, T.; Török, Á.; Varga, I. Dynamic Road Pricing for Optimal Traffic Flow Management by Using Non-Linear Model Predictive Control. IET Intell. Transp. Syst. 2019, 13, 1139–1147. [Google Scholar] [CrossRef]
- Paleti, C.; Peeta, S.; Sinha, K. Identifying Strategies to Improve Lane Use Management in Indiana; Bureau of Transportation Statistics: West Lafayette, IN, USA, 2014.
- Frejo, J.R.D.; Papamichail, I.; Papageorgiou, M.; Camacho, E.F. Macroscopic Modeling and Control of Reversible Lanes on Freeways. IEEE Trans. Intell. Transp. Syst. 2016, 17, 948–959. [Google Scholar] [CrossRef]
- Pande, A.; Wolshon, P.B.; Institute of Transportation Engineers. Traffic Engineering Handbook, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2016; ISBN 9781118762301. [Google Scholar]
- Avelar, R.; Fitzpatrick, K.; Dixon, K.; Lindheimer, T. The Influence of General Purpose Lane Traffic on Managed Lane Speeds: An Operational Study in Houston, Texas. Transp. Res. Procedia 2016, 15, 548–560. [Google Scholar] [CrossRef]
- Gosse, C.A.; Clarens, A.F. Quantifying the Total Cost of Infrastructure to Enable Environmentally Preferable Decisions: The Case of Urban Roadway Design. Environ. Res. Lett. 2013, 8, 015028. [Google Scholar] [CrossRef]
- Perez, W.A.; Philips, B.H. Active Traffic Management Sign Comprehension. In Driving Assessment Conference; University of Iowa: Iowa City, IA, USA, 2013; Volume 7. [Google Scholar]
- Chien, S.; Christopher, L.; Chen, Y.; Qiu, M.; Lin, W. Integration of Lane-Specific Traffic Data Generated from Real-Time CCTV Videos into INDOT’s Traffic Management System; Bureau of Transportation Statistics: West Lafayette, IN, USA, 2023.
- Jain, S.; Jain, S.S.; Jain, G.V. Urban Corridor Management Strategy Based on Intelligent Transportation System. Int. J. Comput. Inf. Eng. 2016, 10, 1144–1148. [Google Scholar] [CrossRef]
- Garg, M.; Johnston, C.; Bouroche, M. Can Connected Autonomous Vehicles Really Improve Mixed Traffic Efficiency in Realistic Scenarios? In Proceedings of the IEEE International Intelligent Transportation Systems Conference (ITSC), Indianapolis, IN, USA, 19–22 September 2021; pp. 2011–2018. [Google Scholar]
- United States Federal Transit Administration Bus Rapid Transit. Available online: https://www.transit.dot.gov/research-innovation/bus-rapid-transit (accessed on 20 March 2024).
- 3-Lane Traffic on Lions Gate Bridge. Vancouver, British Columbia, Canada. The Vancouver Sun, 19 February 1952.
