Capacity of the Fungi Trichoderma Koningiopsis and Talaromyces Verruculosus for Hg Leaching, Immobilization and Absorption During the Dissolution of Cinnabar
Abstract
:1. Introduction
2. Materials and Methods
2.1. Soil Sampling
2.2. Isolation and Purification of Hg-Resistant Fungi
2.3. Identification of Hg-Resistant Fungi
2.4. Hg-Resistant Capacity and Bioaccumulation of Fungi
2.5. Biodissolution of Cinnabar Ore
2.6. Abiotic Dissolution of Cinnabar Ore
2.7. Cinnabar Ore Collection and Their Chemical Characteristics
2.8. Chemical Composition Analyses
2.8.1. pH
2.8.2. Hg Quantification
2.8.3. Analyses of C-Consumption and LMMOA Production by Fungi
3. Results and Discussion
3.1. Ability of Fungi to Grow in an Environment Polluted with Hg
3.2. Effect of Hg (Content and Availability) on Fungal Activities
3.3. Effect of Fungi on Hg and Fe Mobility During the Dissolution of Cinnabar Ore
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current progress on understanding the impact of mercury on human health. Environ. Res. 2017, 152, 419–433. [Google Scholar] [CrossRef]
- Covelli, S.; Faganeli, J.; Horvat, M.; Brambati, A. Mercury contamination of coastal sediments as the result of long-term cinnabar mining activity (Gulf of Trieste, northern Adriatic sea). Appl. Geochem. 2001, 16, 541–558. [Google Scholar] [CrossRef]
- Guedron, S.; Grimaldi, C.; Chauvel, C.; Spadini, L.; Grimaldi, M. Weathering versus atmospheric contributions to mercury concentrations in French Guiana soils. Appl. Geochem. 2006, 21, 2010–2022. [Google Scholar] [CrossRef]
- Guedron, S.; Grangeon, S.; Lanson, B.; Grimaldi, M. Mercury speciation in a tropical soil association; Consequence of gold mining on Hg distribution in French Guiana. Geoderma 2009, 153, 331–346. [Google Scholar] [CrossRef]
- Roulet, M. Annexe 1. Le mercure: Son cycle biogéochimique et sa répartition aux échelles planétaire et amazonienne. In Le Mercure en Amazonie; Carmouze, J.-P., Ed.; IRD Éditions: Marseille, France, 2001. [Google Scholar] [CrossRef]
- Balland-Bolou-Bi, C.; Bolou-Bi, E.B.; Alphonse, V.; Giusti-Miller, S.; Jusselme, M.D.; Livet, A.; Grimaldi, M.; Bousserhine, N. Impact of microbial activity on the mobility of metallic elements (Fe, Al and Hg) in tropical soils. Geoderma 2019, 334, 146–154. [Google Scholar] [CrossRef]
- Iram, S.; Zaman, A.; Iqbal, Z.; Shabbir, R. Heavy metal tolerance of fungus isolated from soil contaminated with sewage and industrial wastewater. Pol. J. Environ. Stud. 2013, 22, 691–697. [Google Scholar]
- Frossard, A.; Donhauser, J.; Mestrot, A.; Gygax, S.; Bååth, E.; Frey, B. Long- and short-term effects of mercury pollution on the soil microbiome. Soil Biol. Biochem. 2018, 120, 191–199. [Google Scholar] [CrossRef]
- Rieder, S.R.; Frey, B. Methyl-mercury affects microbial activity and biomass, bacterial community structure but rarely the fungal community structure. Soil Biol. Biochem. 2013, 64, 164–173. [Google Scholar] [CrossRef]
- Szada-Borzyszkowska, A.; Krzyżak, J.; Rusinowski, S.; Sitko, K.; Pogrzeba, M. Toxic effect of mercury on arbuscular mycorrhizal fungi colonisation and physiological status of three seed-based Miscanthus hybrids. J. Trace Elem. Med. Biol. 2024, 83, 127391. [Google Scholar] [CrossRef]
