Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Types of Motion under an Electric Field
3.2. Alignment of Cell Trajectories under an Electric Field
3.3. Speed Variation of Weakly Attached Cells Moving under the Field
3.4. Control Experiment of Polystyrene Beads Transiently Attached to the Same Plastic Surface under an Electric Field
4. Discussion
4.1. Charge Distribution along the Bacterial Cell Is Primarily Responsible for Trajectory Alignment
4.2. Comparison in Forces of Detachment by Several Techniques
4.3. The Relevance of DLVO Theory to Weak and Transient Attachment
4.4. Assessment of Tentative Hypotheses
4.5. The Proposed Mechanism
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Petrova, O.E.; Sauer, K. Sticky Situations: Key Components That Control Bacterial Surface Attachment. J. Bacteriol. 2012, 194, 2413–2425. [Google Scholar] [CrossRef] [Green Version]
- Dang, H.; Lovell, C.R. Microbial Surface Colonization and Biofilm Development in Marine Environments. J. Bacteriol. 2016, 80, 91–138. [Google Scholar] [CrossRef] [Green Version]
- Berne, C.; Ellison, C.K.; Ducret, A.; Brun, Y.V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 2018, 16, 616–627. [Google Scholar] [CrossRef] [PubMed]
- Ottemann, K.; Miller, J.F. Roles for motility in bacterial-host interactions. Mol. Microbiol. 1997, 24, 1109–1117. [Google Scholar] [CrossRef]
- Donlan, R.M. Biofilms: Microbial Life on Surfaces. Emerg. Infect. Dis. 2002, 8, 881–890. [Google Scholar] [CrossRef] [PubMed]
- Dunne, W.M., Jr. Bacterial Adhesion: Seen Any Good Biofilms Lately? Clin. Microbiol. Rev. 2002, 15, 155–166. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, G.; Tam, L.; Tang, J.X. Amplified effect of Brownian motion in bacterial near-surface swimming. Proc. Natl. Acad. Sci. USA 2008, 105, 18355–18359. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Tang, J.X. Accumulation of microswimmers near a surface mediated by collision and rotational Brownian motion. Phys. Rev. Lett. 2009, 103, 078101. [Google Scholar] [CrossRef]
- Li, G.; Bensson, J.; Nisimova, L.; Munger, D.; Mahautmr, P.; Tang, J.X.; Maxey, M.R.; Brun, Y.V. Accumulation of swimming bacteria near a solid surface. Phys. Rev. E 2011, 84, 0419327. [Google Scholar] [CrossRef] [Green Version]
- Berke, A.P.; Turner, L.; Berg, H.C.; Lauga, E. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 2008, 101, 038102. [Google Scholar] [CrossRef] [Green Version]
- Drescher, K.; Dunkel, J.; Cisneros, L.H.; Ganguly, S.; Goldstein, R.E. Fluid dynamics and noise in bacterial cell-cell and cell–surface scattering. Proc. Natl. Acad. Sci. USA 2011, 108, 10940–10945. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodesneya, C.A.; Romana, B.; Dhamania, N.; Cooleya, B.J.; Katirab, P.; Touhamic, A.; Gordon, V.D. Mechanosensing of shear by Pseudomonas Aeruginosa Leads Increased Levels Cycl.-Di Signal Initiat. Biofilm Dev. Proc. Natl. Acad. Sci. USA 2017, 114, 5906–5911. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Skerker, J.M.; Berg, H.C. Direct observation of extension and retraction of type IV pili. Proc. Natl. Acad. Sci. USA 2001, 98, 6901–6904. [Google Scholar] [CrossRef] [Green Version]
- Anderson, B.N.; Ding, A.M.; Nilsson, L.M.; Kusuma, K.; Tchesnokova, V.; Vogel, V.; Sokurenko, E.V.; Thomas, W.E. Weak Rolling Adhesion Enhances Bacterial Surface Colonization. J. Bacteriol. 2007, 189, 1794–1802. [Google Scholar] [CrossRef] [Green Version]
- Sjollema, J.; van der Mei, H.C.; Hall, C.L.; Peterson, B.W.; de Vries, J.; Song, L.; de Jong, E.D.; Busscher, H.J.; Swartjes, J.J. Detachment and successive re-attachment of multiple, reversibly-binding tethers result in irreversible bacterial adhesion to surfaces. Sci. Rep. 2017, 7, 4369. [Google Scholar] [CrossRef] [Green Version]
