Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review
Abstract
:1. Introduction
2. Screening of Microorganisms for Pectinase, Cellulase, and Amylase (PCA) Production
3. Multienzyme Production
4. Thermostability of Pectinase, Cellulase, and Amylase (PCA)
5. Process Improvements for PCA Production
6. Strategies for Improvement of Efficiency, Shelf-Life, and Reusability of PCA
7. Pectinase
7.1. Production of Pectinases from Microbial Sources Using FVW as the Substrate
7.2. Application of Pectinase
8. Cellulase
Residue | Cellulose (%) | Hemicellulose (%) | Lignin (%) |
---|---|---|---|
Sugarcane bagasse | 38.1 | 26.9 | 18.4 |
Corn cob | 45.0 | 35.0 | 15.0 |
Sorghum stover | 29.7 | 15.4 | 25.9 |
Wheat straw | 30.0 | 50.0 | 15.0 |
Rice straw | 34.2 | 24.5 | 23.4 |
Cotton | 80–95 | 5–20 | 0 |
Wood hard stalks | 40–55 | 24–40 | 18–25 |
Paper | 85–99 | 0 | 0–15 |
8.1. Production of Cellulases from Microbial Sources Using Fruit and Vegetable Waste as the Substrate
8.2. Application of Cellulase
9. Amylase
9.1. Production of Amylases from Microbial Sources Using Fruit and Vegetable Waste as the Substrate
9.2. Application of Amylase
10. Future Prospects of Pectinase, Cellulase, and Amylase
11. Challenges for the Production of Multienzyme
12. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nigam, P.S. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 2013, 3, 597–611. [Google Scholar] [CrossRef]
- BCC, Publishing, (Aug 2021) BIO030L. Available online: https://www.bccresearch.com/market-research/biotechnology/global-markets-for-enzymes-in-industrial-applications.html (accessed on 16 June 2024).
- Sharma, R.; Oberoi, H.S.; Dhillon, G.S. Fruit and vegetable processing waste: Renewable feed stocks for enzyme production. In Agro-Industrial Wastes as Feedstock for Enzyme Production; Dhillon, G.S., Kaur, S., Eds.; Academic Press: Cambridge, MA, USA, 2016; pp. 23–59. [Google Scholar] [CrossRef]
- Ranjith, S.; Kanchana, D.; Pratheep, S. Cellulase production from Aspergillus niger using paddy straw as a Substrate and Immobilization. Int. J. Pure App. Biosci. 2018, 6, 1081–1084. [Google Scholar] [CrossRef]
- Tufvesson, P.; Fu, W.; Jacob, J.; John, W. Process considerations for the scale-up and implementation of biocatalysis. Food Bioprod. Process. 2010, 88, 3–11. [Google Scholar] [CrossRef]
- Naganthran, A.; Masomian, M.; Rahman, R.N.Z.R.A.; Ali, M.S.M.; Nooh, H.M. Improving the efficiency of new automatic dishwashing detergent formulation by addition of thermostable lipase, protease and amylase. Molecules 2017, 22, 1577. [Google Scholar] [CrossRef] [PubMed]
- Binod, P.; Gnansounou, E.; Sindhu, R.; Pandey, A. Enzymes for second generation biofuels: Recent developments and future perspectives. Bioresour. Technol. Rep. 2019, 5, 317–325. [Google Scholar] [CrossRef]
- Singh, A.; Kaur, A.; Yadav, R.D.; Mahajan, R. An efficient eco-friendly approach for recycling of newspaper waste. 3 Biotech 2019, 9, 51. [Google Scholar] [CrossRef]
- Ye, X.; Wang, Y.; Hopkins, R.C.; Adams, M.W.; Evans, B.R.; Mielenz, J.R.; Zhang, Y.H. Spontaneous high-yield production of hydrogen from cellulosic materials and water catalyzed by enzyme cocktails. Chem. Sus. Chem. 2009, 2, 149–152. [Google Scholar] [CrossRef]
- Alsersy, H.; Salem, A.Z.M.; Borhami, B.E.; Olivares, J.; Gado, H.M.; Mariezcurrena, M.D.; Yacuot, M.H.; Kholif, A.E.; El-Adawy, M.; Hernandez, S.R. Effect of mediterranean saltbush (Atriplex halimus) ensilaging with two developed enzyme cocktails on feed intake, nutrient digestibility and ruminal fermentation in sheep. Anim. Sci. J. 2015, 86, 51–58. [Google Scholar] [CrossRef]