- Yang, T.; Liu, L.; Li, M. Combined application of humic acid and arbuscular mycorrhizal fungi regulates microbial community dynamics and enhances mercury-resistant genes in mercury-polluted paddy soil. J. Clean. Prod. 2022, 369, 133317. [Google Scholar] [CrossRef]
- Balland-Bolou-Bi, C.; Poszwa, C.; Mustin, C. Silicate weathering potential of bacteria isolated from different soil profiles. Am. Int. J. Biol. 2014, 2, 35–63. [Google Scholar] [CrossRef]
- Gadd, G.M. Metals, minerals and microbes: Geomicrobiology and bioremediation. Microbiology. 2010, 156, 609–643. [Google Scholar] [CrossRef]
- Abdu, N.; Abdullahi, A.A.; Abdulkadir, A. Heavy metals and soil microbes. Environ. Chem. Lett. 2017, 15, 65–84. [Google Scholar] [CrossRef]
- Hu, H.; Lin, H.; Zheng, W.; Tomanicek, S.J.; Johs, A.; Feng, X.; Elias, D.A.; Liang, L.; Gu, B. Oxidation and methylation of dissolved elemental mercury by anaerobic bacteria. Nat. Geosci. 2013, 6, 751–754. [Google Scholar] [CrossRef]
- Si, Y.; Zou, Y.; Liu, X.; Si, X.; Mao, J. Mercury methylation coupled to iron reduction by dissimilatory iron-reducing bacteria. Chemosphere 2015, 122, 206–212. [Google Scholar] [CrossRef]
- Kerin, E.J.; Gilmour, C.C.; Roden, E.; Suzuki, M.T.; Coates, J.D.; Mason, R.P. Mercury methylation by dissimilatory iron-reducing bacteria. Appl. Environ. Microbiol. 2006, 72, 7919–7921. [Google Scholar] [CrossRef]
- Parks, J.M.; Johs, A.; Podar, M.; Bridou, R.; Hurt, R.A.; Smith, S.D.; Tomanicek, S.J.; Qian, Y.; Brown, S.D.; Brandt, C.C.; et al. The genetic basis for bacterial mercury methylation. Science 2013, 339, 1332–1335. [Google Scholar] [CrossRef]
- Chen, S.C.; Lin, W.H.; Chien, C.C.; Tsang, D.C.W.; Kao, C.M. Development of a two-stage biotransformation system for mercury-contaminated soil remediation. Chemosphere 2018, 200, 266–273. [Google Scholar] [CrossRef]
- Rodríguez, M.B.; Piedra, C.A.J.; Chiocchetti, G.D.M.E.; Vélez, D.; Devesa, V.; Puig, S. The use of Saccharomyces cerevisiae for reducing mercury bioaccessibility. Toxicol. Lett. 2016, 258, S159. [Google Scholar] [CrossRef]
- Jones, M.P.; Bismarck, A. Mycomining: Perspective on fungi as scavengers of scattered metal, mineral, and rare earth element resources. RSC Sustain. 2024, 2, 1350–1357. [Google Scholar] [CrossRef]
- Gadd, G.M. The Geomycology of Elemental Cycling and Transformations in the Environment. Microbiol. Spectr. 2017, 5, 1–16. [Google Scholar] [CrossRef]
- Gadd, G.M. Microbial influence on metal mobility and application for bioremediation. Geoderma 2004, 122, 109–119. [Google Scholar] [CrossRef]
- Gadd, G.M.; Bahri-Esfahani, J.; Li, Q.; Rhee, Y.J.; Wei, Z.; Fomina, M.; Liang, X. Oxalate production by fungi: Significance in geomycology, biodeterioration and bioremediation. Fungal Biol. Rev. 2014, 28, 36–55. [Google Scholar] [CrossRef]
- Falandysz, J.; Zhang, J.; Wang, Y.Z.; Saba, M.; Krasiñska, G.; Wiejak, A.; Li, T. Evaluation of mercury contamination in fungi boletus species from latosols, lateritic red earths, and red and yellow earths in the circum-pacific mercuriferous belt of southwestern China. PLoS ONE 2015, 10, e0143608. [Google Scholar] [CrossRef]
