TtsI: Beyond Type III Secretion System Activation in Rhizobia
Abstract
:1. The Rhizobia–Legume Symbiotic Interaction
2. TtsI, the Key Regulator of the Rhizobial Type III Secretion System
3. The nod Regulon of S. fredii HH103
4. In Some Rhizobia, TtsI Regulates Not Only the T3SS but Also Other Bacterial Traits
5. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Poole, P.; Ramachandran, V.; Terpolilli, J. Rhizobia: From saprophytes to endosymbionts. Nat. Rev. Microbiol. 2018, 16, 291–303. [Google Scholar] [CrossRef]
- Roy, S.; Liu, W.; Nandety, R.S.; Crook, A.; Mysore, K.S.; Pislariu, C.I.; Frugoli, J.; Dickstein, R.; Udvardi, M.K. Celebrating 20 years of genetic discoveries in legume nodulation and symbiotic nitrogen fixation. Plant Cell 2020, 32, 15–41. [Google Scholar] [CrossRef]
- Yang, J.; Lan, L.; Jin, Y.; Yu, N.; Wang, D.; Wang, E. Mechanisms underlying legume-rhizobium symbioses. J. Integr. Plant Biol. 2022, 64, 244–267. [Google Scholar] [CrossRef] [PubMed]
- Luo, Z.; Liu, H.; Xie, F. Cellular and molecular basis of symbiotic nodule development. Curr. Opin. Plant Biol. 2023, 76, 102478. [Google Scholar] [CrossRef]
- Goyal, R.K.; Mattoo, A.K.; Schmidt, M.A. Rhizobial-Host Interactions and Symbiotic Nitrogen Fixation in Legume Crops Toward Agriculture Sustainability. Front. Microbiol. 2021, 12, 669404. [Google Scholar] [CrossRef] [PubMed]
- Jhu, M.Y.; Oldroyd, G.E.D. Dancing to a different tune, can we switch from chemical to biological nitrogen fixation for sustainable food security? PLoS Biol. 2023, 21, e3001982. [Google Scholar] [CrossRef]
- Peck, M.C.; Fisher, R.F.; Bliss, R.; Long, S.R. Isolation and characterization of mutant Sinorhizobium meliloti NodD1 proteins with altered responses to luteolin. J. Bacteriol. 2013, 195, 3714–3723. [Google Scholar] [CrossRef]
- López-Baena, F.J.; Ruiz-Sainz, J.E.; Rodríguez-Carvajal, M.A.; Vinardell, J.M. Bacterial molecular signals in the Sinorhizobium fredii-soybean symbiosis. Int. J. Mol. Sci. 2016, 17, 755. [Google Scholar] [CrossRef]
- Ghantasala, S.; Roy Choudhury, S. Nod factor perception: An integrative view of molecular communication during legume symbiosis. Plant Mol. Biol. 2022, 110, 485–509. [Google Scholar] [CrossRef] [PubMed]
- Quilbé, J.; Montiel, J.; Arrighi, J.F.; Stougaard, J. Molecular mechanisms of intercellular rhizobial infection: Novel findings of an ancient process. Front. Plant Sci. 2022, 13, 922982. [Google Scholar] [CrossRef] [PubMed]
- Krönauer, C.; Radutoiu, S. Understanding Nod factor signalling paves the way for targeted engineering in legumes and non-legumes. Curr. Opin. Plant Biol. 2021, 62, 102026. [Google Scholar] [CrossRef]
- Kelly, S.; Sullivan, J.T.; Kawaharada, Y.; Radutoiu, S.; Ronson, C.W.; Stougaard, J. Regulation of Nod factor biosynthesis by alternative NodD proteins at distinct stages of symbiosis provides additional compatibility scrutiny. Environ. Microbiol. 2018, 20, 97–110. [Google Scholar] [CrossRef] [PubMed]