- Das, A.K.; Islam, M.N.; Billah, M.M.; Sarker, A. COVID-19 pandemic and healthcare solid waste management strategy—A mini-review. Sci. Total Environ. 2021, 778, 146220. [Google Scholar] [CrossRef] [PubMed]
- Lucarini, M.; Durazzo, A.; Bernini, R.; Campo, M.; Vita, C.; Souto, E.B.; Lombardi-Boccia, G.; Ramadan, M.F.; Santini, A.; Romani, A. Fruit wastes as a valuable source of value-added compounds: A collaborative perspective. Molecules 2021, 26, 6338. [Google Scholar] [CrossRef]
- Sanchez, S.; Demain, A.L. Metabolic regulation and overproduction of primary metabolites. Microb. Biotechnol. 2008, 1, 283–319. [Google Scholar] [CrossRef]
- Arekemase, M.O.; Omotosho, I.O.; Agbabiaka, T.O.; Ajide-Bamigboye, N.T.; Lawal, A.K.; Ahmed, T.; Orogu, J.O. Optimization of bacteria pectinolytic enzyme production using banana peel as substrate under submerged fermentation. Sci. World J. 2020, 15, 56–63. [Google Scholar]
- Crognale, S.; Liuzzi, F.; D’Annibale, A.; de Bari, I.; Petruccioli, M. Cynaracardunculus a novel substrate for solid-state production of Aspergillus tubingensis cellulases and sugar hydrolysates. Biomass Bioenergy 2019, 127, 105276. [Google Scholar] [CrossRef]
- Premalatha, N.; Gopal, N.O.; Jose, P.A.; Anandham, R.; Kwon, S.W. Optimization of cellulase production by Enhydrobacter sp. ACCA2 and its application in biomass saccharification. Front. Microbiol. 2015, 6, 1046. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Garg, N.; Mathur, P.; Soni, S.K.; Vaish, S.; Kumar, S. Microbial production of multienzyme preparation from mosambi peel using Trichoderma asperellum. Arch. Microbiol. 2022, 204, 313. [Google Scholar] [CrossRef]
- Singh, B.; Garg, N.; Mathur, P.; Vaish, S.; Kumar, S. Production of multi enzyme preparation by Bacillus subtilis using mosambi peel as substrate. J. Environ. Biol. 2022, 43, 612–621. [Google Scholar] [CrossRef]
- Islam, F.; Roy, N. Screening, purification and characterization of cellulase from cellulase-producing bacteria in molasses. BMC Res. Notes 2018, 11, 445. [Google Scholar] [CrossRef]
- Mengistu, F.; Pagadala, V.K. Isolation and screening of amylase producing thermophilic spore-forming Bacilli from starch-rich soil and characterization of their amylase activity. Afr. J. Microbiol. Res. 2017, 11, 851–859. [Google Scholar]
- Chugh, P.; Soni, R.; Soni, S.K. Deoiled rice bran: A substrate for co-production of a consortium of hydrolytic enzymes by Aspergillus niger P-19. Waste Biomass Valorization 2016, 7, 513–525. [Google Scholar] [CrossRef]
- Li, P.J.; Xia, J.L.; Shan, Y.; Nie, Z.Y. Comparative study of multi-enzyme production from typical agro-industrial residues and ultrasound-assisted extraction of crude enzyme in fermentation with Aspergillus japonicus PJ01. Bioprocess Biosyst. Eng. 2015, 38, 2013–2022. [Google Scholar] [CrossRef] [PubMed]
- Shariq, M.; Sohail, M. Citrus limetta peels: A promising substrate for the production of multienzyme preparation from a yeast consortium. Bioresour. Bioprocess. 2019, 6, 43. [Google Scholar] [CrossRef]
- Daniel, R.M.; Dines, M.; Petach, H.H. The denaturation and degradation of stable enzymes at high temperatures. Biochem J. 1996, 317 Pt 1, 1–11. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.P.; Li, M.; Zhou, Y.; Yang, L.R.; Xu, G. Introducing a salt bridge into the lipase of Stenotrophomonas maltophilia results in a very large increase in thermal stability. Biotechnol. Lett. 2015, 37, 403–407. [Google Scholar] [CrossRef] [PubMed]