- Falandysz, J. Mercury bio-extraction by fungus Coprinus comatus: A possible bioindicator and mycoremediator of polluted soils? Environ. Sci. Pollut. Res. 2016, 23, 7444–7451. [Google Scholar] [CrossRef]
- Svoboda, L.; Zimmermannová, K.; Kalač, P. Concentrations of mercury, cadmium, lead and copper in fruiting bodies of edible mushrooms in an emission area of a copper smelter and a mercury smelter. Sci. Total Environ. 2000, 246, 61–67. [Google Scholar] [CrossRef]
- Gizaw, B.; Alemu, T.; Ebsa, G.; Tsegaye, Z. Fungi species identified from polluted environment for chromium sequestration and solid state fermentation on tannery shaving waste. Biocatal. Agric. Biotechnol. 2024, 61, 103352. [Google Scholar] [CrossRef]
- Pietro-Souza, W.; de Campos Pereira, F.; Mello, I.S.; Stachack, F.F.F.; Terezo, A.J.; da Cunha, C.N.; White, J.F.; Li, H.; Soares, M.A. Mercury resistance and bioremediation mediated by endophytic fungi. Chemosphere 2020, 240, 124874. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhou, M.; Shi, F.; Meng, B.; Liu, J.; Mi, Y.; Dong, C.; Su, H.; Liu, X.; Wang, F.; et al. Influence of arbuscular mycorrhizal fungi on mercury accumulation in rice (Oryza sativa, L.): From enriched isotope tracing perspective. Ecotoxicol. Environ. Saf. 2023, 255, 114776. [Google Scholar] [CrossRef]
- Gadd, G.M. Interactions of fungi with toxic metals. New Phytol. 1993, 124, 25–60. [Google Scholar] [CrossRef]
- Meharg, A.A. The mechanistic basis of interactions between mycorrhizal associations and toxic metal cations. Mycol. Res. 2003, 107, 1253–1265. [Google Scholar] [CrossRef]
- Johansson, E.M.; Fransson, P.M.A.; Finlay, R.D.; van Hees, P.A.W. Quantitative analysis of exudates from soil-living basidiomycetes in pure culture as a response to lead, cadmium and arsenic stress. Soil Biol. Biochem. 2008, 40, 2225–2236. [Google Scholar] [CrossRef]
- Liu, N.; Miao, Y.; Zhou, X.; Gan, Y.; Liu, S.; Wang, W.; Dai, J. Roles of rhizospheric organic acids and microorganisms in mercury accumulation and translocation to different winter wheat cultivars. Agric. Ecosyst. Environ. 2018, 258, 104–112. [Google Scholar] [CrossRef]
- Zhu, M.; Li, W.H.; Cheng, X.H.; Zuo, Y.M. Research progress on biosorption mechanisms of heavy metals by fungus. Ind. Water Wastewater 2012, 43, 7–10. [Google Scholar]
- Kurniati, E.; Arfarita, N.; Imai, T.; Higuchi, T.; Kanno, A.; Yamamoto, K.; Sekine, M. Potential bioremediation of mercury-contaminated substrate using filamentous fungi isolated from forest soil. J. Environ. Sci. 2014, 26, 1223–1231. [Google Scholar] [CrossRef] [PubMed]
- Crane, S.; Dighton, J.; Barkay, T. Growth responses to and accumulation of mercury by ectomycorrhizal fungi. Fungal Biol. 2010, 114, 873–880. [Google Scholar] [CrossRef]
- Jean-Philippe, S.R.; Franklin, J.A.; Buckley, D.S.; Hughes, K. The effect of mercury on trees and their mycorrhizal fungi. Environ. Pollut. 2011, 159, 2733–2739. [Google Scholar] [CrossRef]
- AAT Bioquest Inc. Quest GraphTM EC50 Calculator. 2019. Available online: https://www.aatbio.com/tools/ec50-calculator (accessed on 17 April 2024).