- Poole, R. The Impact of HOV and HOT Lanes on Congestion in the United States Discussion Paper; International Transport Forum: Loa Angeles, CA, USA, 2020. [Google Scholar]
- Pfaffenbichler, P.; Mateos, M. Location and Transport Effects of High Occupancy vehicle and Bus Lanes in Madrid. In Proceedings of the 45th Congress of the European Regional Science Association, Amsterdam, The Netherlands, 23–27 August 2005. [Google Scholar]
- Liu, X.; Schroeder, B.J.; Thomson, T.; Wang, Y.; Rouphail, N.M.; Yin, Y. Analysis of Operational Interactions between Freeway Managed Lanes and Parallel, General Purpose Lanes. Transp. Res. Rec. 2011, 2262, 62–73. [Google Scholar] [CrossRef]
- Abdel-Aty, M.; Wu, Y.; Saad, M.; Rahman, M.S. Safety and Operational Impact of Connected Vehicles’ Lane Configuration on Freeway Facilities with Managed Lanes. Accid. Anal. Prev. 2020, 144, 105616. [Google Scholar] [CrossRef] [PubMed]
- Zhao, X.; Gao, Y.; Jin, S.; Xu, Z.; Liu, Z.; Fan, W.; Liu, P. Development of a Cyber-Physical-System Perspective Based Simulation Platform for Optimizing Connected Automated Vehicles Dedicated Lanes. Expert Syst. Appl. 2023, 213, 118972. [Google Scholar] [CrossRef]
- Cirimele, V.; La Ganga, A.; Colussi, J.; De Gloria, A.; Diana, M.; Bellotti, F.; Berta, R.; El Sayed, N.; Kobeissi, A.; Guglielmi, P.; et al. The Fabric ICT Platform for Managing Wireless Dynamic Charging Road Lanes. IEEE Trans. Veh. Technol. 2020, 69, 2501–2512. [Google Scholar] [CrossRef]
- Wei, Z.; Hao, P.; Barth, M.; Boriboonsomsin, K. Evaluating Contraflow High-Occupancy Vehicle Lane Designs for Mitigating High-Occupancy Vehicle Lane Performance Degradation. Transp. Res. Rec. 2023, 2677, 707–719. [Google Scholar] [CrossRef]
- Nohekhan, A.; Zahedian, S.; Sadabadi, K.F. Investigating the Impacts of I-66 Inner Beltway Dynamic Tolling System. Transp. Eng. 2021, 4, 100059. [Google Scholar] [CrossRef]
- Schroeder, J.; Klein, R.; Smith, T.; Turnbull, K.; Balke, K.; Burris, M.; Songchitruksa, P.; Pessaro, B.; Saunoi-Sandgren, E.; Schreffler, E.; et al. Los Angeles Congestion Reduction Demonstration ExpressLanes Program: National Evaluation Report; Department of Transportation: Washington, DC, USA, 2015.
- Waleczek, H.; Geistefeldt, J.; Cindric-Middendorf, D.; Riegelhuth, G. Traffic Flow at a Freeway Work Zone with Reversible Median Lane. Transp. Res. Procedia 2016, 15, 257–266. [Google Scholar] [CrossRef]
- Conceição, L.; de Almeida Correia, G.H.; Tavares, J.P. The Reversible Lane Network Design Problem (RL-NDP) for Smart Cities with Automated Traffic. Sustainability 2020, 12, 1226. [Google Scholar] [CrossRef]
- Cheng, D.; Ishak, S. Maximizing Toll Revenue and Level of Service on Managed Lanes with a Dynamic Feedback-Control Toll Pricing Strategy. Can. J. Civ. Eng. 2015, 43, 18–27. [Google Scholar] [CrossRef]
- Jang, K.; Chung, K.; Yeo, H. A Dynamic Pricing Strategy for High Occupancy Toll Lanes. Transp. Res. Part A Policy Pract. 2014, 67, 69–80. [Google Scholar] [CrossRef]