- Ipiña, E.P.; Otte, S.; Pontier-Bres, R.; Czerucka, D.; Peruani, F. Bacteria display optimal transport near surfaces. Nat. Phys. 2019, 15, 610–615. [Google Scholar] [CrossRef] [Green Version]
- Gristina, A.G. Biomaterial-centered infection: Microbial adhesion versus tissue integration. Science 1987, 25, 1588–1595. [Google Scholar] [CrossRef]
- Blela, W.; Legentilhommea, P.; Bénézechb, T.; Legranda, J.; LeGentil-Lelièvre, C. Application of turbulent pulsating flows to the bacterial removal during a cleaning in place procedure. Part 2: Effects on cleaning efficiency. J. Food Eng. 2009, 90, 433–440. [Google Scholar] [CrossRef] [Green Version]
- Gómes-Suárez, C.; Busscher, H.J.; der Mei, H.C.V. Analysis of Bacterial Detachment from Substratum Surfaces by the Passage of Air-Liquid Interfaces. Appl. Environ. Microbiol. 2001, 67, 2531–2537. [Google Scholar] [CrossRef] [Green Version]
- Hong, S.H.; Jeong, J.; Shim, S.; Kang, H.; Kwon, S.; Ahn, K.H.; Yoon, J. Effect of Electric Currents on Bacterial Detachment and Inactivation. Biotech. Bioeng. 2008, 100, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Gall, I.; Herzberg, M.; Oren, Y. The effect of electric fields on bacterial attachment to conductive surfaces. Soft Matter 2013, 9, 2443–2452. [Google Scholar] [CrossRef]
- Poortinga, A.T.; Smit, J.; van der Mei, H.C.; Busscher, H.J. Electric Field Induced Desorption of Bacteria from a Conditioning Film Covered Substratum. Biotech. Bioeng. 2001, 76, 395–399. [Google Scholar] [CrossRef] [PubMed]
- Shim, S.; Hong, S.H.; Tak, Y.; Yoon, J. Prevention of Pseudomonas aeruginosa adhesion by electric currents. Biofouling 2011, 27, 217–224. [Google Scholar] [CrossRef]
- Poindexter, J.S. The caulobacters: Ubiquitous unusual bacteria. MicroBiol. Rev. 1981, 45, 123–179. [Google Scholar] [CrossRef]
- Skerker, J.M.; Laub, M.T. Cell-cycle progression and the generation of asymmetry in Caulobacter crescentus. Nat. Rev. Microbiol. 2004, 2, 325–337. [Google Scholar] [CrossRef]
- Tsang, P.H.; Li, G.; Brun, Y.V.; Freund, L.B.; Tang, J.X. Adhesion of single bacterial cells in the micronewton range. Proc. Natl. Acad. Sci. USA 2006, 103, 5764–5768. [Google Scholar] [CrossRef] [Green Version]
- Bodenmiller, D.; Toh, E.; Brun, Y.V. Development of Surface Adhesion in Caulobacter crescentus. J. Bacteriol. 2004, 186, 1438–1447. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Brown, P.J.; Tang, J.X.; Xu, J.; Quardokus, E.M.; Fuqua, C.; Brun, Y.V. Surface contact stimulates the just-in-time deployment of bacterial adhesins. Mol. Microbiol. 2012, 83, 41–51. [Google Scholar] [CrossRef] [Green Version]
- Lele, P.P.; Roland, T.; Shrivastava, A.; Chen, Y.; Berg, H.C. The flagellar motor of Caulobacter crescentus generates more torque when a cell swims backwards. Nat. Phys. 2015, 12, 175–178. [Google Scholar] [CrossRef] [Green Version]
- Persat, A.; Stone, H.A.; Gitai, Z. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Comm. 2014, 5, 3824. [Google Scholar] [CrossRef] [Green Version]
- Li, G.; Wen, Q.; Tang, J.X. Single filament electrophoresis of F-actin and filamentous virus fd. J. Chem. Phys. 2005, 122, 104708. [Google Scholar] [CrossRef]
- Newby, J.M.; Schaefer, A.M.; Lee, P.T.; Forest, M.G.; Lai, S.K. Deep neural networks automate detection for tracking of submicron scale particles in 2D and 3D. Proc. Natl. Acad. Sci. USA 2018, 115, 9026–9031. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shi, W.; Stocker, B.; Adler, J. Effect of the surface composition of motile Escherichia coli and motile Salmonella species on the direction of galvanotaxis. J. Bacteriol. 1996, 178, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, B.; Gulino, M.; Morse, M.; Tang, J.X.; Powers, T.R.; Breuer, K.S. Helical motion of the cell body enhances Caulobacter crescentus Motility. Proc. Natl. Acad. Sci. USA 2014, 111, 11252–11256. [Google Scholar] [CrossRef] [Green Version]