- Balland-Bolou-Bi, C.; Turc, B.; Alphonse, V.; Bousserrhine, N. Impact of microbial communities from tropical soils on the mobilization of trace metals during dissolution of cinnabar ore. J. Environ. Sci. 2017, 56, 122–130. [Google Scholar] [CrossRef]
- Dubois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric Method for Determination of Sugars and Related Substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Van Hees, P.A.W.; Dahlen, J.; Lundstrom, U.; Boren, H.; Allard, B. Determination of low molecular weight organic acids in soil solution by HPLC. Talanta 1999, 48, 173–179. [Google Scholar] [CrossRef] [PubMed]
- Molelekoa, T.B.J.; Augustyn, W.; Regnier, T.; da Silva, L.S. Chemical characterization and toxicity evaluation of fungal pigments for potential application in food, phamarceutical and agricultural industries. Saudi J. Biol. Sci. 2023, 30, 103630. [Google Scholar] [CrossRef] [PubMed]
- Tatarin, A.S.; Aranguiz, C.; Sadañoski, M.A.; Polti, M.A.; Fonseca, M.I. Fungal species originating from chromium contaminated soil for ecofriendly and biotechnological processes. Appl. Soil Ecol. 2024, 195, 105231. [Google Scholar] [CrossRef]
- Hindersah, R.; Asda, K.; Herdiyantoro, D.; Kamaluddin, N. Isolation of Mercury-Resistant Fungi from Mercury-Contaminated Agricultural Soil. Agriculture 2018, 8, 33. [Google Scholar] [CrossRef]
- Wainwright, M. Metabolic diversity of fungi in relation to growth and mineral cycling in soil—A review. Trans. Br. Mycol. Soc. 1988, 90, 159–170. [Google Scholar] [CrossRef]
- Mahbub, K.R.; Krishnan, K.; Naidu, R.; Megharaj, M. Mercury remediation potential of a mercury resistant strain Sphingopyxis sp. SE2 isolated from contaminated soil. J. Environ. Sci. 2017, 51, 128–137. [Google Scholar] [CrossRef] [PubMed]
- Martínez-Juárez, V.M.; Cárdenas-González, J.F.; Torre-Bouscoulet, M.E.; Acosta-Rodríguez, I. Biosorption of Mercury (II) from Aqueous Solutions onto Fungal Biomass. Bioinorg. Chem. Appl. 2012, 2012, 156190. [Google Scholar] [CrossRef]
- Hoque, E.; Fritscher, J. A new mercury-accumulating Mucor hiemalis strain EH8 from cold sulfidic spring water biofilms. Microbiologyopen 2016, 5, 763–781. [Google Scholar] [CrossRef]
- Acosta-Rodríguez, I.; Cardenás-González, J.F.; Pérez, A.S.R.; Oviedo, J.T.; Martínez-Juárez, V.M. Bioremoval of different heavy metals by the resistant fungal strain aspergillus Niger. Bioinorg. Chem. Appl. 2018, 2018, 3457196. [Google Scholar] [CrossRef]
- Boriová, K.; Čerňanský, S.; Matúš, P.; Bujdoš, M.; Šimonovičová, A. Bioaccumulation and biovolatilization of various elements using filamentous fungus Scopulariopsis brevicaulis. Lett. Appl. Microbiol. 2014, 59, 217–223. [Google Scholar] [CrossRef]