- Fontes, T.; Fernandes, P.; Rodrigues, H.; Bandeira, J.M.; Pereira, S.R.; Khattak, A.J.; Coelho, M.C. Are HOV/Eco-Lanes a Sustainable Option to Reducing Emissions in a Medium-Sized European City? Transp. Res. Part A Policy Pract. 2014, 63, 93–106. [Google Scholar] [CrossRef]
- Sharma, S. Optimal Corridor Selection for a Road Space Management Strategy: Methodology and Tool. J. Adv. Transp. 2017, 2017, 6354690. [Google Scholar] [CrossRef]
- Kolosz, B.; Grant-Muller, S. Extending Cost-Benefit Analysis for the Sustainability Impact of Inter-Urban Intelligent Transport Systems. Environ. Impact Assess. Rev. 2015, 50, 167–177. [Google Scholar] [CrossRef]
- Ekedebe, N.; Lu, C.; Yu, W. Towards Experimental Evaluation of Intelligent System Safety and Traffic Efficiency. In Proceedings of the IEEE International Conference on Communications (ICC), London, UK, 8–12 June 2015. [Google Scholar]
- Shewmake, S.; Jarvis, L.; Prieston, Z.; Dang Nick Magnan, L.; Wilen, J.; Larson, D.; Williams, J.; Sperling, D.; Zaragoza, M.; Kaffine, D.; et al. Hybrid Cars and HOV Lanes. Transp. Res. Part A Policy Pract. 2014, 67, 304–319. [Google Scholar] [CrossRef]
- Cooner, S.A.; Ranft, S.E. Safety Evaluation of Buffer-Separated High-Occupancy Vehicle Lanes in Texas. Transp. Res. Rec. J. Transp. Res. Board 2006, 1959, 168–177. [Google Scholar] [CrossRef]
- Manuel, A.; de Barros, A.; Tay, R. Traffic Safety Meta-Analysis of Reversible Lanes. Accid. Anal. Prev. 2020, 148, 105751. [Google Scholar] [CrossRef]
- Wood, J.S.; Gooch, J.P.; Donnell, E.T. Estimating the Safety Effects of Lane Widths on Urban Streets in Nebraska Using the Propensity Scores-Potential Outcomes Framework. Accid. Anal. Prev. 2015, 82, 180–191. [Google Scholar] [CrossRef]
- Chen, T.; Sze, N.N.; Chen, S.; Labi, S. Urban Road Space Allocation Incorporating the Safety and Construction Cost Impacts of Lane and Footpath Widths. J. Saf. Res. 2020, 75, 222–232. [Google Scholar] [CrossRef]
- Amirgholy, M.; Shahabi, M.; Oliver Gao, H. Traffic Automation and Lane Management for Communicant, Autonomous, and Human-Driven Vehicles. Transp. Res. Part C Emerg. Technol. 2020, 111, 477–495. [Google Scholar] [CrossRef]
- Tantillo, M.J.; Roberts, E.; Mangar, U. Roles of Transportation Management Centers in Incident Management on Managed Lanes; Federal Highway Administration: Washington, DC, USA, 2014.
- Miller, J.; Fontaine, M. Sketch-Level Approach to Incorporate Active Traffic Management into the Regional Planning Process. Transp. Res. Rec. 2013, 2397, 11–21. [Google Scholar] [CrossRef]
- Goh, K.; Currie, G.; Sarvi, M.; Logan, D. Road Safety Benefits from Bus Priority. Transp. Res. Rec. 2013, 2352, 41–49. [Google Scholar] [CrossRef]
- Wu, D.; Han, X. A Two-Lane Cellular Automaton Model to Evaluate the Bus Lane with Intermittent Priority. J. Adv. Transp. 2022, 2022, 9028212. [Google Scholar] [CrossRef]
- Ray, R. Exploring the Equity Impacts of Two Road Pricing Implementations Using a Traveler Behavior Panel Survey; Volpe National Transportation Systems Center, Broadway: Cambridge, MA, USA, 2014.
