Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast
Abstract
:1. Introduction
2. Materials and Methods
2.1. Yeast Strains and Meterial
2.2. Plasmid Repair Assay
2.3. Repair Fidelity Assay
2.4. DNA Damaging Drug Sensitivity Analysis
2.5. Synthetic Genetic Array Analysis of Genetic Interactions
2.6. Chromosomal Repair Assay
2.7. Homologous Recombination Assay
3. Results
3.1. Deletion of ARP6 Impairs NHEJ Repair of Linearized Plasmids and Chromosomal Breaks
3.2. ARP6 Deletion Is Sensitive to DNA-Damaging Agents
3.3. The Loss of ARP6 Increases NHEJ Accuracy
3.4. Interaction Analysis Suggests a Role with DNA Repair and Chromatin Remodeling
3.5. Studying ARP6 Function in Relation to SWR1-C, INO80-C and RSC-C
3.6. Further Conditional Genetic Evidence for the Association of ARP6 with RSC-C2 and MRE11
3.7. ARP6 Severely Reduces the Efficiency of Homologous Recombination
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schipler, A.; Iliakis, G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 2013, 41, 7589–7605. [Google Scholar] [CrossRef] [Green Version]
- Aparicio, T.; Baer, R.; Gautier, J. DNA double-strand break repair pathway choice and cancer. DNA Repair 2014, 19, 169–175. [Google Scholar] [CrossRef] [Green Version]
- Chang, H.H.Y.; Pannunzio, N.R.; Adachi, N.; Lieber, M.R. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 2017, 18, 495–506. [Google Scholar] [CrossRef]
- Hefferin, M.L.; Tomkinson, A.E. Mechanism of DNA double-strand break repair by non-homologous end joining. DNA Repair 2005, 4, 639–648. [Google Scholar] [CrossRef]
- Emerson, C.H.; Bertuch, A.A. Consider the workhorse: Nonhomologous end-joining in budding yeast. Biochem. Cell Biol. 2016, 94. [Google Scholar] [CrossRef] [Green Version]
- Davis, A.J.; Chen, D.J. DNA double strand break repair via non-homologous end-joining. Transl. Cancer Res. 2013, 2, 130–143. [Google Scholar] [CrossRef]
- Sinha, M.; Peterson, C.L. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics 2009, 1, 371–385. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liang, B.; Qiu, J.; Ratnakumar, K.; Laurent, B.C. RSC Functions as an Early Double-Strand-Break Sensor in the Cell’s Response to DNA Damage. Curr. Biol. 2007, 17, 1432–1437. [Google Scholar] [CrossRef] [Green Version]
- Van Attikum, H.; Fritsch, O.; Gasser, S.M. Distinct roles for SWR1 and INO80 chromatin remodeling complexes at chromosomal double-strand breaks. EMBO J. 2007, 26, 4113–4125. [Google Scholar] [CrossRef] [Green Version]
- Downs, J.A.; Allard, S.; Jobin-Robitaille, O.; Javaheri, A.; Auger, A.; Bouchard, N.; Kron, S.J.; Jackson, S.P.; Côté, J. Binding of chromatin-modifying activities to phosphorylated histone H2A at DNA damage sites. Mol. Cell 2004, 16, 979–990. [Google Scholar] [CrossRef]
- Price, B.D.; D’Andrea, A.D. Chromatin remodeling at DNA double-strand breaks. Cell 2013, 152, 1344–1354. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horigome, C.; Oma, Y.; Konishi, T.; Schmid, R.; Marcomini, I.; Hauer, M.H.; Dion, V.; Harata, M.; Gasser, S.M. SWR1 and INO80 chromatin remodelers contribute to dna double-strand break perinuclear anchorage site choice. Mol. Cell 2014, 55, 626–639. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Ayrapetov, M.K.; Xu, C.; Gursoy-Yuzugullu, O.; Hu, Y.; Price, B.D. Histone H2A.Z Controls a Critical Chromatin Remodeling Step Required for DNA Double-Strand Break Repair. Mol. Cell 2012, 48, 723–733. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chambers, A.L.; Brownlee, P.M.; Durley, S.C.; Beacham, T.; Kent, N.A.; Downs, J.A. The two different isoforms of the RSC chromatin remodeling complex play distinct roles in DNA damage responses. PLoS ONE 2012, 7. [Google Scholar] [CrossRef] [PubMed]