- Ejaz, U.; Muhammad, S.; Hashmi, I.A.; Ali, F.I.; Sohail, M. Utilization of methyltrioctyl ammonium chloride as new ionic liquid in pretreatment of sugarcane bagasse for production of cellulase by novel thermophilic bacteria. J. Biotechnol. 2020, 317, 34–38. [Google Scholar] [CrossRef]
- Ejaz, U.; Sohail, M.; Ghanemi, A. Cellulases: From bioactivity to a variety of industrial applications. Biomimetics 2021, 6, 44. [Google Scholar] [CrossRef] [PubMed]
- de Castro, R.J.S.; Sato, H.H. Enzyme production by solid-state fermentation: General aspects and an analysis of the physicochemical characteristics of substrates for agro-industrial wastes valorization. Waste Biomass Valori. 2015, 6, 1085–1093. [Google Scholar] [CrossRef]
- Ansari, S.A.; Husain, Q. Potential applications of enzymes immobilized on/in nano materials: A review. Biotech. Adv. 2012, 30, 512–523. [Google Scholar] [CrossRef] [PubMed]
- Martin, M.C.; DellÓlio, G.A.G.; Villar, M.A.; Morata, V.I.; López, O.V.; Ninago, M.D. Preparation and characterization of an immobilized enological pectinase on agar alginate beads. Macromol. Symp. 2020, 394, 1900208. [Google Scholar] [CrossRef]
- de Souza, S.P.; Junior, I.I.; Silva, G.M.A.; Miranda, L.S.M.; Santiago, M.F.; Leung-Yuk Lam, F.; de Souza, R.O.M.A. Cellulose asan efficient matrix for lipase and transaminase immobilization. RSC Adv. 2016, 6, 6665–6671. [Google Scholar] [CrossRef]
- Voragen, A.G.J.; Coenen, G.J.; Verhoef, R.P.; Schols, H.A. Pectin, a versatile polysaccharide present in plant cell walls. Struct. Chem. 2009, 20, 263–275. [Google Scholar] [CrossRef]
- Haile, S.; Ayele, A. Pectinase from microorganisms and its industrial applications. Sci. World. J. 2022, 2022, 1881305. [Google Scholar] [CrossRef]
- Jayani, R.S.; Saxena, S.; Gupta, R. Microbial pectinolytic enzymes: A review. Process. Biochem. 2005, 40, 2931–2944. [Google Scholar] [CrossRef]
- Gautam, A.; Yadav, S.; Yadav, D. Purification and characterization of polygalacturonase from Aspergillus fumigatus MTCC 2584 and elucidating its application in retting of Crotalaria juncea fiber. 3 Biotech 2016, 6, 201. [Google Scholar] [CrossRef]
- Ismail, A.S.; Abo-Elmagd, H.I.; Housseiny, M.M. A safe potential juice clarifying pectinase from Trichoderma viride EF-8 utilizing Egyptian onion skins. J. Genet. Eng. Biotechnol. 2016, 14, 153–159. [Google Scholar] [CrossRef]
- Nabi, N.G.; Asgher, M.; Shah, A.H.; Sheikh, M.A.; Asad, M.J. Production of pectinase by Trichoderma harzianum in solid State fermentation of citrus peel. Pak. J. Agric. Sci. 2003, 40, 3–4. [Google Scholar]
- Garg, N.; Singh, B.; Vaish, S.; Kumar, S. Enzyme production from different fruit and vegetable waste using lactic acid fermentation. J. Eco-Friendly Agric. 2021, 16, 74–76. [Google Scholar] [CrossRef]
- Adeleke, A.J.; Odunfa, S.A.; Olanbiwonninu, A.; Owoseni, M.C. Production of cellulase and pectinase from orange peels by fungi. Nat. Sci. 2012, 10, 107–112. [Google Scholar]
- Ramos-Ibarra, J.R.; Miramontes, C.; Arias, A.; Arriola, E. Production of hydrolytic enzymes by solid-state fermentation with new fungal strains using orange by-products Guatemala G, Corona González RI. Rev. Mex. Ing. Quim. 2017, 16, 19–31. [Google Scholar] [CrossRef]