- Jiménez-Guerrero, I.; Medina, C.; Vinardell, J.M.; Ollero, F.J.; López-Baena, F.J. The rhizobial type 3 secretion system: The Dr. Jekyll and Mr. Hyde in the rhizobium–legume symbiosis. Int. J. Mol. Sci. 2022, 23, 11089. [Google Scholar] [CrossRef] [PubMed]
- Teulet, A.; Camuel, A.; Perret, X.; Giraud, E. The versatile roles of type III secretion systems in rhizobium-legume symbioses. Ann. Rev. Microbiol. 2022, 76, 45–65. [Google Scholar] [CrossRef]
- Wang, T.; Balla, B.; Kovács, S.; Kereszt, A. Varietas Delectat: Exploring natural variations in nitrogen-fixing symbiosis research. Front. Plant Sci. 2022, 13, 856187. [Google Scholar] [CrossRef]
- Fuentes-Romero, F.; Mercogliano, M.; De Chiara, S.; Alías-Villegas, C.; Navarro-Gómez, P.; Acosta-Jurado, S.; Silipo, A.; Medina, C.; Rodríguez-Carvajal, M.Á.; Dardanelli, M.S.; et al. Exopolysaccharide is detrimental for the symbiotic performance of Sinorhizobium fredii HH103 mutants with a truncated lipopolysaccharide core. Biochem. J. 2024, 481, 1621–1637. [Google Scholar] [CrossRef]
- Sugawara, M.; Epstein, B.; Badgley, B.D.; Unno, T.; Xu, L.; Reese, J.; Gyaneshwar, P.; Denny, R.; Mudge, J.; Bharti, A.K.; et al. Comparative genomics of the core and accessory genomes of 48 Sinorhizobium strains comprising five genospecies. Genome Biol. 2013, 14, R17. [Google Scholar] [CrossRef]
- Hubber, A.; Vergunst, A.C.; Sullivan, J.T.; Hooykaas, P.J.; Ronson, C.W. Symbiotic phenotypes and translocated effector proteins of the Mesorhizobium loti strain R7A VirB/D4 type IV secretion system. Mol. Microbiol. 2004, 54, 561–574. [Google Scholar] [CrossRef]
- Hubber, A.M.; Sullivan, J.T.; Ronson, C.W. Symbiosis-induced cascade regulation of the Mesorhizobium loti R7A VirB/D4 type IV secretion system. Mol. Plant-Microbe Interact. 2007, 20, 255–261. [Google Scholar] [CrossRef] [PubMed]
- Tighilt, L.; Boulila, F.; De Sousa, B.F.S.; Giraud, E.; Ruiz-Argüeso, T.; Palacios, J.M.; Imperial, J.; Rey, L. The Bradyrhizobium sp. LmicA16 Type VI Secretion System is required for efficient nodulation of Lupinus spp. Microb. Ecol. 2022, 84, 844–855. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, B.F.S.; Domingo-Serrano, L.; Salinero-Lanzarote, A.; Palacios, J.M.; Rey, L. The T6SS-dependent effector Re78 of Rhizobium etli Mim1 benefits bacterial competition. Biology 2023, 12, 678. [Google Scholar] [CrossRef]
- Sánchez, C.; Iannino, F.; Deakin, W.J.; Ugalde, R.A.; Lepek, V.C. Characterization of the Mesorhizobium loti MAFF303099 type-three protein secretion system. Mol. Plant Microbe Interact. 2009, 22, 519–528. [Google Scholar] [CrossRef] [PubMed]
- Alaswad, A.; Oehrle, M.W.; Krishnan, H.B. Classical soybean (Glycine max (L.) Merr) symbionts, Sinorhizobium fredii USDA191 and Bradyrhizobium diazoefficiens USDA110, reveal contrasting symbiotic phenotype on pigeon pea (Cajanus cajan (L.) Millsp.). Int. J. Mol. Sci. 2019, 20, 1091. [Google Scholar] [CrossRef]
- Piromyou, P.; Songwattana, P.; Teamtisong, K.; Tittabutr, P.; Boonkerd, N.; Tantasawat, P.A.; Giraud, G.; Göttfert, M.; Teaumroong, N. Mutualistic co-evolution of T3SSs during the establishment of symbiotic relationships between Vigna radiata and Bradyrhizobia. Microbiol. Open 2019, 8, e781. [Google Scholar] [CrossRef] [PubMed]
