Elucidating the Capacity and Mechanism of Lactiplantibacillus plantarum in Synthesizing Essential Amino Acids from Non-Essential Amino Acids in a Novel Severely Deficient Medium
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microbial Strains
2.2. Preparation of Artificial Medium Combinations
2.3. Measurement of LAB Strain Growth Curves
2.4. Measurement of Amino Acid Concentrations
2.5. Data Analysis
3. Results
3.1. Development of an Artificial Medium for LAB Strain Growth
3.2. Determination of EAAs Required for the Growth of LAB Strains
3.3. Assessment of the Ability of L. plantarum to Synthesize Excluded EAAs in an Artificial Medium
3.4. Elucidation of Aspartic Acid-Derived Lysine and Threonine Biosynthesis in L. plantarum
3.5. Vitamin B6 Modulates the Conversion of Cysteine to Methionine in L. plantarum to Facilitate Adaptation to a Methionine-Deficient Synthetic Medium
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jiang, W.; Zhao, Y.; Wu, X.; Du, Y.; Zhou, W. Health inequalities of global protein-energy malnutrition from 1990 to 2019 and forecast prevalence for 2044: Data from the Global Burden of Disease Study 2019. Public Health 2023, 225, 102–109. [Google Scholar] [CrossRef] [PubMed]
- Food and Agriculture Organization of the United Nations. FAO Rice Information; Food and Agriculture Organization of the United Nations: Rome, Italy, 2002; Dec. Report No.: 3. Available online: https://www.fao.org/4/y4347e/y4347e00.htm (accessed on 4 December 2024).
- Vasal, S.K. The Role of High Lysine Cereals in Animal and Human Nutrition in Asia; Food and Agriculture Organization of the United Nations: Rome, Italy. Available online: https://www.fao.org/4/y5019e/y5019e0b.htm (accessed on 4 December 2024).
- Hoffman, J.R.; Falvo, M.J. Protein–Which is Best? J. Sports Sci. Med. 2004, 3, 118. [Google Scholar]
- Boland, M.J.; Rae, A.N.; Vereijken, J.M.; Meuwissen, M.P.M.; Fischer, A.R.H.; van Boekel, M.A.J.S.; Rutherfurd, S.M.; Gruppen, H.; Moughan, P.J.; Hendriks, W.H. The future supply of animal-derived protein for human consumption. Trends Food Sci. Technol. 2013, 29, 62–73. [Google Scholar] [CrossRef]
- Janet Ranganathan, Richard Waite, Tim Searchinger, Craig Hanson. How to Sustainably Feed 10 Billion People by 2050, in 21 Charts. World Resources Institute. Available online: https://www.wri.org/insights/how-sustainably-feed-10-billion-people-2050-21-charts (accessed on 4 December 2024).
- Lurie-Luke, E. Alternative protein sources: Science powered startups to fuel food innovation. Nat. Commun. 2024, 15, 4425. [Google Scholar] [CrossRef] [PubMed]
- Li, T.-T.; Chen, X.; Huo, D.; Arifuzzaman, M.; Qiao, S.; Jin, W.-B.; Shi, H.; Li, X.V.; Iliev, I.D.; Artis, D.; et al. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 2024, 32, 661–675.e10. [Google Scholar] [CrossRef]
- Mardinoglu, A.; Shoaie, S.; Bergentall, M.; Ghaffari, P.; Zhang, C.; Larsson, E.; Bäckhed, F.; Nielsen, J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015, 11, 834. [Google Scholar] [CrossRef]
- Whitt, D.D.; Demoss, R.D. Effect of microflora on the free amino acid distribution in various regions of the mouse gastrointestinal tract. Appl. Microbiol. 1975, 30, 609–615. [Google Scholar] [CrossRef]
- Zhu, J.; Zhong, Z.; Shi, L.; Huang, L.; Lin, C.; He, Y.; Xia, X.; Zhang, T.; Ding, W.; Yang, Y. Gut microbiota mediate early life stress-induced social dysfunction and anxiety-like behaviors by impairing amino acid transport at the gut. Gut Microbes 2024, 16, 2401939. [Google Scholar] [CrossRef]