- Siddiqui, M.A.; Pande, V.; Arif, M. Production, purification, and characterization of polygalacturonase from Rhizomucor pusillus isolated from Decomposting orange peels. Enzyme Res. 2012, 2012, 138634. [Google Scholar] [CrossRef] [PubMed]
- Rayhanea, H.; Josianea, M.; Gregoriac, M.; Yiannisc, K.; Nathaliea, D.; Ahmedb, M.; Sevastianosa, R. From flasks to single used bioreactor: Scale-up of solid-state fermentation process for metabolites and conidia production by Trichoderma asperellum. J. Environ. Manag. 2020, 252, 109496. [Google Scholar] [CrossRef]
- Bech, L.; Herbst, F.A.; Grell, M.N.; Hai, Z.; Lange, L. On-site enzyme production by Trichoderma asperellum for the degradation of duckweed. Fungal Genet. Biol. 2015, 5, 126. [Google Scholar] [CrossRef]
- Shrestha, S.; Khatiwada, J.R.; Zhang, X.; Chio, C.; Kognou, A.L.M.; Chen, F.; Han, S.; Chen, X.; Qin, W. Screening and molecular identification of novel pectinolytic bacteria from forest soil. Fermentation 2021, 7, 40. [Google Scholar] [CrossRef]
- Kubra, K.T.; Ali, S.; Walait, M.; Sundus, H. Potential applications of pectinases in food, agricultural and environmental sectors. J. Pharm. Chem. Biol. Sci. 2018, 6, 23–34. [Google Scholar]
- Tedesco, D.E.A.; Scarioni, S.; Tava, A.; Panseri, S.; Zuorro, A. Fruit and vegetable wholesale market waste: Safety and nutritional characterisation for their potential re-use in livestock nutrition. Sustainability 2021, 13, 9478. [Google Scholar] [CrossRef]
- Yadav, S.K.; Yadav, P.K.; Yadav, D.; Yadav, K.D.S. Pectin lyase: A review. Process. Biochem. 2009, 44, 1–10. [Google Scholar] [CrossRef]
- Kashyap, D.R.; Vohra, P.K.; Chopra, S.; Tewari, R. Applications of pectinases in the commercial sector: A review. Bioresour. Technol. 2001, 77, 215–227. [Google Scholar] [CrossRef]
- Pacheco-Quito, E.M.; Ruiz-Caro, R.; Veiga, M.-D. Carrageenan: Drug delivery systems and other biomedical applications. Mar. Drugs 2020, 18, 583. [Google Scholar] [CrossRef]
- Morin-Crini, N.; Lichtfouse, E.; Torri, G.; Crini, G. Applications of chitosan in food, pharmaceuticals, medicine, cosmetics, agriculture, textiles, pulp and paper, biotechnology, and environmental chemistry. Environ. Chem. Lett. 2019, 17, 1667–1692. [Google Scholar] [CrossRef]
- Mehandzhiyski, A.Y.; Zozoulenko, I.A. A Review of cellulose coarse-grained models and their applications. Polysaccharides 2021, 2, 257–270. [Google Scholar] [CrossRef]
- Bendaoud, A.; Lahkimi, A.; Kara, M.; Moubchir, T.; Assouguem, A.; Belkhiri, A.; Allali, A.; Hmamou, A.; Almeer, R.; Sayed, A.A.; et al. Field study and chemical analysis of plant waste in the fez-Meknes region, Morocco. Sustainability 2022, 14, 6029. [Google Scholar] [CrossRef]
- Kumar, A.K.; Parikh, B.S. Cellulose-degrading enzymes from Aspergillus terreus D34 and enzymatic saccharification of mild-alkali and dilute-acid pretreated lignocellulosic biomass residues. Bioresour. Bioprocess. 2015, 2, 7. [Google Scholar] [CrossRef]
- Zapata, Y.M.; Galviz-Quezada, A.; Osorio Echeverri, V.M. Cellulases production on paper and sawdust using native Trichoderma asperellum. Univ. Sci. 2018, 23, 419–436. [Google Scholar] [CrossRef]
- Nargotra, P.; Sharma, V.; Lee, Y.C.; Tsai, Y.H.; Liu, Y.C.; Shieh, C.J.; Tsai, M.L.; Dong, C.D.; Kuo, C.H. Microbial lignocellulolytic enzymes for the effective valorization of lignocellulosic biomass: A review. Catalysts 2023, 13, 83. [Google Scholar] [CrossRef]