- Okazaki, S.; Zehner, S.; Hempel, J.; Lang, K.; Göttfert, M. Genetic organization and functional analysis of the type III secretion system of Bradyrhizobium elkanii. FEMS Microbiol. Lett. 2009, 295, 88–95. [Google Scholar] [CrossRef] [PubMed]
- Krause, A.; Doerfel, A.; Göttfert, M. Mutational and transcriptional analysis of the type III secretion system of Bradyrhizobium japonicum. Mol. Plant Microbe Interact. 2002, 15, 1228–1235. [Google Scholar] [CrossRef]
- Busset, N.; Gully, D.; Teulet, A.; Fardoux, J.; Camuel, A.; Cornu, D.; Severac, D.; Giraud, E.; Mergaert, P. The type III effectome of the symbiotic Bradyrhizobium vignae strain ORS3257. Biomolecules 2021, 11, 1592. [Google Scholar] [CrossRef] [PubMed]
- Songwattana, P.; Noisangiam, R.; Teamtisong, K.; Prakamhang, J.; Teulet, A.; Tittabutr, P.; Piromyou, P.; Boonkerd, N.; Giraud, E.; Teaumroong, N. Type 3 secretion system (T3SS) of Bradyrhizobium sp. DOA9 and its roles in legume symbiosis and rice endophytic association. Front. Microbiol. 2017, 8, 1810. [Google Scholar] [CrossRef]
- Saad, M.M.; Crevecoeur, M.; Masson-Boivin, C.; Perret, X. The type 3 protein secretion system of Cupriavidus taiwanensis strain LMG19424 compromises symbiosis with Leucaena leucocephala. Appl. Environ. Microbiol. 2012, 78, 7476–7479. [Google Scholar] [CrossRef]
- Wang, X.; Huo, H.; Luo, Y.; Liu, D.; Zhao, L.; Zong, L.; Chou, M.; Chen, J.; Wei, G. Type III secretion systems impact Mesorhizobium amorphae CCNWGS0123 compatibility with Robinia pseudoacacia. Tree Physiol. 2019, 39, 1533–1550. [Google Scholar] [CrossRef] [PubMed]
- Tampakaki, A.P. Commonalities and differences of T3SSs in rhizobia and plant pathogenic bacteria. Front. Plant Sci. 2014, 5, 114. [Google Scholar] [CrossRef]
- Salinero-Lanzarote, A.; Pacheco-Moreno, A.; Domingo-Serrano, L.; Durán, D.; Ormeño-Orrillo, E.; Martínez-Romero, E.; Albareda, M.; Palacios, J.M.; Rey, L. The Type VI secretion system of Rhizobium etli Mim1 has a positive effect in symbiosis. FEMS Microbiol. Ecol. 2019, 95, fiz054. [Google Scholar] [CrossRef] [PubMed]
- Bladergroen, M.R.; Badelt, K.; Spaink, H.P. Infection-blocking genes of a symbiotic Rhizobium leguminosarum strain that are involved in temperature-dependent protein secretion. Mol. Plant Microbe Interact. 2023, 16, 53–64. [Google Scholar] [CrossRef]
- Reyes-Pérez, P.J.; Jiménez-Guerrero, I.; Sánchez-Reina, A.; Civantos, C.; Moreno-de Castro, N.; Ollero, F.J.; Gandullo, J.; Bernal, P. and Pérez-Montaño, F. The type VI secretion system of Sinorhizobium fredii USDA257 is required for successful nodulation with Glycine max cv. Peking. Microb. Biotechnol. 2024; submitted. [Google Scholar]
- Viprey, V.; Del Greco, A.; Golinowski, W.; Broughton, W.J.; Perret, X. Symbiotic implications of type III protein secretion machinery in Rhizobium. Mol. Microbiol. 1998, 28, 1381–1389. [Google Scholar] [CrossRef] [PubMed]