- Besser, A.C.; Manlick, P.J.; Blevins, C.M.; Takacs-Vesbach, C.D.; Newsome, S.D. Variation in gut microbial contribution of essential amino acids to host protein metabolism in a wild small mammal community. Ecol. Lett. 2023, 26, 1359–1369. [Google Scholar] [CrossRef]
- Torrallardona, D.; Harris, C.I.; Fuller, M.F. Pigs’ gastrointestinal microflora provide them with essential amino acids. J. Nutr. 2003, 133, 1127–1131. [Google Scholar] [CrossRef]
- Dhakan, D.B.; Maji, A.; Sharma, A.K.; Saxena, R.; Pulikkan, J.; Grace, T.; Gomez, A.; Scaria, J.; Amato, K.R.; Sharma, V.K. The unique composition of Indian gut microbiome, gene catalogue, and associated fecal metabolome deciphered using multi-omics approaches. GigaScience 2019, 8, giz004. [Google Scholar] [CrossRef]
- Garault, P.; Letort, C.; Juillard, V.; Monnet, V. Branched-Chain Amino Acid Biosynthesis Is Essential for Optimal Growth of Streptococcus thermophilus in Milk. Appl. Environ. Microbiol. 2000, 66, 5128–5133. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.H.; Foo, H.L.; Loh, T.C.; Mohamad, R.; Abdullah, N. Comparative studies of versatile extracellular proteolytic activities of lactic acid bacteria and their potential for extracellular amino acid productions as feed supplements. J. Anim. Sci. Biotechnol. 2019, 10, 15. [Google Scholar] [CrossRef] [PubMed]
- Portune, K.J.; Beaumont, M.; Davila, A.-M.; Tomé, D.; Blachier, F.; Sanz, Y. Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends Food Sci. Technol. 2016, 57, 213–232. [Google Scholar] [CrossRef]
- Okano, K.; Uematsu, G.; Hama, S.; Tanaka, T.; Noda, H.; Kondo, A.; Honda, K. Metabolic Engineering of Lactobacillus plantarum for Direct l-Lactic Acid Production From Raw Corn Starch. Biotechnol. J. 2018, 13, e1700517. [Google Scholar] [CrossRef]
- Cai, H.; Thompson, R.; Budinich, M.F.; Broadbent, J.R.; Steele, J.L. Genome Sequence and Comparative Genome Analysis of Lactobacillus casei: Insights into Their Niche-Associated Evolution. Genome Biol. Evol. 2009, 1, 239–257. [Google Scholar] [CrossRef]
- Zheng, H.; Liu, E.; Hao, P.; Konno, T.; Oda, M.; Ji, Z.-S. In silico analysis of amino acid biosynthesis and proteolysis in Lactobacillus delbrueckii subsp. bulgaricus 2038 and the implications for bovine milk fermentation. Biotechnol. Lett. 2012, 34, 1545–1551. [Google Scholar] [CrossRef]
- Fu, Y.; Chen, Y.-S.; Xia, D.-Y.; Luo, X.-D.; Luo, H.-T.; Pan, J.; Ma, W.-Q.; Li, J.-Z.; Mo, Q.-Y.; Tu, Q.; et al. Lactobacillus rhamnosus GG ameliorates hyperuricemia in a novel model. NPJ Biofilms Microbiomes 2024, 10, 25. [Google Scholar] [CrossRef]
- Asahina, Y.; Shiroma, A.; Nakano, K.; Tamotsu, H.; Ashimine, N.; Shinzato, M.; Minami, M.; Shimoji, M.; Nakanishi, T.; Ohki, S.; et al. Complete Genome Sequence of Lactobacillus paracasei EG9, a Strain Accelerating Free Amino Acid Production during Cheese Ripening. Genome Announc. 2018, 6, e00627-18. [Google Scholar] [CrossRef]
- Uebanso, T.; Kano, S.; Yoshimoto, A.; Naito, C.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Consuming Xylitol on Gut Microbiota and Lipid Metabolism in Mice. Nutrients 2017, 9, 756. [Google Scholar] [CrossRef]
- Uebanso, T.; Ohnishi, A.; Kitayama, R.; Yoshimoto, A.; Nakahashi, M.; Shimohata, T.; Mawatari, K.; Takahashi, A. Effects of Low-Dose Non-Caloric Sweetener Consumption on Gut Microbiota in Mice. Nutrients 2017, 9, 560. [Google Scholar] [CrossRef]
- Wegkamp, A.; Teusink, B.; de Vos, W.M.; Smid, E.J. Development of a minimal growth medium for Lactobacillus plantarum. Lett. Appl. Microbiol. 2010, 50, 57–64. [Google Scholar] [CrossRef] [PubMed]
- Ricciardi, A.; Ianniello, R.G.; Parente, E.; Zotta, T. Modified chemically defined medium for enhanced respiratory growth of Lactobacillus casei and Lactobacillus plantarum groups. J. Appl. Microbiol. 2015, 119, 776–785. [Google Scholar] [CrossRef] [PubMed]