- Maravi, P.; Kumar, A. Optimization and statistical modeling of microbial cellulase production using submerged culture. J. Appl. Biol. Biotechnol. 2021, 9, 142–152. [Google Scholar] [CrossRef]
- Orencio-Trejo, M.; De la Torre-Zavala, S.D.; Rodriguez-Garcia, A.; Avilés-Arnaut, H.; Gastelum-Arellanez, A. Assessing the performance of bacterial cellulases: The use of Bacillus and Paenibacillus Strains as enzyme sources for lignocellulose saccharification. BioEnergy Res. 2016, 9, 1023–1033. [Google Scholar] [CrossRef]
- Ellilä, S.; Fonseca, L.; Uchima, C.; Cota, J.; Goldman, G.H.; Saloheimo, M.; Sacon, V.; Siika-Aho, M. Development of a low-cost cellulase production process using Trichoderma reesei for Brazilian biorefineries. Biotechnol. Biofuels 2017, 10, 30. [Google Scholar] [CrossRef] [PubMed]
- Patel, K.; Patel, H.; Shah, G. Production and optimization of cellulase enzymes from newly isolated fungi. J. Pure Appl. Microbiol. 2014, 8, 4163–4169. [Google Scholar]
- Jadhav, A.R.; Girde, A.V.; More, S.M.; More, S.B.; Khan, S. Cellulase production by utilizing agricultural wastes. Res. J. Agric. For. Sci. 2013, 1, 6–9. [Google Scholar]
- Gordillo-Fuenzalida, F.; Echeverria-Vega, A.; Cuadros-Orellana, S.; Faundez, C.; Kähne, T.; Morales-Vera, R. Cellulases production by a Trichoderma sp. using food manufacturing wastes. Appl. Sci. 2019, 9, 4419. [Google Scholar] [CrossRef]
- Pinotti, L.M.; Paulino, L.B.; Agnezi, J.C.; Santos, P.A.; Silva, H.N.L.; Zavarise, J.P.; Salomão, G.S.B.; Tardioli, P.W. Evaluation of different fungi and bacteria strains for production of cellulases by submerged fermentation using sugarcane bagasse as carbon source: Effect of substrate concentration and cultivation temperature. Afr. J. Biotechnol. 2020, 19, 625–635. [Google Scholar] [CrossRef]
- Gama, R.; Van Dyk, J.S.V.; Pletschke, B.I. Optimisation of enzymatic hydrolysis of apple pomace for production of biofuel and biorefinery chemicals using commercial enzymes. 3 Biotech 2015, 5, 1075–1087. [Google Scholar] [CrossRef]
- Ibrahim, M.F.; Razak, M.N.A.; Phang, L.Y.; Hassan, M.A.; Abd-Aziz, S. Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl. Biochem. Biotechnol. 2013, 170, 1320–1335. [Google Scholar] [CrossRef] [PubMed]
- Gimba, Y.A.; Idris, A.; Hassan, A.; Hassan, O.N. Isolation and optimization of the fermentation condition of cellulolytic microbial isolates from cassava waste water. GSC Biol. Pharm. Sci. 2021, 14, 11–17. [Google Scholar] [CrossRef]
- Jasani, H.; Umretiya, N.; Dharajiya, D.; Kapuria, M.; Shah, S.; Patel, J. Isolation, optimization and production of cellulase by Aspergillus niger from agricultural waste. J. Pure Appl. Microbiol. 2016, 10, 1159–1166. [Google Scholar]
- Fischer, R.; Ostafe, R.; Twyman, R.M. Cellulases from insects. Adv. Biochem. Eng. Biotechnol. 2013, 136, 51–64. [Google Scholar] [CrossRef]
- Motaung, T.E.; Anandjiwala, R.D. Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind. Crop. Prod. 2015, 74, 472–477. [Google Scholar] [CrossRef]
- Adlakha, N.; Sawant, S.; Anil, A.; Lali, A.; Yazdani, S.S. Specific fusion of β-1,4-endoglucanase and β-1,4-glucosidase enhances cellulolytic activity and helps in channeling of intermediates. Appl. Environ. Microbiol. 2012, 78, 7447–7454. [Google Scholar] [CrossRef]
- Kumar, D.; Yadav, K.K.; Singh, M.; Garg, N. Biochemical utilization of agro-industrial lignocelluloses rich waste for cellulase production. Res. J. Agric. Sci. 2012, 44, 184–191. [Google Scholar]