- Marie, C.; Deakin, W.J.; Ojanen-Reuhs, T.; Diallo, E.; Reuhs, B.; Broughton, W.J.; Perret, X. TtsI, a key regulator of Rhizobium species NGR234 is required for type III-dependent protein secretion and synthesis of rhamnose-rich polysaccharides. Mol. Plant-Microbe Interact. 2004, 17, 958–966. [Google Scholar] [CrossRef] [PubMed]
- Zehner, S.; Schober, G.; Wenzel, M.; Lang, K.; Göttfert, M. Expression of the Bradyrhizobium japonicum type III secretion system in legume nodules and analysis of the associated tts box promoter. Mol. Plant Microbe Interact. 2008, 21, 1087–1093. [Google Scholar] [CrossRef] [PubMed]
- Stock, A.M.; Robinson, V.L.; Goudreau, P.N. Two-component signal transduction. Annu. Rev. Biochem. 2000, 69, 183–215. [Google Scholar] [CrossRef] [PubMed]
- Delgado, J.; Forst, S.; Harlocker, S.; Inouye, M. Identification of a phosphorylation site and functional analysis of conserved aspartic acid residues of OmpR, a transcriptional activator for ompF and ompC in Escherichia coli. Mol. Microbiol. 1993, 10, 1037–1047. [Google Scholar] [CrossRef]
- Klose, K.E.; Weiss, D.S.; Kustu, S. Glutamate at the site of phosphorylation of nitrogen-regulatory protein NTRC mimics aspartylphosphate and activates the protein. J. Mol. Biol. 1993, 232, 67–78. [Google Scholar] [CrossRef] [PubMed]
- Lan, C.-Y.; Igo, M.M. 1998. Differential expression of the OmpF and OmpC porin proteins in Escherichia coli K-12 depends upon the level of active OmpR. J. Bacteriol. 1998, 180, 171–174. [Google Scholar] [CrossRef]
- López-Baena, F.J.; Vinardell, J.M.; Pérez-Montaño, F.; Crespo-Rivas, J.C.; Bellogín, R.A.; Espuny, M.D.R.; Ollero, F.J. Regulation and symbiotic significance of nodulation outer proteins secretion in Sinorhizobium fredii HH103. Microbiology 2008, 154, 1825–1836. [Google Scholar] [CrossRef]
- Okazaki, S.; Tittabutr, P.; Teulet, A.; Thouin, J.; Fardoux, J.; Chaintreuil, C.; Gully, D.; Arrighi, J.F.; Furuta, N.; Miwa, H.; et al. Rhizobium-legume symbiosis in the absence of Nod factors: Two possible scenarios with or without the T3SS. ISME J. 2016, 10, 64–74. [Google Scholar] [CrossRef] [PubMed]
- Teulet, A.; Busset, N.; Fardoux, J.; Gully, D.; Chaintreuil, C.; Cartieaux, F.; Jauneau, A.; Comorge, V.; Okazaki, S.; Kaneko, T.; et al. The rhizobial type III effector ErnA confers the ability to form nodules in legumes. PNAS USA 2019, 116, 21758–21768. [Google Scholar] [CrossRef]
- Camuel, A.; Teulet, A.; Carcagno, M.; Haq, F.; Pacquit, V.; Gully, D.; Pervent, M.; Chaintreuil, C.; Fardoux, J.; Horta-Araujo, N.; et al. Widespread Bradyrhizobium distribution of diverse Type III effectors that trigger legume nodulation in the absence of Nod factor. ISME J. 2023, 17, 1416–1429. [Google Scholar] [CrossRef]
- Margaret, I.; Becker, A.; Blom, J.; Bonilla, I.; Goesmann, A.; Göttfert, M.; Lloret, J.; Mittard-Runte, V.; Rückert, C.; Ruiz-Sainz, J.E.; et al. Symbiotic properties and first analyses of the genomic sequence of the fast growing model strain Sinorhizobium fredii HH103 nodulating soybean. J. Biotech. 2011, 155, 11–19. [Google Scholar] [CrossRef] [PubMed]