- Morse, M.; Bell, J.; Li, G.; Tang, J.X. Flagellar Motor Switching in Caulobacter crescentus Obeys First Passage Time Stat. Phys. Rev. Lett. 2015, 115, 198103. [Google Scholar] [CrossRef]
- Son, K.; Guasto, J.S.; Stocker, R. Bacteria can exploit a flagellar buckling instability to change direction. Nat. Phys. 2013, 9, 494–498. [Google Scholar] [CrossRef]
- McClaine, J.W.; Ford, R.M. Reversal of flagellar rotation is important in initial attachment of Escherichia coli to glass in a dynamic system with high-and low-ionic-strength buffers. Appl. Environ. Microbiol. 2002, 68, 1280–1289. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonin, M.; Quardokus, E.M.; O’Donnol, D.; Maddock, J.; Brun, Y.V. Regulation of Stalk Elongation by Phosphate in Caulobacter crescentus. J. Bacteriol. 2000, 182, 337–347. [Google Scholar] [CrossRef] [Green Version]
- Koyasu, S.; Shirakihara, Y. Caulobacter crescentus Flagellar Filament Has A Right-Handed Helical Form. J. Mol. Biol. 1984, 173, 125–130. [Google Scholar] [CrossRef]
- Sharma, S.; Conrad, J.C. Attachment from Flow of Escherichia Coli Bacteria Silanized Glass Substrates. Langmuir 2014, 30, 11147–11155. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Moldovan, R.; Yeung, C.; Wu, X.L. Swimming efficiency of bacterium Escherichia coli. Proc. Natl. Acad. Sci. USA 2006, 103, 13712–13717. [Google Scholar] [CrossRef] [Green Version]
- Hormeño, S.; Arias-Gonzalez, J.R. Exploring mechanochemical processes in the cell with optical tweezers. Biol. Cell 2006, 98, 679–695. [Google Scholar] [CrossRef]
- Li, G.; Smith, C.; Brun, Y.; Tang, J.X. The elastic properties of the Caulobacter crescentus adhesive holdfast are dependent on oligomers of N-acetylglucosamine. J. Bacteriol. 2005, 187, 257–265. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bell, J.; Araujo, G.; Tang, J.X. Discovery of oscillations in rotational speed of body-tethered Caulobacter crescentus. Phys. Rev. E 2020, 102, 062416. [Google Scholar] [CrossRef] [PubMed]
- Poortinga, A.T.; Bos, R.; Norde, W.; Busscher, H.J. Electric double layer interactions in bacterial adhesion to surfaces. Surf. Sci. Rep. 2002, 47, 1–32. [Google Scholar] [CrossRef]
- Walker, S.L.; Redman, J.A.; Elimelech, M. Role of Cell Surface Lipopolysaccharides in Escherichia Coli K12 Adhesion and Transport. Langmuir 2004, 20, 7736–7746. [Google Scholar] [CrossRef] [PubMed]
- Shan, Y.; Harms, H.; Wick, L.Y. Electric field effects on bacterial deposition and transport in porous media. Environ. Sci. Technol. 2018, 52, 14294–14301. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Tang, J.X. Low Flagellar Motor Torque and High Swimming Efficiency of Caulobacter crescentus Swarmer Cells. Biophys. J. 2006, 91, 2726–2734. [Google Scholar] [CrossRef] [Green Version]
- Tsuneda, S.; Aikawa, H.; Hayashi, H.; Yuasa, A.; Hirata, A. Extracellular polymeric substances responsible for bacterial adhesion onto solid surface. FEMS Microbiol. Lett. 2003, 223, 287–292. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Araujo, G.; Zheng, Z.; Oh, J.J.; Tang, J.X. Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Appl. Microbiol. 2021, 1, 255-269. https://doi.org/10.3390/applmicrobiol1020019
Araujo G, Zheng Z, Oh JJ, Tang JX. Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Applied Microbiology. 2021; 1(2):255-269. https://doi.org/10.3390/applmicrobiol1020019
Chicago/Turabian StyleAraujo, George, Zhaoyi Zheng, Jae Jong Oh, and Jay X. Tang. 2021. "Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field" Applied Microbiology 1, no. 2: 255-269. https://doi.org/10.3390/applmicrobiol1020019
APA StyleAraujo, G., Zheng, Z., Oh, J. J., & Tang, J. X. (2021). Assessment of a Weak Mode of Bacterial Adhesion by Applying an Electric Field. Applied Microbiology, 1(2), 255-269. https://doi.org/10.3390/applmicrobiol1020019