Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sample Collection and Soil Amendments
2.2. Prescreening and Isolation of PSMs and ZnSMs
2.3. Taxonomic Characterization of Isolated Strains
2.4. Final Screen of PSMs and ZnSMs
2.5. Statistical Analysis
3. Results
3.1. Initial Screening of PSMs and ZnSMs from Different Environments
3.2. Screening of PSMs and ZnSMs with Multiple Unavailable P and Zn Sources
3.3. Screening of PSMs and ZnSMs in Liquid Broth and pH Changes
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hawkesford, M.; Horst, W.; Kichey, T.; Lambers, H.; Schjoerring, J.; Møller, I.S.; White, P. Chapter 6—Functions of macronutrients. In Marschner’s Mineral Nutrition of Higher Plants, 3rd ed.; Marschner, P., Ed.; Academic Press: San Diego, CA, USA, 2012; pp. 135–189. ISBN 978-0-12-384905-2. [Google Scholar]
- Cakmak, I.; Kutman, U.B. Agronomic biofortification of cereals with zinc: A review. Eur. J. Soil Sci. 2018, 69, 172–180. [Google Scholar] [CrossRef]
- Haroon, M.; Khan, S.; Malik, A. Zinc-solubilizing bacteria: An option to increase zinc uptake by plants. In Microbial Biofertilizers and Micronutrient Availability; Springer: Cham, Switzerland, 2022; pp. 207–238. ISBN 978-3-030-76608-5. [Google Scholar]
- Prasad, R.; Shivay, Y.; Kumar, D. Chapter Two. Agronomic biofortification of cereal grains with iron and zinc. In Advances in Agronomy; Elsevier: Amsterdam, The Netherlands, 2014; Volume 125, pp. 55–91. ISBN 978-0-12-800137-0. [Google Scholar]
- Zhu, J.; Li, M.; Whelan, M. Phosphorus activators contribute to legacy phosphorus availability in agricultural soils: A review. Sci. Total Environ. 2018, 612, 522–537. [Google Scholar] [CrossRef]
- Dinesh, R.; Srinivasan, V.; Hamza, S.; Sarathambal, C.; Anke Gowda, S.J.; Ganeshamurthy, A.N.; Gupta, S.B.; Aparna Nair, V.; Subila, K.P.; Lijina, A.; et al. Isolation and characterization of potential Zn solubilizing bacteria from soil and its effects on soil Zn release rates, Soil Available Zn and Plant Zn Content. Geoderma 2018, 321, 173–186. [Google Scholar] [CrossRef]
- Li, H.-P.; Han, Q.-Q.; Liu, Q.-M.; Gan, Y.-N.; Rensing, C.; Rivera, W.L.; Zhao, Q.; Zhang, J.-L. Roles of phosphate-solubilizing bacteria in mediating soil legacy phosphorus availability. Microbiol. Res. 2023, 272, 127375. [Google Scholar] [CrossRef] [PubMed]
- Gupta, D.K.; Chatterjee, S.; Datta, S.; Veer, V.; Walther, C. Role of phosphate fertilizers in heavy metal uptake and detoxification of toxic metals. Chemosphere 2014, 108, 134–144. [Google Scholar] [CrossRef] [PubMed]
- Mahanty, T.; Bhattacharjee, S.; Goswami, M.; Bhattacharyya, P.; Das, B.; Ghosh, A.; Tribedi, P. Biofertilizers: A potential approach for sustainable agriculture development. Environ. Sci. Pollut. Res. 2017, 24, 3315–3335. [Google Scholar] [CrossRef]
- Xu, J.; Fan, L.; Xie, Y.; Wu, G. Recycling-equilibrium strategy for phosphogypsum pollution control in phosphate fertilizer plants. J. Clean. Prod. 2019, 215, 175–197. [Google Scholar] [CrossRef]