- Aumiller, K.; Scheffler, R.; Stevens, E.T.; Güvener, Z.T.; Tung, E.; Grimaldo, A.B.; Carlson, H.K.; Deutschbauer, A.M.; Taga, M.E.; Marco, M.L.; et al. A chemically-defined growth medium to support Lactobacillus-Acetobacter sp. community analysis. PLoS ONE 2023, 18, e0292585. [Google Scholar] [CrossRef] [PubMed]
- Chervaux, C.; Ehrlich, S.D.; Maguin, E. Physiological Study of Lactobacillus delbrueckii subsp. bulgaricus Strains in a Novel Chemically Defined Medium. Appl. Environ. Microbiol. 2000, 66, 5306–5311. [Google Scholar] [CrossRef]
- Zhang, X.; Newman, E. Deficiency in l-serine deaminase results in abnormal growth and cell division of Escherichia coli K-12. Mol. Microbiol. 2008, 69, 870–881. [Google Scholar] [CrossRef]
- Kwoji, I.D.; Okpeku, M.; Adeleke, M.A.; Aiyegoro, O.A. Formulation of Chemically Defined Media and Growth Evaluation of Ligilactobacillus salivarius ZJ614 and Limosilactobacillus reuteri ZJ625. Front. Microbiol. 2022, 13, 865493. [Google Scholar] [CrossRef]
- Dai, Z.-L.; Li, X.-L.; Xi, P.-B.; Zhang, J.; Wu, G.; Zhu, W.-Y. l-Glutamine regulates amino acid utilization by intestinal bacteria. Amino Acids 2013, 45, 501–512. [Google Scholar] [CrossRef]
- Costrejean, J.M.; Truffa-Bachi, P. Threonine-sensitive homoserine dehydrogenase and aspartokinase activities of Escherichia coli K12. Kinetic and spectroscopic effects upon binding of serine and threonine. J. Biol. Chem. 1977, 252, 5332–5336. [Google Scholar] [CrossRef]
- Gregory, J.F.; DeRatt, B.N.; Rios-Avila, L.; Ralat, M.; Stacpoole, P.W. Vitamin B6 nutritional status and cellular availability of pyridoxal 5′-phosphate govern the function of the transsulfuration pathway’s canonical reactions and hydrogen sulfide production via side reactions. Biochimie 2016, 126, 21–26. [Google Scholar] [CrossRef]
- Parkhitko, A.A.; Jouandin, P.; Mohr, S.E.; Perrimon, N. Methionine metabolism and methyltransferases in the regulation of aging and lifespan extension across species. Aging Cell 2019, 18, e13034. [Google Scholar] [CrossRef]
- Creighton, T.E.; Zapun, A.; Darby, N.J. Mechanisms and catalysts of disulfide bond formation in proteins. Trends Biotechnol. 1995, 13, 18–23. [Google Scholar] [CrossRef] [PubMed]
- Beshkova, D.M.; Simova, E.D.; Frengova, G.I.; Simov, Z.I.; Adilov, E.F. Production of amino acids by yogurt bacteria. Biotechnol. Prog. 1998, 14, 963–965. [Google Scholar] [CrossRef] [PubMed]
- Simova, E.; Simov, Z.; Beshkova, D.; Frengova, G.; Dimitrov, Z.; Spasov, Z. Amino acid profiles of lactic acid bacteria, isolated from kefir grains and kefir starter made from them. Int. J. Food Microbiol. 2006, 107, 112–123. [Google Scholar] [CrossRef] [PubMed]
- Metges, C.C.; El-Khoury, A.E.; Henneman, L.; Petzke, K.J.; Grant, I.; Bedri, S.; Pereira, P.P.; Ajami, A.M.; Fuller, M.F.; Young, V.R.; et al. Availability of intestinal microbial lysine for whole body lysine homeostasis in human subjects. Am. J. Physiol. Metab. 1999, 277, E597–E607. [Google Scholar] [CrossRef]
- Torrallardona, D.; Harris, C.I.; Coates, M.E.; Fuller, M.F. Microbial amino acid synthesis and utilization in rats: Incorporation of15N from15NH4Cl into lysine in the tissues of germ-free and conventional rats. Br. J. Nutr. 1996, 76, 689–700. [Google Scholar] [CrossRef]
- Zhao, X.H.; Wen, Z.M.; Meredith, C.N.; Matthews, D.; Bier, D.M.; Young, V.R. Threonine kinetics at graded threonine intakes in young men. Am. J. Clin. Nutr. 1986, 43, 795–802. [Google Scholar] [CrossRef]