- Sartori, T.; Tibolla, H.; Prigol, E.; Colla, L.M.; Costa, J.A.; Bertolin, T.E. Enzymatic saccharification of lignocellulosic residues by cellulases obtained from solid-state fermentation using Trichoderma viride. BioMed Res. Int. 2015, 2015, 342716. [Google Scholar] [CrossRef]
- Kuhad, R.C.; Gupta, R.; Singh, A. Microbial cellulases and their industrial applications. Enzym. Res. 2011, 2011, 280696. [Google Scholar] [CrossRef]
- de Souza, P.M.; de Oliveira Magalhães, P. Application of microbial α-amylase in industry—A review. Braz. J. Microbiol. 2011, 41, 850–861. [Google Scholar] [CrossRef] [PubMed]
- Okino-Delgado, C.H.; Prado, D.Z.; Fleuri, L.F. Brazilian fruit processing, wastes as a source of lipase and other biotechnological products: A review. An. Da Acad. Bras. De Ciências 2018, 90, 2927–2943. [Google Scholar] [CrossRef]
- Hasan, M.M.; Marzan, L.W.; Hosna, A.; Hakim, A.; Azad, A.K. Optimization of some fermentation conditions for the production of extracellular amylases by using Chryseobacterium and Bacillus isolates from organic kitchen wastes. J. Genet. Eng. Biotechnol. 2017, 15, 59–68. [Google Scholar] [CrossRef]
- Balakrishnan, M.; Jeevarathinam, G.; Kumar, S.K.S.; Muniraj, I.; Uthandi, S. Optimization and scale-up of α-amylase production by Aspergillus oryzae using solid-state fermentation of edible oil cakes. BMC Biotechnol. 2021, 21, 33. [Google Scholar] [CrossRef]
- Namashivayam, S.K.R.; Nirmala, D. Enhanced production of alpha amylase using vegetable waste by Aspergillus niger strain SK01 marine isolate. Indian J. Geo-Mar. Sci. 2011, 40, 130–133. [Google Scholar]
- Msarah, M.J.; Ibrahim, I.; Hamid, A.A.; Aqma, W.S. Optimisation and production of alpha amylase from thermophilic Bacillus spp. and its application in food waste biodegradation. Heliyon 2020, 6, e04183. [Google Scholar] [CrossRef]
- Olakusehin, V.O.; Oyedeji, O. Production of α-amylase from Aspergillus flavus S2-OY using solid substrate fermentation of potato (Solanum tuberosum L.) peel. Int. J. Biol. Chem. Sci. 2021, 15, 1950–1967. [Google Scholar] [CrossRef]
- Panicker, S.G.; Bhumbar, D.; Borate, M.; Joshi, A. Production, purification and analysis of biocleaners (enzymes) from fruit peels by using bacteria and yeast. Int. J. Recent Sci. Res. 2021, 12, 40979–40985. [Google Scholar]
- Simair, A.A.; Qureshi, A.S.; Khushk, I.; Ali, C.H.; Lashari, S.; Bhutto, M.A.; Mangrio, G.S.; Lu, C. Production and Partial Characterization of α-amylase Enzyme from Bacillus sp. BCC 01–50 and Potential Applications. BioMed. Res. Int. 2017, 2017, 9173040. [Google Scholar] [CrossRef]
- Erdal, S.; Taskin, M. Production of alpha-amylase by Penicillium expansum MT-1 in solid-state fermentation using waste Loquat (Eriobotrya japonica Lindley) kernels as substrate. Rom. Biotechnol. Lett. 2010, 15, 5342–5350. [Google Scholar]
- Ullah, H.; Uddin, I.; Rahim, F.; Khan, F.; Sobia, T.M.; Taha, M.U.; Khan, M.U.; Hayat, S.; Ullah, M.; Gul, Z.; et al. In vitro α-glucosidase and α-amylase inhibitory potential and molecular docking studies of benzohydrazide based imines and thiazolidine-4-one derivatives. J. Mol. Struct. 2022, 1251, 132058. [Google Scholar] [CrossRef]
- Sivaramakrishnan, S.; Gangadharan, D.; Nampoothiri, K.M.; Pandey, A. Alpha amylases from microbial sources—An overview on recent developments. Food Technol. Biotechnol. 2006, 44, 173–184. [Google Scholar]
- CAGR, 2023. Available online: https://www.360researchreports.com/enquiry/request-sample/21572379 (accessed on 15 June 2024).