- Indraratne, S.P.; Spengler, M.; Hao, X. Cattle manure loadings and legacy effects on copper and zinc availability under rainfed and irrigated conditions. Can. J. Soil. Sci. 2021, 101, 305–316. [Google Scholar] [CrossRef]
- Aboyeji, C.; Dunsin, O.; Aruna Olasekan, A.; Suleiman, K.; Chinedum, C.; Faith, O.; Joseph, A.; Ejue, W.; Adesola, O.; Olofintoye, J.; et al. Synergistic and antagonistic effects of soil applied P and Zn fertilizers on the performance, minerals and heavy metal composition of groundnut. Open Agric. 2020, 5, 1–9. [Google Scholar] [CrossRef]
- Pavinato, P.S.; Cherubin, M.R.; Soltangheisi, A.; Rocha, G.C.; Chadwick, D.R.; Jones, D.L. Revealing soil legacy phosphorus to promote sustainable agriculture in brazil. Sci. Rep. 2020, 10, 15615. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, A.R.; Rey, M.-D.; Nechate-Drif, H.; Castillejo, M.Á.; Jorrín-Novo, J.V.; Torrent, J.; del Campillo, M.C.; Sacristán, D. Combining P and Zn fertilization to enhance yield and grain quality in maize grown on mediterranean soils. Sci. Rep. 2021, 11, 7427. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Zhang, X.; Davidson, E.A. Global trends of cropland phosphorus use and sustainability challenges. Nature 2022, 611, 81–87. [Google Scholar] [CrossRef]
- Afkairin, A.; Dixon, M.M.; Buchanan, C.; Ippolito, J.A.; Manter, D.K.; Davis, J.G.; Vivanco, J.M. Harnessing phosphorous (P) fertilizer-insensitive bacteria to enhance rhizosphere P bioavailability in legumes. Microorganisms 2024, 12, 353. [Google Scholar] [CrossRef] [PubMed]
- FAO. The Future of Food and Agriculture: Trends and Challenges; Food and Agriculture Organization of the United Nations: Rome, Italy, 2017; ISBN 978-92-5-109551-5. [Google Scholar]
- Natasha, N.; Shahid, M.; Bibi, I.; Iqbal, J.; Khalid, S.; Murtaza, B.; Bakhat, H.F.; Farooq, A.B.U.; Amjad, M.; Hammad, H.M.; et al. Zinc in soil-plant-human system: A data-analysis review. Sci. Total Environ. 2022, 808, 152024. [Google Scholar] [CrossRef] [PubMed]
- Dixon, M.M.; Afkairin, A.; Davis, J.G.; Chitwood-Brown, J.; Buchanan, C.M.; Ippolito, J.A.; Manter, D.K.; Vivanco, J.M. Tomato domestication rather than subsequent breeding events reduces microbial associations related to phosphorus recovery. Sci. Rep. 2024, 14, 9934. [Google Scholar] [CrossRef] [PubMed]
- Kaur, R.; Kaur, S. Variation in the phosphate solubilizing bacteria from virgin and the agricultural soils of punjab. Curr. Microbiol. 2020, 77, 2118–2127. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Pantigoso, H.A.; Wu, Z.; Vivanco, J.M. Co-inoculation of bacillus sp. and pseudomonas putida at different development stages acts as a biostimulant to promote growth, yield and nutrient uptake of tomato. J. Appl. Microbiol. 2019, 127, 196–207. [Google Scholar] [CrossRef] [PubMed]
- Tariq, M.R.; Shaheen, F.; Mustafa, S.; ALI, S.; Fatima, A.; Shafiq, M.; Safdar, W.; Sheas, M.N.; Hameed, A.; Nasir, M.A. Phosphate solubilizing microorganisms isolated from medicinal plants improve growth of mint. PeerJ 2022, 10, e13782. [Google Scholar] [CrossRef]
