Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Method
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.; Lal, U.; Mukhtar, H.; Singh, P.; Shah, G.; Dhawan, R. Phytochemical profile of sugarcane and its potential health aspects. Pharmacogn. Rev. 2015, 9, 45–54. [Google Scholar] [CrossRef]
- Kltimor, K. Stages of Sugarcane Production: A Review. Res. Gate 2022. [Google Scholar] [CrossRef]
- Chaves, M.; Bermúdez, L. Agroindustria Azucarera Costarricense: Un Modelo Organizacional y Productivo Efectivo Con 75 Años de Vigencia. Cali, Colombia. 2015. Available online: https://servicios.laica.co.cr/laica-cv-biblioteca/index.php/Library/download/DSCmSdyqoIJhQAUmeqVMAwOPjrySXJdh (accessed on 9 December 2023).
- Som-ard, J.; Atzberger, C.; Izquierdo-Verdiguier, E.; Vuolo, F.; Immitzer, M. Remote Sensing Applications in Sugarcane Cultivation: A Review. Remote. Sens. 2021, 13, 4040. [Google Scholar] [CrossRef]
- Wake, B. Central America drying. Nat. Clim. Change 2021, 11, 900. [Google Scholar] [CrossRef]
- Vignola, R.; Poveda, K.; Walter, W.; Vargas, A.; Berrocal, Á. Cultivo de Caña de Azúcar en Costa Rica; San José, Costa Rica, 2018; Available online: https://www.mag.go.cr/bibliotecavirtual/F01-8327.pdf (accessed on 27 February 2023).
- Wiedenfeld, R.P. Water stress during different sugarcane growth periods on yield and response to N fertilization. Agric. Water Manag. 2000, 43, 173–182. [Google Scholar] [CrossRef]
- Zhao, Y.; Della Justina, D.; Kazama, Y.; Rocha, J.V.; Graziano, P.S.; Lamparelli, R.A.C. Dynamics modeling for sugar cane sucrose estimation using time series satellite imagery. In Proceedings of the SPIE Remote Sensing, Edinburgh, UK, 25 October 2016; p. 99980J. [Google Scholar] [CrossRef]
- Leon, R.G.; Agüero, R.; Calderón, D. Diversity and Spatial Heterogeneity of Weed Communities in a Sugarcane Cropping System in the Dry Tropics of Costa Rica. Weed Sci. 2017, 65, 128–140. [Google Scholar] [CrossRef]
- Alfaro, R.; Ocampo, R.; Barrantes, J. Respuesta Productiva de Diferentes Madurantes en El Cultivo de La Caña de Azúcar, Zona Sur, Costa RicA. Alajuela, Costa Rica. 2019. Available online: https://servicios.laica.co.cr/laica-cv-biblioteca/index.php/Library/download/bbaVIFwLDpaHsTAihTAIVysfTnLAZZcL (accessed on 14 March 2023).
- Pereira, L.F.; Ferreira, V.M.; DE Oliveira, N.G.; Sarmento, P.L.; Endres, L.; Teodoro, I. Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An. Acad. Bras. Cienc. 2017, 89, 1231–1242. [Google Scholar] [CrossRef]
- Singh, P.; Singh, S.N.; Tiwari, A.K.; Pathak, S.K.; Singh, A.K.; Srivastava, S.; Mohan, N. Integration of sugarcane production technologies for enhanced cane and sugar productivity targeting to increase farmers’ income: Strategies and prospects. 3 Biotech 2019, 9, 48. [Google Scholar] [CrossRef]
- Rahimi, M.; Liaghat, A.; Mirzaei, F. Optimization of Sugarcane Harvest Using Remote Sensing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-4/W18, 857–861. [Google Scholar] [CrossRef]
- Simões, M.D.S.; Rocha, J.V.; Lamparelli, R.A.C. Spectral variables, growth analysis and yield of sugarcane. Sci. Agricola 2005, 62, 199–207. [Google Scholar] [CrossRef]
- Lofton, J.; Tubana, B.S.; Kanke, Y.; Teboh, J.; Viator, H.; Dalen, M. Estimating Sugarcane Yield Potential Using an In-Season Determination of Normalized Difference Vegetative Index. Sensors 2012, 12, 7529–7547. [Google Scholar] [CrossRef]
- Cruz-Sanabria, H.; Sanchez, M.G.; Rivera-Caicedo, J.P.; Avila-George, H. Identification of phenological stages of sugarcane cultivation using Sentinel-2 images. In Proceedings of the 2020 9th International Conference on Software Process Improvement (CIMPS), Mazatlan, Sinaloa, Mexico, 21–23 October 2020; pp. 110–116. [Google Scholar] [CrossRef]
- Yeasin, M.; Haldar, D.; Kumar, S.; Paul, R.K.; Ghosh, S. Machine Learning Techniques for Phenology Assessment of Sugarcane Using Conjunctive SAR and Optical Data. Remote Sens. 2022, 14, 3249. [Google Scholar] [CrossRef]
- Gunnula, W.; Kosittrakun, M.; Righetti, T.; Weerathaworn, P.; Prabpan, W. Evaluating Sugarcane Growth and Maturity Using Ground-Based Measurements and Remote Sensing Data. Thai J. Agric. Sci. 2012, 2015, 17–28. Available online: https://www.researchgate.net/publication/280132988_Evaluating_Sugarcane_Growth_and_Maturity_Using_Ground-Based_Measurements_and_Remote_Sensing_Data (accessed on 5 September 2023).
