Impact of Mutations in Soybean Oleate and Linoleate Desaturase Genes on Seed Germinability of Heat-Stressed Plants
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Plant Growth and Heat Stress Treatment
2.3. Gene Expression Analysis (In Silico and qRT-PCR)
2.4. Seed Germination Measurement
2.5. Statistical Analysis
3. Results and Discussion
3.1. Impact of FAD Genes on the Germination of Seeds Derived from Heat-Stressed Plants
3.2. In Silico Gene Expression Analysis
3.3. qRT-PCR Analysis of FAD2 and FAD3 Expression Level Changes Under Heat Stress
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.K.; Raina, S.K.; Kumar, M.; Aher, L.; Ratnarparkhe, M.B.; Rane, J.; Kachroo, A. Modulation of GmFAD3 expression alters abiotic stress responses in soybean. Plant Mol. Biol. 2022, 110, 199–218. [Google Scholar] [CrossRef] [PubMed]
- Economic Research Service US Department of Agriculture. Oil Crops Sector at a Glance. 2021. Available online: https://www.ers.usda.gov/topics/crops/soybeans-oil-crops/oil-crops-sector-at-a-glance/ (accessed on 2 September 2023).
- Rustgi, S.; Kakati, J.P.; Jones, Z.T.; Zoong-Lwe, Z.S.; Narayanan, S. Heat tolerance as a function of membrane lipid remodeling in the major US oilseed crops (soybean and peanut). J. Plant Biochem. Biotechnol. 2021, 30, 652–667. [Google Scholar] [CrossRef]
- Available online: https://www.statista.com/statistics/263926/soybean-production-in-selected-countries-since-1980/ (accessed on 5 July 2024).
- Bellaloui, N.; Smith, J.R.; Ray, J.D.; Gillen, A.M. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Sci. 2009, 49, 608–620. [Google Scholar] [CrossRef]
- Poudel, S.; Bikash, A.; Jagman, D.K.; Reddy, R.; Salliana, R.; Raju, B. Quantifying the physiological, yield, and quality plasticity of Southern USA soybeans under heat stress. Plant Stress 2023, 9, 100195. [Google Scholar] [CrossRef]
- Lobell, D.B.; Asner, G.P. Climate and management contributions to recent trends in U.S. agricultural yields. Science 2003, 299, 1032. [Google Scholar] [CrossRef]
- Schauberger, B.; Archontoulis, S.; Arneth, A.; Balkovic, J.; Ciais, P.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Muller, C.; et al. Consistent negative response of US crops to high temperatures in observations and crop models. Nat. Commun. 2017, 8, 13931. [Google Scholar] [CrossRef] [PubMed]
- Heatherly, L.G.; Spurlock, S.R. Yield and economics of traditional and early soybean production system (ESPS) seedings in the Midsouthern United States. Field Crops Res. 1999, 63, 35–452. [Google Scholar] [CrossRef]
- Smith, J.R.; Mengistu, A.; Nelson, R.L.; Paris, R.L. Identification of soybean accessions with high germinability in high-temperature environments. Crop Sci. 2008, 48, 2279–2288. [Google Scholar] [CrossRef]
- Chebrolu, K.K.; Fritschi, F.B.; Ye, S.; Krishnan, H.B.; Smith, J.R.; Gillman, J.D. Impact of heat stress during seed development on soybean seed metabolome. Metabolomics 2016, 12, 28. [Google Scholar] [CrossRef]
- Hamayun, M.; Hussain, A.; Iqbal, A.; Khan, S.A.; Gul, S.; Khan, H.; Rehman, K.U.; Bibi, H.; Lee, I. Penicillium glabrum acted as a heat stress relieving endophyte in soybean and sunflower. Polish J. Environ. Stud. 2021, 30, 3099–3110. [Google Scholar]
- Kosina, P.; Reynolds, M.P.; Dixon, J.; Joshi, A. Stakeholder perception of wheat production constraints, capacity building needs and research partnerships in the developing countries. Euphytica 2007, 157, 475–483. [Google Scholar] [CrossRef]
- Snider, J.L.; Oosterhuis, D.M. How does timing, duration, and severity of heat stress influence pollen-pistil interactions in angiosperms? Plant Signal Behav. 2011, 6, 930–933. [Google Scholar] [CrossRef] [PubMed]