- Petrella, M.; Puckett, S.; Peirce, S.; Minnice, P.; Lappin, J. Effects of an HOV-2 to HOT-3 Conversion on Traveler Behavior: Evidence from a Panel Study of the I-85 Corridor in Atlanta; SAGE Publications: Thousand Oaks, CA, USA, 2014. [Google Scholar]
- Martin-Gasulla, M.; Elefteriadou, L. Traffic Management with Autonomous and Connected Vehicles at Single-Lane Roundabouts. Transp. Res. Part C Emerg. Technol. 2021, 125, 102964. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Yao, Z.; Jiang, Y. Analysis of Mixed Traffic Flow with Different Lane Management Strategy for Connected Automated Vehicles: A Fundamental Diagram Method. Expert Syst. Appl. 2024, 254, 124340. [Google Scholar] [CrossRef]
- Zhang, H.; Hou, N.; Zhang, J.; Li, X.; Huang, Y. Evaluating the Safety Impact of Connected and Autonomous Vehicles with Lane Management on Freeway Crash Hotspots Using the Surrogate Safety Assessment Model. J. Adv. Transp. 2021, 2021, 5565343. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Smith, B.L.; Fontaine, M.D.; Ma, J.; Khattak, A.J. Active Lane Management and Control Using Connected and Automated Vehicles in a Mixed Traffic Environment. Transp. Res. Part C Emerg. Technol. 2022, 139, 103648. [Google Scholar] [CrossRef]
- Chen, H.; An, B.; Sharon, G.; Hanna, J.P.; Stone, P.; Miao, C.; Soh, Y.C. DyETC: Dynamic Electronic Toll Collection for Traffic Congestion Alleviation. In Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2–7 February 2018. [Google Scholar] [CrossRef]
- Silva, J.; Marques, G.; Jorge, P.; Abrantes, A.; Osorio, A.; Gomes, J.; Braga, J. Evaluation of an LPR-Based Toll Enforcement System on Portuguese Motorways. In Proceedings of the IEEE Intelligent Transportation Systems Conference, Toronto, ON, Canada, 17–20 September 2006; pp. 719–724. [Google Scholar] [CrossRef]
- Jacob Candidate, C.; Abdulhai Associate Professor, B. Integrated Traffic Corridor Control Using Machine Learning. IEEE Int. Conf. Syst. Man. Cybern. 2005, 4, 3460–3465. [Google Scholar]
- Striewski, S.; Thomsen, I.; Tomforde, S. Adaptive Approaches for Tidal-Flow Lanes in Urban-Road Networks. Future Transp. 2022, 2, 567–588. [Google Scholar] [CrossRef]
- Cafiso, S.; Di Graziano, A.; Giuffrè, T.; Pappalardo, G.; Severino, A. Managed Lane as Strategy for Traffic Flow and Safety: A Case Study of Catania Ring Road. Sustainability 2022, 14, 2915. [Google Scholar] [CrossRef]
- Cohen, M.C.; Jacquillat, A.; Ratzon, A.; Sasson, R. The Impact of High-Occupancy Vehicle Lanes on Carpooling. Transp. Res. Part A Policy Pract. 2022, 165, 186–206. [Google Scholar] [CrossRef]
- Lapardhaja, S.; Jalota, D.; Doig, J.; Almubarak, A.; Cassidy, M. Testing Alternative Treatments for Underused Carpool Lanes on Narrow Freeways. Transp. Res. Part A Policy Pract. 2021, 149, 139–149. [Google Scholar] [CrossRef]
- Viegas, J.; Lu, B.; Vieira, J.; Roque, R. Demonstration of the Intermittent Bus Lane in Lisbon. IFAC Proc. Vol. (IFAC-Pap.) 2006, 11, 239–244. [Google Scholar] [CrossRef]
- Kampouri, A.; Politis, I.; Georgiadis, G. A System-Optimum Approach for Bus Lanes Dynamically Activated by Road Traffic. Res. Transp. Econ. 2021, 92, 101075. [Google Scholar] [CrossRef]