- Chang, J.; Duan, Y.; Dong, J.; Shen, S.; Si, G.; He, F.; Yang, Q.; Chen, J. Bioremediation of Hg-contaminated soil by combining a novel Hg-volatilizing Lecythophora sp. fungus, DC-F1, with biochar: Performance and the response of soil fungal community. Sci. Total Environ. 2019, 671, 676–684. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Zhang, D.; Sheng, F.; Qing, H. Adsorption characteristics of Copper (Ⅱ), Zinc (Ⅱ) and Mercury (Ⅱ) by four kinds of immobilized fungi residues. Ecotoxicol. Environ. Saf. 2018, 147, 357–366. [Google Scholar] [CrossRef]
- Das, S.K.; Das, A.R.; Guha, A.K. A study on the adsorption mechanism of mercury on Aspergillus versicolor biomass. Environ. Sci. Technol. 2007, 41, 8281–8287. [Google Scholar] [CrossRef] [PubMed]
- Balland-Bolou-Bi, C.; Poszwa, A. Effect of calco-magnesian amendment on the mineral weathering abilities of bacterial communities in acidic and silicate-rich soils. Soil Biol. Biochem. 2012, 50, 108–117. [Google Scholar] [CrossRef]
- Oulkadi, D.; Balland-Bolou-Bi, C.; Michot, L.J.; Grybos, M.; Billard, P.; Mustin, C.; Banon, S. Bioweathering of nontronite colloids in hybrid silica gel: Implications for iron mobilization. J. Appl. Microbiol. 2014, 116, 325–334. [Google Scholar] [CrossRef]
- Bellion, M.; Courbot, M.; Jacob, C.; Blaudez, D.; Chalot, M. Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiol. Lett. 2006, 254, 173–181. [Google Scholar] [CrossRef]
- Baldrian, P. Interactions of heavy metals with white-rot fungi. Enzyme Microb. Technol. 2003, 32, 78–91. [Google Scholar] [CrossRef]
- Gadd, G.M. Geomycology: Biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol. Res. 2007, 111, 3–49. [Google Scholar] [CrossRef]
- Balogh-Brunstad, Z.; Kent Keller, C.; Thomas Dickinson, J.; Stevens, F.; Li, C.Y.; Bormann, B.T. Biotite weathering and nutrient uptake by ectomycorrhizal fungus, Suillus tomentosus, in liquid-culture experiments. Geochim. Cosmochim. Acta 2008, 72, 2601–2618. [Google Scholar] [CrossRef]
- Li, Z.B.; Lu, X.; Teng, H.H.; Chen, Y.; Zhao, L.; Ji, J.; Chen, J.; Liu, L. Specificity of low molecular weight organic acids on the release of elements from lizardite during fungal weathering. Geochim. Cosmochim. Acta 2019, 256, 20–34. [Google Scholar] [CrossRef]
- Balland, C.; Poszwa, A.; Leyval, C.; Mustin, C. Dissolution rates of phyllosilicates as a function of bacterial metabolic diversity. Geochim. Cosmochim. Acta 2010, 74, 5478–5493. [Google Scholar] [CrossRef]
- Chen, Y.; Yin, Y.; Shi, J.; Liu, G.; Hu, L.; Liu, J.; Cai, Y.; Jiang, G. Analytical methods, formation, and dissolution of cinnabar and its impact on environmental cycle of mercury. Crit. Rev. Environ. Sci. Technol. 2018, 0, 1–33. [Google Scholar] [CrossRef]
- Wang, Y.J.; Li, H.Y.; Hu, H.F.; Li, D.P.; Yang, Y.J.; Liu, C. Using biochemical system to improve cinnabar dissolution. Bioresour. Technol. 2013, 132, 1–4. [Google Scholar] [CrossRef]
- Waples, J.S.; Nagy, K.L.; Aiken, G.R.; Ryan, J.N. Dissolution of cinnabar (HgS) in the presence of natural organic matter. Geochim. Cosmochim. Acta 2005, 69, 1575–1588. [Google Scholar] [CrossRef]