- Newsome, S.D.; Feeser, K.L.; Bradley, C.J.; Wolf, C.; Takacs-Vesbach, C.; Fogel, M.L. Isotopic and genetic methods reveal the role of the gut microbiome in mammalian host essential amino acid metabolism. Proc. R. Soc. B Biol. Sci. 2020, 287, 20192995. [Google Scholar] [CrossRef]
- Schwarzer, M.; Gautam, U.K.; Makki, K.; Lambert, A.; Brabec, T.; Joly, A.; Šrůtková, D.; Poinsot, P.; Novotná, T.; Geoffroy, S.; et al. Microbe-mediated intestinal NOD2 stimulation improves linear growth of undernourished infant mice. Science 2023, 379, 826–833. [Google Scholar] [CrossRef]
- Huang, W.-C.; Lee, M.-C.; Lee, C.-C.; Ng, K.-S.; Hsu, Y.-J.; Tsai, T.-Y.; Young, S.-L.; Lin, J.-S.; Huang, C.-C. Effect of Lactobacillus plantarum TWK10 on Exercise Physiological Adaptation, Performance, and Body Composition in Healthy Humans. Nutrients 2019, 11, 2836. [Google Scholar] [CrossRef]
- Starke, S.; Harris, D.M.M.; Zimmermann, J.; Schuchardt, S.; Oumari, M.; Frank, D.; Bang, C.; Rosenstiel, P.; Schreiber, S.; Frey, N.; et al. Amino acid auxotrophies in human gut bacteria are linked to higher microbiome diversity and long-term stability. ISME J. 2023, 17, 2370–2380. [Google Scholar] [CrossRef]
- Giri, S.; Oña, L.; Waschina, S.; Shitut, S.; Yousif, G.; Kaleta, C.; Kost, C. Metabolic dissimilarity determines the establishment of cross-feeding interactions in bacteria. Curr. Biol. 2021, 31, 5547–5557.e6. [Google Scholar] [CrossRef] [PubMed]
- Shetty, S.A.; Kuipers, B.; Atashgahi, S.; Aalvink, S.; Smidt, H.; de Vos, W.M. Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. NPJ Biofilms Microbiomes 2022, 8, 21. [Google Scholar] [CrossRef]
- Zeng, X.; Xing, X.; Gupta, M.; Keber, F.C.; Lopez, J.G.; Lee, Y.-C.J.; Roichman, A.; Wang, L.; Neinast, M.D.; Donia, M.S.; et al. Gut bacterial nutrient preferences quantified in vivo. Cell 2022, 185, 3441–3456.e19. [Google Scholar] [CrossRef] [PubMed]
Bacterial Strains | ATCC 1 | NBRC 2 | Isolation Sources |
---|---|---|---|
Lactiplantibacillus plantarum | 8014 | 3070 | Unclear |
Lactobacillus delbrueckii | 9649 | 3202 | Sour grain mash |
Lactocaseibacillus rhamnosus | 7469a | 3435 | Existing strain (ATCC 7469) 3 |
Lactobacillus delbrueckii | 11842 | 13953 | Dairy products (Bulgarian yogurt) |
Lactocaseibacillus casei | 393 | 15883 | Dairy products |
Lactocaseibacillus paracasei subsp. Paracasei | 25302 | 15889 | Dairy products |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duc, T.Q.; Uebanso, T.; Mawatari, K.; Takahashi, A. Elucidating the Capacity and Mechanism of Lactiplantibacillus plantarum in Synthesizing Essential Amino Acids from Non-Essential Amino Acids in a Novel Severely Deficient Medium. Appl. Microbiol. 2025, 5, 16. https://doi.org/10.3390/applmicrobiol5010016
Duc TQ, Uebanso T, Mawatari K, Takahashi A. Elucidating the Capacity and Mechanism of Lactiplantibacillus plantarum in Synthesizing Essential Amino Acids from Non-Essential Amino Acids in a Novel Severely Deficient Medium. Applied Microbiology. 2025; 5(1):16. https://doi.org/10.3390/applmicrobiol5010016
Chicago/Turabian StyleDuc, Tran Quang, Takashi Uebanso, Kazuaki Mawatari, and Akira Takahashi. 2025. "Elucidating the Capacity and Mechanism of Lactiplantibacillus plantarum in Synthesizing Essential Amino Acids from Non-Essential Amino Acids in a Novel Severely Deficient Medium" Applied Microbiology 5, no. 1: 16. https://doi.org/10.3390/applmicrobiol5010016
APA StyleDuc, T. Q., Uebanso, T., Mawatari, K., & Takahashi, A. (2025). Elucidating the Capacity and Mechanism of Lactiplantibacillus plantarum in Synthesizing Essential Amino Acids from Non-Essential Amino Acids in a Novel Severely Deficient Medium. Applied Microbiology, 5(1), 16. https://doi.org/10.3390/applmicrobiol5010016