- Luo, Q.; Du, R.; Jia, H.; Yang, L. Research on the Deployment of Joint Dedicated Lanes for CAVs and Buses. Sustainability 2022, 14, 8686. [Google Scholar] [CrossRef]
- Leung, S.; Mccartan, C.; Robinson, C.; Roshan Zamir, K.; Hallenbeck, M.; Iverson, V. I-405 Express Toll Lanes Usage, Benefits, and Equity; eScience Institute (University of Washington): Washington, DC, USA, 2019. [Google Scholar]
- Pandey, V.; Wang, E.; Boyles, S.D. Deep Reinforcement Learning Algorithm for Dynamic Pricing of Express Lanes with Multiple Access Locations. Transp. Res. Part C Emerg. Technol. 2020, 119, 102715. [Google Scholar] [CrossRef]
- Tan, Z.; Liu, F.; Chan, H.K.; Gao, H.O. Transportation Systems Management Considering Dynamic Wireless Charging Electric Vehicles: Review and Prospects. Transp. Res. E Logist. Transp. Rev. 2022, 163, 102761. [Google Scholar] [CrossRef]
- Khattak, Z.H.; Smith, B.L.; Park, H.; Fontaine, M.D. Cooperative Lane Control Application for Fully Connected and Automated Vehicles at Multilane Freeways. Transp. Res. Part C Emerg. Technol. 2020, 111, 294–317. [Google Scholar] [CrossRef]
- Beverly Kuhn, A.; Goodin, G.; Ballard, A.; Brewer, M.; Brydia, R.; Carson, J.; Chrysler, S.; Collier, T.; Fitzpatrick, K.; Jasek, D.; et al. Managed Lanes Handbook; Texas Department of Transportation, Research and Technology Implementation Office: Austin, TX, USA, 2005.
- Turnbull, K.F.; National Research Council (U.S.); Transportation Research Board; Transit Cooperative Research Program; United States Federal Transit Administration; Transit Development Corporation. Traveler Response to Transportation System Changes. Chapter 2, HOV Facilities, 3rd ed.; Transportation Research Board: Washington, DC, USA, 2006; ISBN 9780309098656. [Google Scholar]
- Shaheen, S.; Cohen, A.; Bayen, A. The Benefits of Carpooling; Transportation Sustainability Research Center: Berkeley, CA, USA, 2018. [Google Scholar] [CrossRef]
- Chiabaut, N.; Xie, X.; Leclercq, L. Road Capacity and Travel Times with Bus Lanes and Intermittent Priority Activation. Transp. Res. Rec. 2012, 2315, 182–190. [Google Scholar] [CrossRef]
Cluster | Node | Betweenness Centrality | Closeness Centrality | PageRank |
---|---|---|---|---|
Cluster 1 Road Infrastructure | Road | 37.279 | 0.015 | 0.038 |
Transportation | 12.040 | 0.013 | 0.022 | |
Dynamic | 34.173 | 0.013 | 0.025 | |
Pricing | 9.562 | 0.013 | 0.022 | |
Analysis | 21.367 | 0.014 | 0.013 | |
Strategies | 0.259 | 0.013 | 0.018 | |
Multimodal | 14.871 | 0.013 | 0.021 | |
Network | 0.894 | 0.011 | 0.014 | |
Toll | 0.000 | 0.009 | 0.007 | |
Cluster 2 Multimodal Mobility | Corridor | 48.069 | 0.011 | 0.047 |
Urban | 104.707 | 0.014 | 0.046 | |
Transit | 2.442 | 0.010 | 0.025 | |
Development | 0.000 | 0.008 | 0.012 | |
Bus | 16.535 | 0.014 | 0.010 | |
Mobility | 0.000 | 0.009 | 0.008 | |
Modelling | 0.000 | 0.009 | 0.008 | |
Cluster 3 Lane Management Strategies | Lane | 265.643 | 0.020 | 0.129 |
Vehicle | 29.280 | 0.016 | 0.081 | |
Traffic | 129.547 | 0.018 | 0.065 | |
Management | 18.688 | 0.015 | 0.058 | |
Connected | 9.579 | 0.015 | 0.056 | |
Managed | 3.765 | 0.014 | 0.032 | |
Safety | 13.903 | 0.015 | 0.026 | |
Autonomous | 0.000 | 0.013 | 0.021 | |
Impact | 1.361 | 0.013 | 0.025 | |
Model | 3.470 | 0.014 | 0.017 | |
Automated | 0.245 | 0.014 | 0.027 | |
Control | 0.000 | 0.013 | 0.012 | |