- de Lyra, M.C.; Lopez-Baena, F.J.; Madinabeitia, N.; Vinardell, J.M.; Espuny, M.R.; Cubo, M.T.; Bellogin, R.A.; Ruiz-Sainz, J.E.; Ollero, F.J. Inactivation of the Sinorhizobium fredii HH103 rhcJ gene abolishes nodulation outer proteins (Nops) secretion and decreases the symbiotic capacity with soybean. Int. Microbiol. 2006, 9, 125–133. [Google Scholar] [PubMed]
- Jiménez-Guerrero, I.; Acosta-Jurado, S.; Medina, C.; Ollero, F.J.; Alias-Villegas, C.; Vinardell, J.M.; Pérez-Montaño, F.; López-Baena, F.J. The Sinorhizobium fredii HH103 type III secretion system effector NopC blocks nodulation with Lotus japonicus Gifu. J. Exp. Bot. 2020, 71, 6043–6056. [Google Scholar] [CrossRef] [PubMed]
- Ma, C.; Liu, C.; Yu, Y.; Ma, S.; Pan, S.; Feng, H.; Chen, Q.; Xin, D.; Wu, X.; Wang, J. GmTNRP1, associated with rhizobial type-III effector NopT, regulates nitrogenase activity in the nodules of soybean (Glycine max). Food Energy Secur. 2023, 12, e466. [Google Scholar] [CrossRef]
- Pérez-Montaño, F.; Jiménez-Guerrero, I.; Acosta-Jurado, S.; Navarro-Gómez, P.; Ollero, F.J.; Ruiz-Sainz, J.E.; López-Baena, F.J.; Vinardell, J.M. A transcriptomic analysis of the effect of genistein on Sinorhizobium fredii HH103 reveals novel rhizobial genes putatively involved in symbiosis. Sci. Rep. 2016, 6, 31592. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gómez, P.; Fuentes-Romero, F.; Pérez-Montaño, F.; Jiménez-Guerrero, I.; Alías-Villegas, C.; Ayala-García, P.; Almozara, A.; Medina, C.; Ollero, F.J.; Rodríguez-Carvajal, M.Á.; et al. A complex regulatory network governs the expression of symbiotic genes in Sinorhizobium fredii HH103. Front. Plant Sci. 2023, 14, 1322435. [Google Scholar] [CrossRef] [PubMed]
- Vinardell, J.M.; López-Baena, F.J.; Hidalgo, A.; Ollero, F.J.; Bellogín, R.; del Rosario Espuny, M.; Temprano, F.; Romero, F.; Krishnan, H.B.; Pueppke, S.G.; et al. The effect of FITA mutations on the symbiotic properties of Sinorhizobium fredii varies in a chromosomal-background-dependent manner. Arch. Microbiol. 2004, 181, 144–154. [Google Scholar] [CrossRef] [PubMed]
- Acosta-Jurado, S.; Navarro-Gómez, P.; Murdoch, P.S.; Crespo-Rivas, J.C.; Jie, S.; Cuesta-Berrio, L.; Ruiz-Sainz, J.E.; Rodríguez-Carvajal, M.Á.; Vinardell, J.M. Exopolysaccharide production by Sinorhizobium fredii HH103 is repressed by genistein in a NodD1-dependent manner. PLoS ONE 2016, 11, e0160499. [Google Scholar] [CrossRef]
- Alías-Villegas, C.; Fuentes-Romero, F.; Cuéllar, V.; Navarro-Gómez, P.; Soto, M.J.; Vinardell, J.M.; Acosta-Jurado, S. Surface motility regulation of Sinorhizobium fredii HH103 by plant flavonoids and the NodD1, TtsI, NolR, and MucR1 symbiotic bacterial regulators. Int. J. Mol. Sci. 2022, 23, 7698. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Alias-Villegas, C.; Navarro-Gómez, P.; Almozara, A.; Rodríguez-Carvajal, M.A.; Medina, C.; Vinardell, J.M. Sinorhizobium fredii HH103 syrM inactivation affects the expression of a large number of genes, impairs nodulation with soybean and extends the host-range to Lotus japonicus. Environ. Microbiol. 2020, 22, 1104–1124. [Google Scholar] [CrossRef] [PubMed]