- Wang, C.; Pan, G.; Lu, X.; Qi, W. Phosphorus solubilizing microorganisms: Potential promoters of agricultural and environmental engineering. Front. Bioeng. Biotechnol. 2023, 11, 1181078. [Google Scholar] [CrossRef]
- Armandeh, M.; Mahmoudi, N.; Nosratabad, A. Screening and evaluation of phosphate solubilizing bacteria isolated from aquaculture ponds in a step-by-step strategy as potential biofertilizer. J. Appl. Microbiol. 2022, 133, 15660. [Google Scholar] [CrossRef]
- Pantigoso, H.A.; He, Y.; Manter, D.K.; Fonte, S.J.; Vivanco, J.M. phosphorus-solubilizing bacteria isolated from the rhizosphere of wild potato solanum bulbocastanum enhance Ggowth of modern potato varieties. Bull. Natl. Res. Cent. 2022, 46, 224. [Google Scholar] [CrossRef]
- Tallapragada, P. Solubilization of different inorganic phosphates by aspergillus niger and penicilium oxalicum. Adv. Bioresearch 2015, 6, 113–119. [Google Scholar]
- Iqbal, U.; Jamil, N.; Ali, I.; Hasnain, S. Effect of zinc-phosphate-solubilizing bacterial isolates on growth of vigna radiata. Ann. Microbiol. 2010, 60, 243–248. [Google Scholar] [CrossRef]
- Zaheer, A.; Malik, A.; Sher, A.; Mansoor Qaisrani, M.; Mehmood, A.; Ullah Khan, S.; Ashraf, M.; Mirza, Z.; Karim, S.; Rasool, M. Isolation, characterization, and effect of phosphate-zinc-solubilizing bacterial strains on chickpea (Cicer arietinum L.) growth. Saudi J. Biol. Sci. 2019, 26, 1061–1067. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, S.; Saraf, M. Optimization of growth conditions for zinc solubilizing plant growth associated bacteria and fungi. J. Adv. Res. Biotechnol. 2017, 2, 1–9. [Google Scholar] [CrossRef]
- Eshaghi, E.; Nosrati, R.; Owlia, P.; Malboobi, M.A.; Ghaseminejad, P.; Ganjali, M.R. Zinc solubilization characteristics of efficient siderophore-producing soil bacteria. Iran. J. Microbiol. 2019, 11, 419–430. [Google Scholar] [CrossRef]
- Ahmad, I.; Ahmad, M.; Hussain, A.; Jamil, M. Integrated use of phosphate-solubilizing bacillus subtilis strain IA6 and zinc-solubilizing Bacillus sp. strain IA16: A promising approach for improving cotton growth. Folia Microbiol. 2021, 66, 115–125. [Google Scholar] [CrossRef] [PubMed]
- Bolo, P.; Mucheru-Muna, M.W.; Mwirichia, R.K.; Kinyua, M.; Ayaga, G.; Kihara, J. Influence of farmyard manure application on potential zinc solubilizing microbial species abundance in a ferralsol of western kenya. Agriculture 2023, 13, 2217. [Google Scholar] [CrossRef]
- Bolo, P.; Kihara, J.; Mucheru-Muna, M.; Njeru, E.M.; Kinyua, M.; Sommer, R. Application of residue, inorganic fertilizer and lime affect phosphorus solubilizing microorganisms and microbial biomass under different tillage and cropping systems in a ferralsol. Geoderma 2021, 390, 114962. [Google Scholar] [CrossRef]
- Li, J.; Lu, J.; Wang, H.; Fang, Z.; Wang, X.; Feng, S.; Wang, Z.; Yuan, T.; Zhang, S.; Ou, S.; et al. A comprehensive synthesis unveils the mysteries of phosphate-solubilizing microbes. Biol. Rev. Camb. Philos. Soc. 2021, 96, 2771–2793. [Google Scholar] [CrossRef]