Freeway | 1.137 | 0.013 | 0.022 | |
Approach | 0.000 | 0.014 | 0.011 | |
High-Occupancy | 0.000 | 0.014 | 0.019 | |
Mixed | 0.000 | 0.014 | 0.014 | |
Occupancy | 0.000 | 0.012 | 0.009 | |
Operational | 0.000 | 0.012 | 0.013 |
Aspect | Pricing Lanes | Eligibility Lanes | Permission Lanes |
---|---|---|---|
Congestion Reduction | High, due to managed demand | Moderate, promotes carpooling | Moderate, prioritises essential services |
Revenue Generation | Yes, through tolls | No | No |
Environmental Impact | Positive, reduces congestion | Positive, reduces single-occupancy vehicles | Positive, promotes public transit use |
Equity Concerns | High, affects lower-income drivers | Lower, though still some access limitations | Low, as it prioritises public and essential services |
Public Acceptance | Often resisted | Mixed, depends on public perception | Generally accepted, especially for emergency lanes |
Compliance/ Enforcement | Requires robust systems | Can be challenging | Requires enforcement to prevent misuse |
Utilisation Efficiency | Variable, depends on demand | Can be underutilised if not enough eligible users | Risk of underutilisation during non-peak times |
Period | Characteristics | Case Examples | Source |
---|---|---|---|
1950s | Reversible lanes. | Lions Gate Bridge | The Vancouver Sun from Vancouver, British Columbia, Canada [36] |
1960s | 1st Bus Rapid Transit (BRT) lanes. | Shirley Highway (I-95 and I-395) Washington, DC. | Poole [37] |
1970s–1980s | High-Occupancy Vehicle (HOV) lanes. | A-6 in Madrid (Spain). | Pfaffenbichler & Mateos [38] |
1990s–2000s | HOT lanes. Truck or Freight lanes. Enhanced BRT lanes. | I-10 and US-290 Houston, Texas. | Gomez-Ibanez et al.; X. Liu et al. [15,39] |
Future | Autonomous/Connected Vehicle (AV/CV) Lanes. | Theoretical, with data from a metropolitan corridor in Sacramento (USA) and cyber-physical simulation. | Abdel-Aty et al., 2020; Zhao et al., 2023 [40,41] |
Wireless charging lanes. ‘Intermittent bike/non-motorised lane’ | Tests in a safe driving track in Italy. Tunnel management in Gran Canaria (Spain) | Interviews with Cabildo de Gran Canaria personnel [42] |
Planning factors |
|
Geometric layout |
|
Operational opportunities |
|
Multimodality synergies |
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rivadeneira, A.M.; Benavente, J.; Monzon, A. Efficient Operation of Metropolitan Corridors: Pivotal Role of Lane Management Strategies. Future Transp. 2024, 4, 1100-1120. https://doi.org/10.3390/futuretransp4030053
Rivadeneira AM, Benavente J, Monzon A. Efficient Operation of Metropolitan Corridors: Pivotal Role of Lane Management Strategies. Future Transportation. 2024; 4(3):1100-1120. https://doi.org/10.3390/futuretransp4030053
Chicago/Turabian StyleRivadeneira, Ana Maria, Juan Benavente, and Andres Monzon. 2024. "Efficient Operation of Metropolitan Corridors: Pivotal Role of Lane Management Strategies" Future Transportation 4, no. 3: 1100-1120. https://doi.org/10.3390/futuretransp4030053
APA StyleRivadeneira, A. M., Benavente, J., & Monzon, A. (2024). Efficient Operation of Metropolitan Corridors: Pivotal Role of Lane Management Strategies. Future Transportation, 4(3), 1100-1120. https://doi.org/10.3390/futuretransp4030053