- Navarro-Gómez, P.; Alías-Villegas, C.; Jiménez-Guerrero, I.; Fuentes-Romero, F.; López-Baena, F.J.; Acosta-Jurado, S.; Vinardell, J.M. Sinorhizobium fredii HH103 flgJ is a flagellar gene induced by genistein in a NodD1- and TtsI- dependent manner. Plant Soil 2024, 505, 845–862. [Google Scholar] [CrossRef]
- Acosta-Jurado, S.; Rodríguez-Navarro, D.N.; Kawaharada, Y.; Rodríguez-Carvajal, M.A.; Gil-Serrano, A.; Soria-Díaz, M.E.; Pérez-Montaño, F.; Fernández-Perea, J.; Niu, Y.; Alias-Villegas, C.; et al. Sinorhizobium fredii HH103 nolR and nodD2 mutants gain capacity for infection thread invasion of Lotus japonicus Gifu and Lotus burttii. Environ. Microbiol. 2019, 21, 1718–1739. [Google Scholar] [CrossRef]
- Reuhs, B.L.; Relić, B.; Forsberg, L.S.; Marie, C.; Ojanen-Reuhs, T.; Stephens, S.B.; Wong, C.H.; Jabbouri, S.; Broughton, W.J. Structural characterization of a flavonoid-inducible Pseudomonas aeruginosa A-band-like O antigen of Rhizobium sp. strain NGR234, required for the formation of nitrogen-fixing nodules. J. Bact. 2005, 187, 6479–6487. [Google Scholar] [CrossRef]
- Vinardell, J.M.; Acosta-Jurado, S.; Zehner, S.; Göttfert, M.; Becker, A.; Baena, I.; Blom, J.; Crespo-Rivas, J.C.; Goesmann, A.; Jaenicke, S.; et al. The Sinorhizobium fredii HH103 genome: A comparative analysis with S. fredii strains differing in their symbiotic behavior with soybean. Mol. Plant-Microbe Interact. 2015, 28, 811–824. [Google Scholar] [CrossRef] [PubMed]
- Gao, M.; D’Haeze, W.; De Rycke, R.; Wolucka, B.; Holsters, M. Knockout of an azorhizobial dTDP-L-rhamnose synthase affects lipopolysaccharide and extracellular polysaccharide production and disables symbiosis with Sesbania rostrata. Mol. Plant-Microbe Interact. 2001, 14, 857–866. [Google Scholar] [CrossRef]
- Kaneko, T.; Nakamura, Y.; Sato, S.; Asamizu, E.; Kato, T.; Sasamoto, S.; Watanabe, A.; Idesawa, K.; Ishikawa, A.; Kawashima, K.; et al. Complete genome structure of the nitrogen-fixing symbiotic bacterium Mesorhizobium loti. DNA Res. 2000, 7, 331–338. [Google Scholar] [CrossRef] [PubMed]
- Escobar, M.R.; Lepek, V.C.; Basile, L.A. Influence of cyclic di-GMP metabolism to T3SS expression, biofilm formation and symbiosis efficiency in Mesorhizobium japonicum MAFF303099. FEMS Microbiol. Lett. 2023, 370, fnad087. [Google Scholar] [CrossRef] [PubMed]
- Duarte, C.M.; Basile, L.A.; Zalguizuri, A.; Lepek, V.C. The transcriptional factor TtsI is involved in a negative regulation of swimming motility in Mesorhizobium loti MAFF303099. FEMS Microbiol. Lett. 2016, 363, fnw222. [Google Scholar] [CrossRef] [PubMed]
- Fuentes-Romero, F.; Moyano-Bravo, I.; Ayala-García, P.; Rodríguez-Carvajal, M.Á.; Pérez-Montaño, F.; Acosta-Jurado, S.; Ollero, F.J.; Vinardell, J.M. non-ionic osmotic stress induces the biosynthesis of Nodulation Factors and affects other symbiotic traits in Sinorhizobium fredii HH103. Biology 2023, 12, 148. [Google Scholar] [CrossRef] [PubMed]