- Fernández, L.A.; Agaras, B.; Wall, L.G.; Valverde, C. Abundance and ribotypes of phosphate-solubilizing bacteria in argentinean agricultural soils under no-till management. Ann. Microbiol. 2015, 65, 1667–1678. [Google Scholar] [CrossRef]
- Jayakumar, P.; Gurusamy, R.; Sakthivel, N. Microbiome of rhizospheric soil and vermicompost and their applications in soil fertility, pest and pathogen management for sustainable agriculture. In Soil Fertility Management for Sustainable Development; Springer: Singapore, 2019; pp. 189–210. ISBN 9789811359033. [Google Scholar]
- Matteoli, F.P.; Passarelli-Araujo, H.; Reis, R.J.A.; da Rocha, L.O.; de Souza, E.M.; Aravind, L.; Olivares, F.L.; Venancio, T.M. Genome sequencing and assessment of plant growth-promoting properties of a serratia marcescens strain isolated from vermicompost. BMC Genom. 2018, 19, 750. [Google Scholar] [CrossRef] [PubMed]
- Hameeda, B.; Harini, G.; Rupela, O.P.; Wani, S.P.; Reddy, G. Growth promotion of maize by phosphate-solubilizing bacteria isolated from composts and macrofauna. Microbiol. Res. 2008, 163, 234–242. [Google Scholar] [CrossRef] [PubMed]
- Karnwal, A. Pseudomonas spp., a zinc-zolubilizing vermicompost bacteria with plant growth-promoting activity moderates zinc biofortification in tomato. Int. J. Veg. Sci. 2021, 27, 398–412. [Google Scholar] [CrossRef]
- Rodriguez, J.B.; Self, J.R.; Soltanpour, P.N. Optimal conditions for phosphorus analysis by the ascorbic acid-molybdenum blue method. Soil Sci. Soc. Am. J. 1994, 58, 866–870. [Google Scholar] [CrossRef]
- Nautiyal, C.S. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol. Lett. 1999, 170, 265–270. [Google Scholar] [CrossRef] [PubMed]
- Li, K.S.; Zeghbroeck, J.V.; Liu, Q.; Zhang, S. Isolating and characterizing phosphorus solubilizing bacteria from rhizospheres of native plants grown in calcareous soils. Front. Environ. Sci. 2021, 9, 802563. [Google Scholar] [CrossRef]
- Nguyen, C.; Yan, W.; Le Tacon, F.; Lapeyrie, F. Genetic variability of phosphate solubilizing activity by monocaryotic and dicaryotic mycelia of the ectomycorrhizal fungus laccaria bicolor (maire) p.d. orton. Plant Soil 1992, 143, 193–199. [Google Scholar] [CrossRef]
- Mittal, V.; Singh, O.; Nayyar, H.; Kaur, J.; Tewari, R. Stimulatory effect of phosphate-solubilizing fungal strains (aspergillus awamori and aenicillium citrinum) on the yield of chickpea (cicer arietinum l. cv. gpf2). Soil Biol. Biochem. 2008, 40, 718–727. [Google Scholar] [CrossRef]
- Afkairin, A.; Ippolito, J.A.; Stromberger, M.; Davis, J.G. Solubilization of organic phosphorus sources by cyanobacteria and a commercially zvailable bacterial consortium. Appl. Soil Ecol. 2021, 162, 103900. [Google Scholar] [CrossRef]
- Yu, G.; Smith, D.K.; Zhu, H.; Guan, Y.; Lam, T.T.-Y. Ggtree: An r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017, 8, 28–36. [Google Scholar] [CrossRef]