- Shim, E.Y.; Hong, S.J.; Oum, J.-H.; Yanez, Y.; Zhang, Y.; Lee, S.E. RSC Mobilizes Nucleosomes To Improve Accessibility of Repair Machinery to the Damaged Chromatin. Mol. Cell. Biol. 2007, 27, 1602–1613. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Smith, C.L.; Saha, A.; Grill, S.W.; Mihardja, S.; Smith, S.B.; Cairns, B.R.; Peterson, C.L.; Bustamante, C. DNA translocation and loop formation mechanism of chromatin remodeling by SWI/SNF and RSC. Mol. Cell 2006, 24, 559–568. [Google Scholar] [CrossRef]
- Szerlong, H.; Saha, A.; Cairns, B.R. The nuclear actin-related proteins Arp7 and Arp9: A dimeric module that cooperates with architectural proteins for chromatin remodeling. EMBO J. 2003, 22, 3175–3187. [Google Scholar] [CrossRef] [Green Version]
- Tosi, A.; Haas, C.; Herzog, F.; Gilmozzi, A.; Berninghausen, O.; Ungewickell, C.; Gerhold, C.B.; Lakomek, K.; Aebersold, R.; Beckmann, R.; et al. XStructure and subunit topology of the INO80 chromatin remodeler and its nucleosome complex. Cell 2013, 154. [Google Scholar] [CrossRef] [Green Version]
- Yoshida, T.; Shimada, K.; Oma, Y.; Kalck, V.; Akimura, K.; Taddei, A.; Iwahashi, H.; Kugou, K.; Ohta, K.; Gasser, S.M.; et al. Actin-Related Protein Arp6 Influences H2A.Z-Dependent and -Independent Gene Expression and Links Ribosomal Protein Genes to Nuclear Pores. PLoS Genet. 2010, 6, e1000910. [Google Scholar] [CrossRef]
- Wu, W.H.; Alami, S.; Luk, E.; Wu, C.H.; Sen, S.; Mizuguchi, G.; Wei, D.; Wu, C. Swc2 is a widely conserved H2AZ-binding module essential for ATP-dependent histone exchange. Nat. Struct. Mol. Biol. 2005, 12, 1064–1071. [Google Scholar] [CrossRef]
- Jessulat, M.; Malty, R.H.; Nguyen-Tran, D.-H.; Deineko, V.; Aoki, H.; Vlasblom, J.; Omidi, K.; Jin, K.; Minic, Z.; Hooshyar, M.; et al. Spindle Checkpoint Factors Bub1 and Bub2 Promote DNA Double-Strand Break Repair by Nonhomologous End Joining. Mol. Cell. Biol. 2015, 35, 2448–2463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Winzeler, E.A.; Shoemaker, D.D.; Astromoff, A.; Liang, H.; Anderson, K.; Andre, B.; Bangham, R.; Benito, R.; Boeke, J.D.; Bussey, H.; et al. Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 1999, 285, 901–906. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tong, A.H.Y.; Boone, C. Synthetic genetic array analysis in Saccharomyces cerevisiae. Methods Mol. Biol. 2006, 313, 171–192. [Google Scholar] [CrossRef]
- Bahmed, K.; Nitiss, K.C.; Nitiss, J.L. Yeast Tdp1 regulates the fidelity of nonhomologous end joining. Proc. Natl. Acad. Sci. USA 2010, 107, 4057–4062. [Google Scholar] [CrossRef] [Green Version]
- Sopko, R.; Huang, D.; Preston, N.; Chua, G.; Papp, B.; Kafadar, K.; Snyder, M.; Oliver, S.G.; Cyert, M.; Hughes, T.R.; et al. Mapping Pathways and Phenotypes by Systematic Gene Overexpression. Mol. Cell 2006, 21, 319–330. [Google Scholar] [CrossRef]
- Erdemir, T.; Bilican, B.; Cagatay, T.; Goding, C.R.; Yavuzer, U. Saccharomyces cerevisiae C1D is implicated in both non-homologous DNA end joining and homologous recombination. Mol. Microbiol. 2002, 46, 947–957. [Google Scholar] [CrossRef] [Green Version]
- Omidi, K.; Hooshyar, M.; Jessulat, M.; Samanfar, B.; Sanders, M.; Burnside, D.; Pitre, S.; Schoenrock, A.; Xu, J.; Babu, M.; et al. Phosphatase complex Pph3/Psy2 is involved in regulation of efficient non-homologous end-joining pathway in the yeast Saccharomyces cerevisiae. PLoS ONE 2014, 9. [Google Scholar] [CrossRef] [Green Version]