- Júnior, M.R.B.; Moreira, B.R.d.A.; de Oliveira, R.P.; Shiratsuchi, L.S.; da Silva, R.P. UAV imagery data and machine learning: A driving merger for predictive analysis of qualitative yield in sugarcane. Front. Plant Sci. 2023, 14, 1114852. [Google Scholar] [CrossRef]
- Akbarian, S.; Jamnani, M.R.; Xu, C.; Wang, W.; Lim, S. Plot level sugarcane yield estimation by machine learning on multispectral images: A case study of Bundaberg, Australia. Inf. Process. Agric. 2023; in press. [Google Scholar] [CrossRef]
- Schueneman, T.J.; Miller, J.D.; Gilbert, R.A.; Harrison, N.L. Sugarcane Cultivar CP 72-2086 Descriptive Fact Sheet; University of Florida: Gainesville, FL, USA, 2001. [Google Scholar]
- 2006. Available online: https://edisciplinas.usp.br/pluginfile.php/4277152/mod_resource/content/1/ManualdoConsecana.pdf (accessed on 28 May 2024).
- CHCNAV. CHCNAV i50 GNSS User Gide. Shanghai. 2018, pp. 1–68. Available online: https://chcnav.es/es/productos/gps-chc-i50-gnss/chc-manual-gps-centimetrico-i50-en/view (accessed on 7 January 2024).
- MicaSense. MicaSense Series RedEdge-P. 2021. Available online: https://ageagle.com/drone-sensors/rededge-p-high-res-multispectral-camera/ (accessed on 7 January 2024).
- DJI. Matrice 300 RTK. 2020. Available online: https://enterprise.dji.com/matrice-300 (accessed on 1 April 2023).
- PIX4D. PIX4Dmapper. 2023. Available online: https://www.pix4d.com/product/pix4dmapper-photogrammetry-software/ (accessed on 4 January 2023).
- Kedzierski, M.; Wierzbicki, D.; Sekrecka, A.; Fryskowska, A.; Walczykowski, P.; Siewert, J. Influence of Lower Atmosphere on the Radiometric Quality of Unmanned Aerial Vehicle Imagery. Remote Sens. 2019, 11, 1214. [Google Scholar] [CrossRef]
- Chaves, M. La Maduracion, su Control y la Cosecha de la caña de Azucar. In Seminario de Tecnología Moderna de la Caña de Azúcar; San José, Costa Rica, 1982; Volume 2, pp. 28–40. Available online: https://servicios.laica.co.cr/laica-cv-biblioteca/index.php/Library/download/FAmCPefIHfqCIJhAhnzDdGwAStzOdssA (accessed on 14 March 2023).
- Rouse, J.W. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Texas. 1974. Available online: https://ntrs.nasa.gov/citations/19740022555 (accessed on 14 January 2024).
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of Leaf-Area Index from Quality of Light on the Forest Floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Ferchault de Réamur, R.-A. Observations du Thermometre, Faites a Paris Pendant l’annees 1735, Comparees a Celles qui ont ete Faites sous la Ligne, a l’Isle de France, a Alger et en Quelques-Unes de nos Isles de l’Amerique. 1735. Available online: https://www.academie-sciences.fr/pdf/dossiers/Reaumur/Reaumur_pdf/p545_576_vol3532m.pdf (accessed on 14 January 2024).
- Sedgwick, P. Pearson’s correlation coefficient. BMJ 2012, 345, e4483. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Sheykhmousa, M.; Mahdianpari, M.; Ghanbari, H.; Mohammadimanesh, F.; Ghamisi, P.; Homayouni, S. Support Vector Machine Versus Random Forest for Remote Sensing Image Classification: A Meta-Analysis and Systematic Review. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2020, 13, 6308–6325. [Google Scholar] [CrossRef]
- McLean, R.A.; Sanders, W.L.; Stroup, W.W. A Unified Approach to Mixed Linear Models. Am. Stat. 1991, 45, 54–64. [Google Scholar] [CrossRef]
- Araya, J.; Alpizar, E.; Valverde, W.; Chavarría, E. Aplicación del índice de madurez de la caña como criterio de cosecha: Un método sencillo con un fundamento fisiológico sólido y un enfoque práctico. Entre Cañeros 2016, 6, 51–59. Available online: https://www.researchgate.net/publication/335003001_Aplicacion_del_indice_de_madurez_de_la_cana_como_criterio_de_cosecha_un_metodo_sencillo_con_un_fundamento_fisiologico_solido_y_un_enfoque_practico (accessed on 15 January 2023).