- Sinha, R.; Shostak, B.; Induri, S.P.; Sen, S.; Zandalinas, S.I.; Joshi, T.; Fritschi, F.B.; Mittler, R. Differential transpiration between pods and leaves during stress combination in soybean. Plant Physiol. 2023, 192, 753–766. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Liu, L.; Ma, Y.; Li, S.; Dong, S.; Zu, W. Transcriptome profiling analysis characterized the gene expression patterns responded to combined drought and heat stresses in soybean. Comput. Biol. Chem. 2018, 77, 413–429. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Xia, Z.; Huang, Z.; Xia, C.; Huang, J.; Zha, M.; Wang, S.; Imran, M.; Casteel, S.; Jiang, Y.; et al. Understanding the physiological and transcriptional mechanism of reproductive stage soybean in response to heat stress. Crop Breed. Genet. Genom. 2020, 2, e200004. [Google Scholar]
- Jianing, G.; Yuhong, G.; Yijun, G.; Rasheed, A.; Qian, Z.; Zhiming, X.; Mahmood, A.; Shuheng, Z.; Zhuo, Z.; Zhuo, Z.; et al. Improvement of heat stress tolerance in soybean (Glycine max L.) by using conventional and molecular tools. Front. Plant Sci. 2022, 13, 993189. [Google Scholar] [CrossRef] [PubMed]
- Ding, C.; Alghabari, F.; Rauf, M.; Zhao, T.; Javed, M.; Alshamrani, R.; Ghazy, A.-H.; Al-Doss, A.; Khalid, T.; Yang, S.H.; et al. Optimization of soybean physiochemical, agronomic, and genetic responses under varying regimes of day and night temperatures. Front. Plant Sci. 2024, 14, 1332414. [Google Scholar] [CrossRef] [PubMed]
- Narayanan, S.; Zoong-Lwe, Z.S.; Gandhi, N.; Welti, R.; Fallen, B.; Smith, J.R.; Rustgi, S. Comparative lipidomic analysis reveals heat stress responses of two soybean genotypes differing in temperature sensitivity. Plants 2020, 9, 457. [Google Scholar] [CrossRef]
- Krishnan, H.B.; Kim, W.S.; Oehrle, N.W.; Smith, J.R.; Gillman, J.D. Effect of heat stress on seed protein composition and ultrastructure of protein storage vacuoles in the cotyledonary parenchyma cells of soybean genotypes that are either tolerant or sensitive to elevated temperatures. Int. J. Mol. Sci. 2020, 21, 4775. [Google Scholar] [CrossRef]
- Das, A.; Rushton, P.J.; Rohila, J.S. Metabolomic profiling of soybeans (Glycine max L.) reveals the importance of sugar and nitrogen metabolism under drought and heat stress. Plants 2017, 6, 21. [Google Scholar] [CrossRef]
- Vital, R.G.; Müller, C.; Freire FB, S.; Silva, F.B.; Batista, P.F.; Fuentes, D.; Rodrigues, A.A.; Moura, L.M.F.; Daloso, D.M.; Silva, A.A.; et al. Metabolic, physiological and anatomical responses of soybean plants under water deficit and high temperature condition. Sci. Rep. 2022, 12, 16467. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Lu, Z.; Wang, L.; Jin, B. Plant Responses to Heat Stress: Physiology, Transcription, Noncoding RNAs, and Epigenetics. Int. J. Mol. Sci. 2021, 22, 117. [Google Scholar] [CrossRef] [PubMed]
- Valdés-López, O.; Batek, J.; Gomez-Hernandez, N.; Nguyen, C.T.; Isidra-Arellano, M.C.; Zhang, N.; Joshi, T.; Xu, D.; Hixson, K.K.; Weitz, K.K.; et al. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles. Front. Plant Sci. 2016, 7, 517. [Google Scholar] [CrossRef] [PubMed]
- Kidokoro, S.; Watanabe, K.; Ohori, T.; Moriwaki, T.; Maruyama, K.; Mizoi, J.; Htwe, N.M.P.S.; Fujita, Y.; Sekita, S.; Shinozaki, K.; et al. Soybean DREB 1/CBF-type transcription factors function in heat and drought as well as cold stress-responsive gene expression. Plant J. 2015, 81, 505–518. [Google Scholar] [CrossRef] [PubMed]
- Schlueter, J.A.; Vasylenko-Sanders, I.F.; Deshpande, S.; Yi, J.; Siegfried, M.; Roe, B.A.; Schlueter, S.D.; Scheffler, B.E.; Shoemaker, R.C. The FAD2 gene family of soybean: Insights into the structural and functional divergence of a paleopolyploid genome. Crop Sci. 2007, 47, S14–S26. [Google Scholar] [CrossRef]