- Jessulat, M.; Alamgir, M.; Salsali, H.; Greenblatt, J.; Xu, J.; Golshani, A. Interacting proteins Rtt109 and Vps75 affect the efficiency of non-homologous end-joining in Saccharomyces cerevisiae. Arch. Biochem. Biophys. 2008, 469, 157–164. [Google Scholar] [CrossRef]
- Omidi, K.; Jessulat, M.; Hooshyar, M.; Burnside, D.; Schoenrock, A.; Kazmirchuk, T.; Hajikarimlou, M.; Daniel, M.; Moteshareie, H.; Bhojoo, U.; et al. Uncharacterized ORF HUR1 influences the efficiency of non-homologous end-joining repair in Saccharomyces cerevisiae. Gene 2018, 639, 128–136. [Google Scholar] [CrossRef]
- Yu, L.; Volkert, M.R. Differential Requirement for SUB1 in Chromosomal and Plasmid Double-Strand DNA Break Repair. PLoS ONE 2013, 8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Higgins, N.P.; Vologodskii, A.V. Topological Behavior of Plasmid DNA. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.E.; Moore, J.K.; Holmes, A.; Umezu, K.; Kolodner, R.D.; Haber, J.E. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 1998, 94, 399–409. [Google Scholar] [CrossRef] [Green Version]
- Brown, J.A.; Sherlock, G.; Myers, C.L.; Burrows, N.M.; Deng, C.; Wu, H.I.; McCann, K.E.; Troyanskaya, O.G.; Brown, J.M. Global analysis of gene function in yeast by quantitative phenotypic profiling. Mol. Syst. Biol. 2006, 2, 2006.0001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cagney, G.; Alvaro, D.; Reid, R.J.D.; Thorpe, P.H.; Rothstein, R.; Krogan, N.J. Functional genomics of the yeast DNA-damage response. Genome Biol. 2006, 7, 1–4. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koç, A.; Wheeler, L.J.; Mathews, C.K.; Merrill, G.F. Hydroxyurea Arrests DNA Replication by a Mechanism that Preserves Basal dNTP Pools. J. Biol. Chem. 2004, 279, 223–230. [Google Scholar] [CrossRef] [Green Version]
- Sugiyama, M.; Kumagai, T. Molecular and structural biology of bleomycin and its resistance determinants. J. Biosci. Bioeng. 2002, 93, 105–116. [Google Scholar] [CrossRef]
- Chiruvella, K.K.; Renard, B.M.; Birkeland, S.R.; Sunder, S.; Liang, Z.; Wilson, T.E. Yeast DNA ligase IV mutations reveal a nonhomologous end joining function of BRCT1 distinct from XRCC4/Lif1 binding. DNA Repair 2014, 24, 37–45. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bétermier, M.; Bertrand, P.; Lopez, B.S. Is Non-Homologous End-Joining Really an Inherently Error-Prone Process? PLoS Genet. 2014, 10. [Google Scholar] [CrossRef] [Green Version]
- Iwasaki, D.; Hayashihara, K.; Shima, H.; Higashide, M.; Terasawa, M.; Gasser, S.M.; Shinohara, M. The MRX Complex Ensures NHEJ Fidelity through Multiple Pathways Including Xrs2-FHA–Dependent Tel1 Activation. PLoS Genet. 2016, 12, e1005942. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, M.; Baryshnikova, A.; Myers, C.L.; Andrews, B.; Boone, C. Charting the genetic interaction map of a cell. Curr. Opin. Biotechnol. 2011, 22, 66–74. [Google Scholar] [CrossRef]
- Guénolé, A.; Srivas, R.; Vreeken, K.; Wang, Z.Z.; Wang, S.; Krogan, N.J.; Ideker, T.; van Attikum, H. Dissection of DNA Damage Responses Using Multiconditional Genetic Interaction Maps. Mol. Cell 2013, 49, 346–358. [Google Scholar] [CrossRef] [Green Version]
- Alamgir, M.; Erukova, V.; Jessulat, M.; Azizi, A.; Golshani, A. Chemical-genetic profile analysis of five inhibitory compounds in yeast. BMC Chem. Biol. 2010, 10. [Google Scholar] [CrossRef] [Green Version]
- Kuzmin, E.; Sharifpoor, S.; Baryshnikova, A.; Costanzo, M.; Myers, C.L.; Andrews, B.J.; Boone, C. Synthetic Genetic Array Analysis for Global Mapping of Genetic Networks in Yeast. Yeast Genet. Methods Protoc. 2014, 1205, 303–328. [Google Scholar] [CrossRef]