- Quality Assurance Laboratory at Taboga Mill, Cañas, Guanacaste, Cost Rica. Industry Standards for Harvesting Sugarcane. Private Communication, 2023.
- Chea, C.; Saengprachatanarug, K.; Posom, J.; Saikaew, K.; Wongphati, M.; Taira, E. Optimal models under multiple resource types for Brix content prediction in sugarcane fields using machine learning. Remote Sens. Appl. Soc. Environ. 2022, 26, 100718. [Google Scholar] [CrossRef]
- Lebourgeois, V.; Bégué, A.; Labbé, S.; Houlès, M.; Martiné, J.F. A light-weight multi-spectral aerial imaging system for nitrogen crop monitoring. Precis. Agric. 2012, 13, 525–541. [Google Scholar] [CrossRef]
- Villegas, F.; Larrahondo, J. Control y características de maduración. In El Cultivo de la Caña en la Zona Azucarera de Colombia; Centro de Investigación de la Caña de Azúcar de Colombia, Ed.; Centro de Investigación de la Caña de Azúcar de Colombia: Cali, Colombia, 1995; pp. 297–313. [Google Scholar]
- Erdle, K.; Mistele, B.; Schmidhalter, U. Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crop. Res. 2011, 124, 74–84. [Google Scholar] [CrossRef]
- de Oliveira, R.P.; Júnior, M.R.B.; Pinto, A.A.; Oliveira, J.L.P.; Zerbato, C.; Furlani, C.E.A. Predicting Sugarcane Biometric Parameters by UAV Multispectral Images and Machine Learning. Agronomy 2022, 12, 1992. [Google Scholar] [CrossRef]
- Som-ard, J.; Hossain, M.D.; Ninsawat, S.; Veerachitt, V. Pre-harvest Sugarcane Yield Estimation Using UAV-Based RGB Images and Ground Observation. Sugar Tech. 2018, 20, 645–657. [Google Scholar] [CrossRef]
Band | Center (nm) | Bandwidth (nm) |
---|---|---|
Blue | 475 | 32 |
Green (G) | 560 | 27 |
Red (R) | 668 | 14 |
Red-Edge | 717 | 12 |
Near Infrared (NIR) | 842 | 57 |
Name | Equation | Reference |
---|---|---|
Normalized Difference Vegetation Index (NDVI) | [29] | |
Green Normalized Difference Vegetation Index (GNDVI) | [30] | |
Normalized Difference Water Index (NDWI) | [8] | |
Simple Ratio (SR) | [31] | |
Ratio Vegetation Index (RVI) | [14] | |
INSEY 1 | [15] | |
INSEY 2 | [15] | |
Cumulative Growing Degree Days (CGDD) | [32] |
Method | MLM | SVM | RF | |
---|---|---|---|---|
Brix (°Brix) | Precision | 12.61% | 21.89% | 77.57% |
Accuracy | 65.74% | 66.64% | 82.68% | |
Deviation | 34.26% | 33.36% | 17.32% | |
Pol (°Pol) | Precision | 11.81% | 21.02% | 77.31% |
Accuracy | 66.25% | 67.46% | 82.91% | |
Deviation | 33.75% | 32.54% | 17.09% | |
Maturity Index | Precision | 12.21% | 21.45% | 77.44% |
Accuracy | 65.99% | 67.05% | 82.80% | |
Deviation | 34.01% | 32.95% | 17.20% |
Zone | MI | Pol |
---|---|---|
Zone 1 | 78.84% | 12.00 |
Zone 2 | 79.53% | 12.29 |
Zone 3 | 79.91% | 12.44 |
Zone 4 | 78.03% | 11.68 |
Zone 5 | 80.15% | 12.55 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leandro, E.R.; Heenkenda, M.K.; Romero, K.F. Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images. Crops 2024, 4, 333-347. https://doi.org/10.3390/crops4030024
Leandro ER, Heenkenda MK, Romero KF. Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images. Crops. 2024; 4(3):333-347. https://doi.org/10.3390/crops4030024
Chicago/Turabian StyleLeandro, Esteban Rodriguez, Muditha K. Heenkenda, and Kerin F. Romero. 2024. "Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images" Crops 4, no. 3: 333-347. https://doi.org/10.3390/crops4030024
APA StyleLeandro, E. R., Heenkenda, M. K., & Romero, K. F. (2024). Estimating Sugarcane Maturity Using High Spatial Resolution Remote Sensing Images. Crops, 4(3), 333-347. https://doi.org/10.3390/crops4030024