- Imran, M.; Anwar, Z.; Irshad, M.; Asad, M.J.; Ashfaq, H. cellulase production from speciesof fungi and bacteria from agricultural wastes and its utilization in industry: A review. Adv. Enz. Res. 2016, 4, 44–55. [Google Scholar] [CrossRef]
- Talavera-Caro, A.G.; Alva-Sánchez, D.L.; Sosa-Herrera, A.; Sánchez-Muñoz, M.A.; Hernández-De Lira, I.O.; Hernández-Beltran, J.U.; Hernández-Almanza, A.Y.; Balagurusamy, N. Chapter 11-Emerging trends and future perspectives on enzyme prospection with reference to food processing. In Value-Addition in Food Products and Processing through Enzyme Technology; Academic Press: Cambridge, MA, USA, 2022; pp. 139–151. [Google Scholar] [CrossRef]
- Singh, B.; Soni, S.K.; Vaish, S.; Mathur, P.; Garg, N. Immobilization of microbial multienzyme preparation on calcium alginate beads or by lyophilization with mosambi peel matrix improved its shelf-life and stability. Folia Microbiol. 2023, 69, 37498405. [Google Scholar] [CrossRef] [PubMed]
- Singh, B.; Soni, S.K.; Mathur, P.; Garg, N. Precise utilization of fruit and vegetable waste as a substrate for the multienzyme production by Bacillus subtilis NG105 and Trichoderma asperelllum NG125. Biocatal. Agric. Biotechnol. 2023, 51, 102797. [Google Scholar] [CrossRef]
- Adamu, H.; Bello, U.; Yuguda, A.U.; Tafida, U.I.; Jalam, A.M.; Sabo, A.; Qamar, M. Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes. Renew. Sust. Energ. Rev. 2023, 186, 113686. [Google Scholar] [CrossRef]
- Khaswal, A.; Mishra, S.K.; Chaturvedi, N.; Saini, S.; Pletschke, B.; Kuhad, R.C. Microbial enzyme production: Unlocking the potential of agricultural and food waste through solid-state fermentation. Bioresour. Technol. Rep. 2024, 27, 101880. [Google Scholar] [CrossRef]
Enzyme | Medium | Indicator Dye | Observation | References |
---|---|---|---|---|
Pectinase | Medium with pectin substrate | Congo Red | Blue-violet or Red | [17,18] |
Cellulase | Medium with carboxymethylcellulose | Congo Red | Blue-violet or Red | [19] |
Amylase | Medium with starch | Iodine | Brownish | [20] |
Waste | Source of Isolation | Organisms | pH | Temp. (°C) | References |
---|---|---|---|---|---|
Mosambi peel | Organic substrate | Trichoderma asperellum | 5.5 | 30 | [17] |
Sunn hemp fibre | MTCC (Microbial Type Culture Collection) | Aspergillus fumigatus | 10.0 | 30 | [35] |
Citrus peel | NIBGE (National Institute for Biotechnology and Genetic Engineering) | Trichoderma harzianum | 5.5 | 28 | [37] |
Mango, Mosambi, banana, cabbage, etc. | ATCC 8014TM | Lactobacillus sp. | - | 35 | [38] |
Orange peels | Orange peels and soil | Penicillium atrovenetum | 5.5 | 35 | [39] |
Orange peels | Rotten orange residues | Fusarium sp., C. oxysporum, Mucor racemosus, Penicillium minioluteum, and Trichoderma reesei | - | 30 | [40] |
Orange peels | Soil and decayed fruits | Rhizomucor pusilis | 5.0 | 50 | [41] |
Mixture of vine shoots, jatropha cake, olive pomace, and olive oil | IRD/IMBE | Trichoderma asperellum | 7.0 | 25 | [42] |
Wheat bran and duckweed | Westerdijk Fungal Biodiversity Institute | Trichoderma asperellum | 5.5 | 30 | [43] |
Waste | Isolation Source | Organisms | pH | Temp. (°C) | Km/Vmax | References |