- Collins, S.R.; Miller, K.M.; Maas, N.L.; Roguev, A.; Fillingham, J.; Chu, C.S.; Schuldiner, M.; Gebbia, M.; Recht, J.; Shales, M.; et al. Functional dissection of protein complexes involved in yeast chromosome biology using a genetic interaction map. Nature 2007, 446, 806–810. [Google Scholar] [CrossRef]
- Buser, R.; Kellner, V.; Melnik, A.; Wilson-Zbinden, C.; Schellhaas, R.; Kastner, L.; Piwko, W.; Dees, M.; Picotti, P.; Maric, M.; et al. The Replisome-Coupled E3 Ubiquitin Ligase Rtt101Mms22 Counteracts Mrc1 Function to Tolerate Genotoxic Stress. PLoS Genet. 2016, 12, e1005843. [Google Scholar] [CrossRef] [Green Version]
- Onge, R.P.S.; Mani, R.; Oh, J.; Proctor, M.; Fung, E.; Davis, R.W.; Nislow, C.; Roth, F.P.; Giaever, G. Systematic pathway analysis using high-resolution fitness profiling of combinatorial gene deletions. Nat. Genet. 2007, 39, 199–206. [Google Scholar] [CrossRef] [Green Version]
- Kawashima, S.; Ogiwara, H.; Tada, S.; Harata, M.; Wintersberger, U.; Enomoto, T.; Seki, M. The INO80 complex is required for damage-induced recombination. Biochem. Biophys. Res. Commun. 2007, 355, 835–841. [Google Scholar] [CrossRef]
- Morrison, A.J.; Shen, X. Chromatin remodelling beyond transcription: The INO80 and SWR1 complexes. Nat. Rev. Mol. Cell Biol. 2009, 10, 373–384. [Google Scholar] [CrossRef]
- Bird, A.W.; Yu, D.Y.; Pray-Grant, M.G.; Qiu, Q.; Harmon, K.E.; Megee, P.C.; Grant, P.A.; Smith, M.M.; Christman, M.F. Acetylation of histone H4 by Esa1 is required for DNA double-strand break repair. Nature 2002, 419, 411–415. [Google Scholar] [CrossRef]
- Tsukuda, T.; Fleming, A.B.; Nickoloff, J.A.; Osley, M.A. Chromatin remodelling at a DNA double-strand break site in Saccharomyces cerevisiae. Nature 2005, 438, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Chambers, A.L.; Downs, J.A. The RSC and INO80 chromatin-remodeling complexes in DNA double-strand break repair. Prog. Mol. Biol. Transl. Sci. 2012, 110, 229–261. [Google Scholar] [CrossRef]
- Li, J.; Summerlin, M.; Nitiss, K.C.; Nitiss, J.L.; Hanakahi, L.A. TDP1 is required for efficient non-homologous end joining in human cells. DNA Repair 2017, 60, 40–49. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hooshyar, M.; Burnside, D.; Hajikarimlou, M.; Omidi, K.; Jesso, A.; Vanstone, M.; Young, A.; Cherubini, P.M.; Jessulat, M.; Potter, T.; et al. Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Appl. Microbiol. 2021, 1, 225-238. https://doi.org/10.3390/applmicrobiol1020017
Hooshyar M, Burnside D, Hajikarimlou M, Omidi K, Jesso A, Vanstone M, Young A, Cherubini PM, Jessulat M, Potter T, et al. Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Applied Microbiology. 2021; 1(2):225-238. https://doi.org/10.3390/applmicrobiol1020017
Chicago/Turabian StyleHooshyar, Mohsen, Daniel Burnside, Maryam Hajikarimlou, Katayoun Omidi, Alexander Jesso, Megan Vanstone, Adamo Young, Pedro Matilha Cherubini, Matthew Jessulat, Taylor Potter, and et al. 2021. "Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast" Applied Microbiology 1, no. 2: 225-238. https://doi.org/10.3390/applmicrobiol1020017
APA StyleHooshyar, M., Burnside, D., Hajikarimlou, M., Omidi, K., Jesso, A., Vanstone, M., Young, A., Cherubini, P. M., Jessulat, M., Potter, T., Schoenrock, A., Bhojoo, U., Silva, E., Moteshareie, H., Babu, M., Diallo, J. -S., Dehne, F., Samanfar, B., & Golshani, A. (2021). Actin-Related Protein 6 (Arp6) Influences Double-Strand Break Repair in Yeast. Applied Microbiology, 1(2), 225-238. https://doi.org/10.3390/applmicrobiol1020017