- Brazhnikova, Y.V.; Shaposhnikov, A.I.; Sazanova, A.L.; Belimov, A.A.; Mukasheva, T.D.; Ignatova, L.V. Phosphate mobilization by culturable fungi and their capacity to increase soil P availability and promote barley growth. Curr. Microbiol. 2022, 79, 240. [Google Scholar] [CrossRef] [PubMed]
- Kkan, A.; Jilani, G.; Akhtar, M.; Naqvi, S.M.S.; Rasheed, M.; Khan, A.; Akhtar, M.; Muhammad, S.; Naqvi, S.; Rasheed, M. Phosphorus solubilizing bacteria: Occurrence, mechanisms and their role in crop production. J. Agric. Biol. Sci. 2009, 1, 48–58. [Google Scholar]
- Sharma, S.B.; Sayyed, R.Z.; Trivedi, M.H.; Gobi, T.A. Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. SpringerPlus 2013, 2, 587. [Google Scholar] [CrossRef] [PubMed]
- Hassan, M.; Awad, M. Molecular characterization of phosphate solubilizing fungi aspergillus niger and its correlation to sustainable agriculture. J. Environ. Biol. 2020, 41, 592–599. [Google Scholar] [CrossRef]
- Yadav, L.S.; Kushwaha, V.; Jain, A. Isolation and screening of phosphate solubilising fungi from okra rhizosphere soil and their effect on the growth of okra plant (Abelmoschous esculentus L.). Trop. Plant Res. 2020, 7, 277–284. [Google Scholar] [CrossRef]
- Tian, J.; Ge, F.; Zhang, D.; Deng, S.; Liu, X. Roles of phosphate solubilizing microorganisms from managing soil phosphorus deficiency to mediating biogeochemical p cycle. Biology 2021, 10, 158. [Google Scholar] [CrossRef]
- Alori, E.T.; Glick, B.R.; Babalola, O.O. Microbial phosphorus solubilization and its potential for use in sustainable agriculture. Front. Microbiol. 2017, 8, 971. [Google Scholar] [CrossRef]
- Rawat, P.; Das, S.; Shankhdhar, D.; Shankhdhar, S. Phosphate-solubilizing microorganisms: Mechanism and their role in phosphate solubilization and uptake. J. Soil Sci. Plant Nutr. 2020, 21, 49–68. [Google Scholar] [CrossRef]
- Selvi, K.; JJA, P.; Velu, V.; K, S. Analyzing the efficacy of phosphate solubilizing microorganisms by enrichment culture techniques. Biochem. Mol. Biol. J. 2017, 3, 1–7. [Google Scholar] [CrossRef]
- Turan, M.; Ataoğlu, N.; Sahin, F. Evaluation of the capacity of phosphate solubilizing bacteria and fungi on different forms of phosphorus in liquid culture. J. Sustain. Agric. 2006, 28, 99–108. [Google Scholar] [CrossRef]
- Suleman, D.; Sani, A.; Suaib, S.; Ambardini, S.; Yanti, N.A.; Boer, D.; Yusuf, D.N.; Faad, H. Isolation and identification of potential bio-inoculants based on phosphate solubilizing molds from different plant rhizospheres. KnE Life Sci. 2022, 7, 99–109. [Google Scholar] [CrossRef]
- Xiao, C.-Q.; Chi, R.-A.; Huang, X.-H.; Zhang, W.-X.; Qiu, G.-Z.; Wang, D.-Z. Optimization for rock phosphate solubilization by phosphate-solubilizing fungi isolated from phosphate mines. Ecol. Eng. 2008, 2, 187–193. [Google Scholar] [CrossRef]
- Zhang, X.; Rajendran, A.; Grimm, S.; Sun, X.; Lin, H.; He, R.; Hu, B. Screening of calcium- and iron-targeted phosphorus solubilizing fungi for agriculture production. Rhizosphere 2023, 26, 100689. [Google Scholar] [CrossRef]