- Barnett, M.O.; Turner, R.R.; Singer, P.C. Oxidative dissolution of metacinnabar (β-HgS) by dissolved oxygen. Appl. Geochem. 2001, 16, 1499–1512. [Google Scholar] [CrossRef]
- Gabriel, M.C.; Williamson, D.G. Principal biogeochemical factors affecting the speciation and transport of mercury through the terrestrial environment. Environ. Geochem. Health 2004, 26, 421–434. [Google Scholar] [CrossRef]
Variables | Biomass | pH | Oxalic Acid | Citric Acid | Acetic Acid | Formic Acid | C-Mineralized | Total Hg Contents |
---|---|---|---|---|---|---|---|---|
Biomass | 1 | |||||||
pH | −0.100 | 1 | ||||||
Oxalic acid | 0.932 | −0.382 | 1 | |||||
Citric acid | 0.951 | −0.129 | 0.895 | 1 | ||||
Acetic acid | −0.582 | −0.406 | −0.373 | −0.667 | 1 | |||
Formic acid | −0.411 | −0.225 | −0.413 | −0.397 | 0.573 | 1 | ||
C-mineralized | 0.831 | 0.282 | 0.676 | 0.851 | −0.682 | −0.516 | 1 | |
Total Hg contents | −0.699 | −0.423 | −0.538 | −0.729 | 0.876 | 0.800 | −0.871 | 1 |
Variables | Biomass | pH | Oxalic Acid | Citric Acid | Acetic Acid | Formic Acid | C-Mineralized | Hg-Leached | Fe-Leached |
---|---|---|---|---|---|---|---|---|---|
Biomass | 1 | ||||||||
pH | −0.604 | 1 | |||||||
Oxalic acid | 0.553 | −0.975 | 1 | ||||||
Citric acid | 0.584 | −0.975 | 0.997 | 1 | |||||
Acetic acid | 0.674 | −0.930 | 0.941 | 0.963 | 1 | ||||
Formic acid | −0.368 | 0.905 | −0.942 | −0.915 | −0.772 | 1 | |||
C-mineralized | 0.243 | 0.291 | −0.335 | −0.268 | 0.003 | 0.633 | 1 | ||
Hg- leached | 0.585 | −0.716 | 0.820 | 0.808 | 0.728 | −0.815 | −0.396 | 1 | |
Fe-leached | 0.359 | −0.593 | 0.759 | 0.617 | 0.429 | −0.811 | −0.753 | 0.785 | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balland, C.; Alphonse, V.; Jusselme, M.D.; Abbad-Andaloussi, S.; Bousserrhine, N. Capacity of the Fungi Trichoderma Koningiopsis and Talaromyces Verruculosus for Hg Leaching, Immobilization and Absorption During the Dissolution of Cinnabar. Appl. Microbiol. 2025, 5, 12. https://doi.org/10.3390/applmicrobiol5010012
Balland C, Alphonse V, Jusselme MD, Abbad-Andaloussi S, Bousserrhine N. Capacity of the Fungi Trichoderma Koningiopsis and Talaromyces Verruculosus for Hg Leaching, Immobilization and Absorption During the Dissolution of Cinnabar. Applied Microbiology. 2025; 5(1):12. https://doi.org/10.3390/applmicrobiol5010012
Chicago/Turabian StyleBalland, Clarisse, Vanessa Alphonse, My Dung Jusselme, Samir Abbad-Andaloussi, and Noureddine Bousserrhine. 2025. "Capacity of the Fungi Trichoderma Koningiopsis and Talaromyces Verruculosus for Hg Leaching, Immobilization and Absorption During the Dissolution of Cinnabar" Applied Microbiology 5, no. 1: 12. https://doi.org/10.3390/applmicrobiol5010012
APA StyleBalland, C., Alphonse, V., Jusselme, M. D., Abbad-Andaloussi, S., & Bousserrhine, N. (2025). Capacity of the Fungi Trichoderma Koningiopsis and Talaromyces Verruculosus for Hg Leaching, Immobilization and Absorption During the Dissolution of Cinnabar. Applied Microbiology, 5(1), 12. https://doi.org/10.3390/applmicrobiol5010012