---|---|---|---|---|---|---|
Paddy straw | Spoiled coconut | Aspergillus niger | 20~40 | 5.5~7.0 | [4] | |
Mosambi peel | Organic substrates | Bacillus subtilis | 35 | 5.5 | - | [18] |
Mosambi peel | Organic substrates | Trichoderma asperellum | 30 | 5.5 | 2.0/114.9 | [17] |
Orange peels | Orange peels and soil | Aspergillus flavus | 5.5 | 40 | - | [39] |
Rice straw and sugarcane bagasse | Degraded straw | Aspergillus terreus | 45 | - | 12.0/16.1 | [53] |
Rice bran and wheat straw | Agricultural and agro-industry | Fungal and bacteria | 28 | 7.0 | - | [59] |
Rice husks, millet husks, banana peels, wheat bran, coir, and sawdust | - | Aspergillus niger | 3–9 | 10–50 | - | [60] |
Sugarcane bagasse | ATCC | Bacillus megaterium and Bacillus subtilis | 33 | - | - | [62] |
Apple pomace | - | - | 25–60 | 3.0–4.5 | [63] | |
Oil palm empty fruit bunch | - | Trichoderma asperellum and Aspergillus fumigatus | 35 and 45, respectively | 7.0 and 6.0, respectively | - | [64] |
Cassava wastewater | - | Bacillus subtilis and Aspergillus niger | 30~80 | 3~9 | - | [65] |
Wheat straw and bran | Soil and agro-waste | Aspergillus fumigateus and Aspergillus niger | 28 | 4.2 | - | [66] |
Saw dust | MTCC | Trichoderma reesei | 30 | 6.5 | 1.07/4.67 | [67] |
Waste | Source of Isolation | Organisms | pH | Temp. (°C) | Km/Vmax | References |
---|---|---|---|---|---|---|
Mosambi peel | Organic substrates | Trichoderma asperellum | 5.0 | 30 | 1.0/134.8 | [17] |
Mosambi peel | Organic substrates | Bacillus subtilis | 5.5 | 35 | - | [18] |
Kitchen waste | Municipal solid waste | Chryseobacterium sp. and Bacillus sp. | 5.0 and 7.0 | 50 | - | [75] |
Edible oil cake, groundnut oil cake, coconut oil cake, and sesame oil cake | MTCC | Aspergillus oryzae | 32.5 | 4.5 | - | [76] |
Vegetable waste | Marine water | Aspergillus niger | 9.0 | 70 | - | [77] |
Fruit and vegetable waste | Kitchen food waste | Bacillus subtilis, Bacillus licheniformis | 6.0 | 45 | - | [78] |
Potato peel | Soil of cassava waste dumpsite | Aspergillus flavus | 5.0 | 25 | - | [79] |
Fruit peel | - | Trichoderma, Bacillus sp., S. cerevisiae | 6.0 | - | - | [80] |
Molasses | - | Bacillus sp. | 8.0 | 50 | - | [81] |
Loquat kernels | Fermented loquat kernels | Penicillium expansum | 6.0 | 30 | - | [82] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, B.; Soni, S.K.; Mathur, P.; Garg, N. Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review. Appl. Microbiol. 2024, 4, 1232-1246. https://doi.org/10.3390/applmicrobiol4030084
Singh B, Soni SK, Mathur P, Garg N. Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review. Applied Microbiology. 2024; 4(3):1232-1246. https://doi.org/10.3390/applmicrobiol4030084
Chicago/Turabian StyleSingh, Balvindra, Sumit K. Soni, Priti Mathur, and Neelima Garg. 2024. "Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review" Applied Microbiology 4, no. 3: 1232-1246. https://doi.org/10.3390/applmicrobiol4030084
APA StyleSingh, B., Soni, S. K., Mathur, P., & Garg, N. (2024). Microbial Multienzyme Viz., Pectinase, Cellulase and Amylase Production Using Fruit and Vegetable Waste as Substrate—A Review. Applied Microbiology, 4(3), 1232-1246. https://doi.org/10.3390/applmicrobiol4030084