- Weyers, E.; Strawn, D.G.; Peak, D.; Moore, A.D.; Baker, L.L.; Cade-Menun, B. Phosphorus speciation in calcareous soils following annual dairy manure amendments. Soil Sci. Soc. Am. J. 2016, 80, 1531–1542. [Google Scholar] [CrossRef]
- Afkairin, A.; Stromberger, M.; Storteboom, H.; Wickham, A.; Sterle, D.G.; Davis, J.G. Soil microbial community responses to cyanobacteria versus traditional organic fertilizers. Agriculture 2023, 13, 1902. [Google Scholar] [CrossRef]
- Dixon, M.; Simonne, E.; Obreza, T.; Liu, G. Crop response to low phosphorus bioavailability with a focus on tomato. Agronomy 2020, 10, 617. [Google Scholar] [CrossRef]
Parameters | FS | CSS | PCS | WBS | CSA | WSA |
---|---|---|---|---|---|---|
Soil pH | 7.1 | 8.3 | 8.6 | 8.4 | 8.9 | 7.2 |
Available P (mg kg−1) | 15 | 91 | 73 | 65 | 1746 | 786 |
Available Zn (mg kg−1) | 1.62 | 1.46 | 1.83 | 1.36 | 133.5 | 119.9 |
Organic matter (%) | 4.3 | 2.7 | 2.6 | 3.0 | 19.2 | 43.5 |
Strains | β-TCP | CaP | RP |
---|---|---|---|
pH | pH | pH | |
Aspergillus awamori | 5.30 ± 0.07 d | 6.01 ± 0.03 c | 5.11 ± 0.05 c |
Fusarium circinatum | 5.50 ± 0.02 c | 5.84 ± 0.03 d | 4.65 ± 0.12 d |
Fusarium longifundum | 5.25 ± 0.02 d | 5.78 ± 0.04 d | 4.52 ± 0.16 d |
Mucor circinelloides | 4.87 ± 0.03 e | 5.51 ± 0.08 e | 3.69 ± 0.13 e |
Penicillum hordei | 5.88 ± 0.08 b | 6.37 ± 0.01 b | 6.27 ± 0.09 b |
Pseudomonas plecoglossicida NBRC 103162 | 5.14 ± 0.02 d | 5.83 ± 0.02 d | 5.09 ± 0.01 c |
Control | 6.77 ± 0.14 a | 6.75 ± 0.07 a | 7.53 ± 0.16 a |
Strains | ZnC | ZnO | ZnP |
---|---|---|---|
pH | pH | pH | |
Aspergillus awamori | 6.77 ± 0.02 b | 6.73 ± 0.07 cd | 5.11 ± 0.06 c |
Fusarium circinatum | 7.16 ± 0.14 a | 7.06 ± 0.03 b | 4.71 ± 0.11 d |
Fusarium longifundum | 7.18 ± 0.04 a | 7.01 ± 0.09 b | 5.00 ± 0.06 c |
Mucor circinelloides | 7.18 ± 0.05 a | 6.68 ± 0.06 d | 4.40 ± 0.01 e |
Penicillum hordei | 7.26 ± 0.04 a | 6.89 ± 0.09 bc | 5.96 ± 0.09 b |
Pseudomonas plecoglossicida NBRC 103162 | 7.22 ± 0.06 a | 6.99 ± 0.08 b | 6.74 ± 0.06 a |
Control | 7.29 ± 0.05 a | 7.26 ± 0.05 a | 6.94 ± 0.09 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Islas-Valdez, S.; Afkairin, A.; Rovner, B.; Vivanco, J.M. Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments. Appl. Microbiol. 2024, 4, 1042-1056. https://doi.org/10.3390/applmicrobiol4030071
Islas-Valdez S, Afkairin A, Rovner B, Vivanco JM. Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments. Applied Microbiology. 2024; 4(3):1042-1056. https://doi.org/10.3390/applmicrobiol4030071
Chicago/Turabian StyleIslas-Valdez, Samira, Antisar Afkairin, Benjamin Rovner, and Jorge M. Vivanco. 2024. "Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments" Applied Microbiology 4, no. 3: 1042-1056. https://doi.org/10.3390/applmicrobiol4030071
APA StyleIslas-Valdez, S., Afkairin, A., Rovner, B., & Vivanco, J. M. (2024). Isolation of Diverse Phosphate- and Zinc-Solubilizing Microorganisms from Different Environments. Applied Microbiology, 4(3), 1042-1056. https://doi.org/10.3390/applmicrobiol4030071