- Román, A.; Andreu, V.; Hernández, M.L.; Lagunas, B.; Picorel, R.; Martínez-Rivas, J.M.; Alfonso, M. Contribution of the different omega-3 fatty acid desaturase genes to the cold response in soybean. J. Exp. Bot. 2012, 63, 4973–4982. [Google Scholar] [CrossRef] [PubMed]
- Dar, A.A.; Choudhury, A.R.; Kancharla, P.K.; Arumugam, N. The FAD2 gene in plants: Occurrence, regulation, and role. Front. Plant Sci. 2017, 8, 1789. [Google Scholar] [CrossRef] [PubMed]
- Andreu, V.; Lagunas, B.; Collados, R.; Picorel, R.; Alfonso, M. The GmFAD7 gene family from soybean: Identification of novel genes and tissue-specific conformations of the FAD7 enzyme involved in desaturase activity. J. Exp Bot. 2010, 61, 3371–3384. [Google Scholar] [CrossRef] [PubMed]
- Chi, X.Y.; Yang, Q.L.; Lu, Y.D.; Wang, J.Y.; Zhang, Q.F.; Pan, L.J.; Chen, M.; He, Y.; Yu, S. Genome-wide analysis of fatty acid desaturases in soybean (Glycine max). Plant Mol. Biol. Rep. 2011, 29, 769–783. [Google Scholar] [CrossRef]
- Wang, X.; Yu, C.; Liu, Y.; Yang, L.; Li, Y.; Yao, W.; Cai, Y.; Yan, X.; Li, S.; Cai, Y.; et al. GmFAD3A, A ω-3 fatty acid desaturase gene, enhances cold tolerance and seed germination rate under low temperature in rice. Int. J. Mol. Sci. 2019, 20, 3796. [Google Scholar] [CrossRef]
- Zhou, Y.; Wang, S.; Hu, H.; Shen, Y.; Zhu, Y.; Liu, X.; Wei, J.; Yu, X.; Liu, S.; Ma, H. GmCDPKSK5 interacting with GmFAD2-1B participates in regulation of seed development in soybean under high temperature and humidity stress. Plant Mol. Biol. Rep. 2022, 40, 402–417. [Google Scholar] [CrossRef]
- Zhao, X.; Wei, J.; He, L.; Zhang, Y.; Zhao, Y.; Xu, X.; Wei, Y.; Ge, S.; Ding, D.; Liu, M.; et al. Identification of fatty acid desaturases in maize and their differential responses to low and high temperature. Genes 2019, 10, 445. [Google Scholar] [CrossRef] [PubMed]
- Hiremath, S.S.; Sajeevan, R.S.; Nataraja, K.N.; Chaturvedi, A.K.; Pal, M. Silencing of fatty acid desaturase (FAD7) gene enhances membrane stability and photosynthetic efficiency under heat stress in tobacco (Nicotiana benthamiana). Ind. J. Exp. Biol. 2017, 55, 532–541. [Google Scholar]
- Pham, A.T.; Shannon, J.G.; Bilyeu, K.D. Combinations of mutant FAD2 and FAD3 genes to produce high oleic acid and low linolenic acid soybean oil. Theor. Appl. Genet. 2012, 125, 503–515. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef] [PubMed]
- Metsalu, T.; Vilo, J. ClustVis: A web tool for visualizing clustering of multivariate data using principal component analysis and heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
- SAS Institute. Statistical Analysis Software (SAS) User’s Guide Version 9.4; SAS Institute: Cary, NC, USA, 2016. [Google Scholar]
- Wei, T.; Simko, V. R Package ’Corrplot’: Visualization of a Correlation Matrix. Version 0.95, 2024. Available online: https://github.com/taiyun/corrplot (accessed on 5 July 2024).
- Bachleda, N.; Grey, T.; Li, Z. Effects of high oleic acid soybean on seed yield, protein and oil contents, and seed germination revealed by near-isogeneic lines. Plant Breed. 2017, 136, 539–547. [Google Scholar] [CrossRef]
- Shaheen, N.; Khan, U.M.; Farooq, A.; Zafar, U.B.; Khan, S.H.; Ahmad, S.; Azhar, M.T.; Atif, R.M.; Rana, I.A.; Seo, H. Comparative transcriptomic and evolutionary analysis of FAD-like genes of Brassica species revealed their role in fatty acid biosynthesis and stress tolerance. BMC Plant Biol. 2023, 23, 250. [Google Scholar] [CrossRef]
- Khan, A.Z.; Khan, H.; Khan, R.; Ghoneim, A.; Ebid, A. Seed Developmental Profile of Soybean as Influenced by Planting Date and Cultivar under Temperate Environment. Am. J. Plant Physiol. 2007, 2, 251–260. [Google Scholar] [CrossRef]
- Severin, A.J.; Woody, J.L.; Bolon, Y.T.; Joseph, B.; Diers, B.W.; Farmer, A.D.; Muehlbauer, G.J.; Nelson, R.T.; Grant, D.; Specht, J.E.; et al. RNA-Seq Atlas of Glycine max: A guide to the soybean transcriptome. BMC Plant Biol. 2010, 10, 160. [Google Scholar] [CrossRef]
- Zhang, B.; Xia, P.; Yu, H.; Li, W.; Chai, W.; Liang, Z. Based on the whole genome clarified the evolution and expression process of fatty acid desaturase genes in three soybeans. Int. J. Biol. Macromol. 2021, 182, 1966–1980. [Google Scholar] [CrossRef] [PubMed]
- Akbar, A.; Manohar, S.S.; Variath, M.T.; Kurapaty, S.; Pasupuleti, J. Efficient partitioning of assimilates in stress-tolerant groundnut genotypes under high-temperature stress. Agronomy 2017, 7, 30. [Google Scholar] [CrossRef]
- Huang, L.Z.; Zhou, M.; Ding, Y.F.; Zhu, C. Gene networks involved in plant heat stress response and tolerance. Int. J. Mol. Sci. 2022, 23, 11970. [Google Scholar] [CrossRef] [PubMed]
Name | Genotype |
---|---|
Williams 82 | Wild type |
M92-220 | Wild type |
S15-17812 | FAD2-1A, FAD2-1B null |
S17PR-345 | FAD2-1A, FAD2-1B null |
S17CR-172 | FAD2-1A, FAD2-1B, FAD3A null |
S17CR-180 | FAD2-1A, FAD2-1B, FAD3A null |
S17PR-662 | FAD2-1A, FAD2-1B, FAD3B null |
S16-17495 | FAD2-1A, FAD2-1B, FAD3B null |
S17PR-501 | FAD2-1A, FAD2-1B, FAD3C null |
S17PR-499 | FAD2-1A, FAD2-1B, FAD3A, FAD3B null |
S17CR-170 | FAD2-1A, FAD2-1B, FAD3A, FAD3C null |
S17CR-301 | FAD2-1A, FAD2-1B, FAD3A, FAD3C null |
Source of Variation | Degree of Freedom | Germination % |
---|---|---|
Rep | 5 | 0.09 * |
Genotype (G) | 11 | 0.41 *** |
Treatment (T) | 1 | 1.79 *** |
G × T | 11 | 0.41 *** |
Error | 104 | 0.04 |
R2 | 0.73 |
Genotype | Germination (HT) | Germination (OT) | Germination Decline | Percent Germination Decline * | Normalized Percent Germination Decline # |
---|---|---|---|---|---|
Williams 82 (PI518671) | 0.70 | 0.97 | 0.27 | 27 | 35.06 |
M92-220 (WT) | 0.83 | 0.98 | 0.15 | 15 | 19.48 |
S17CR-170 | 0.22 | 0.98 | 0.77 | 77 | 100.00 |
S15-17812 | 0.40 | 0.23 | −0.18 | −18 | −23.38 |
S16-17495 | 0.78 | 0.58 | −0.20 | −20 | −25.97 |
S17CR-172 | 0.68 | 0.95 | 0.27 | 27 | 35.06 |
S17CR-180 | 0.26 | 1.00 | 0.74 | 74 | 96.10 |
S17CR-301 | 0.28 | 0.95 | 0.67 | 67 | 87.01 |
S17PR-345 | 0.62 | 0.33 | −0.28 | −28 | −36.36 |
S17PR-499 | 0.00 | 0.59 | 0.59 | 59 | 76.62 |
S17PR-501 | 0.55 | 0.22 | −0.33 | −33 | −42.86 |
S17PR-662 | 0.52 | 0.47 | −0.05 | −5 | −6.49 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toyinbo, J.O.; Saripalli, G.; Ingole, H.P.; Jones, Z.T.; Naveed, S.; Noh, E.; Narayanan, S.; Rustgi, S. Impact of Mutations in Soybean Oleate and Linoleate Desaturase Genes on Seed Germinability of Heat-Stressed Plants. Crops 2025, 5, 2. https://doi.org/10.3390/crops5010002
Toyinbo JO, Saripalli G, Ingole HP, Jones ZT, Naveed S, Noh E, Narayanan S, Rustgi S. Impact of Mutations in Soybean Oleate and Linoleate Desaturase Genes on Seed Germinability of Heat-Stressed Plants. Crops. 2025; 5(1):2. https://doi.org/10.3390/crops5010002
Chicago/Turabian StyleToyinbo, Johnson O., Gautam Saripalli, Hrishikesh P. Ingole, Zachary T. Jones, Salman Naveed, Enoch Noh, Sruthi Narayanan, and Sachin Rustgi. 2025. "Impact of Mutations in Soybean Oleate and Linoleate Desaturase Genes on Seed Germinability of Heat-Stressed Plants" Crops 5, no. 1: 2. https://doi.org/10.3390/crops5010002
APA StyleToyinbo, J. O., Saripalli, G., Ingole, H. P., Jones, Z. T., Naveed, S., Noh, E., Narayanan, S., & Rustgi, S. (2025). Impact of Mutations in Soybean Oleate and Linoleate Desaturase Genes on Seed Germinability of Heat-Stressed Plants. Crops, 5(1), 2. https://doi.org/10.3390/crops5010002