- Cesbron, S.; Paulin, J.P.; Tharaud, M.; Barny, M.A.; Brisset, M.N. The alternative sigma factor HrpL negatively modulates the flagellar system in the phytopathogenic bacterium Erwinia amylovora under hrp-inducing conditions. FEMS Microbiol. Lett. 2006, 257, 221–227. [Google Scholar] [CrossRef] [PubMed]
- Lopez-Gomez, M.; Sandal, N.; Stougaard, J.; Boller, T. Interplay of flg22-induced defence responses and nodulation in Lotus japonicus. J. Exp. Bot. 2012, 63, 393–401. [Google Scholar] [CrossRef]
- Wheatley, R.M.; Ford, B.L.; Li, L.; Aroney, S.T.N.; Knights, H.E.; Ledermann, R.; East, A.K.; Ramachandran, V.K.; Poole, P.S. Lifestyle adaptations of Rhizobium from rhizosphere to symbiosis. Proc. Natl. Acad. Sci. USA 2020, 117, 2382323834. [Google Scholar] [CrossRef] [PubMed]
- Worrall, L.J.; Majewski, D.D.; Strynadka, N.C.J. Structural insights into Type III Secretion Systems of the bacterial flagellum and injectisome. Annu. Rev. Microbiol. 2023, 77, 669–698. [Google Scholar] [CrossRef] [PubMed]
Genus | Species | Demonstrated Presence of Functional TXSS 1 | Comments | References | ||
---|---|---|---|---|---|---|
T3SS | T4SS | T6SS | ||||
Bradyrhizobium | T3SS present in most strains. | [8,13,14] | ||||
B. diazoefficiens | Yes | [23,24] | ||||
B. elkanii | Yes | [25] | ||||
B. japonicum | Yes | [26] | ||||
B. vignae | Yes | [27] | ||||
Bradyrhizobium sp. | Yes | Yes | T6SS described in LmicA16 strain. | [20,28] | ||
Cupriavidus | ||||||
C. taiwanensis | Yes | Atypical T3SS. | [29] | |||
Mesorhizobium | ||||||
M. amorphae | Yes | [30] | ||||
M. loti | Yes | Yes | T4SS described in R7A strain. | [18,22] | ||
Rhizobium | ||||||
R. etli | Yes | T6SS described in Mim1 strain. T3SS genes described in some strains. | [31,32] | |||
R. leguminosarum | Yes | T6SS described in RBL5787 strain. T3SS genes described in some strains. | [31,33] | |||
Sinorhizobium | ||||||
S. fredii | Yes | Yes | T3SS present in most strains. T6SS described in USDA257 strain. | [8,13,14,34] | ||
S. medicae | Yes | T4SS present in most strains. | [17] | |||
S. meliloti | Yes | T4SS present in most strains. Low frequency of T3SS (functionality not demonstrated). | [8,13,17] |
Locus Tag/Gene Name | Putative Function | Fold Change Expression in the WT + Genistein a | Fold Change Expression in the ttsI Mutant + Genistein a | Ratio ttsI Mutant/WT b |
---|---|---|---|---|
Chromosome | ||||
SFHH103_00346/flgJ | Flagellar protein | 7.57 | 2.07 | 0.27 |
SFHH103_00347/flgN | Flagellar protein | 6.98 | 1.52 | 0.22 |
SFHH103_00348/motF | Flagellar protein | 4.34 | 1.24 | 0.29 |
SFHH103_00844 | Zinc-finger protein, putative RNA binding | 3.23 | 1.20 | 0.37 |
SFHH103_01317 | Siderophore synthetase component | 0.31 | 0.99 | 3.16 |
SFHH103_01920 | NAD(P)-dependent oxidoreductase | 4.59 | 1.49 | 0.32 |
SFHH103_02192 | Calcium-binding exoprotein | 6.90 | 11.64 | 1.69 |
SFHH103_02323/hmuU | Hemin ABC transporter | 0.30 | 1.26 | 4.13 |
SFHH103_03749 | TetR family transcriptional regulator | 3.88 | 1.53 | 0.39 |
pSfHH103e | ||||
SFHH103_05319 | TetR family transcriptional regulator | 0.29 | 0.47 | 1.62 |
SFHH103_05320 | Multidrug efflux transporter protein | 0.20 | 0.42 | 2.08 |
SFHH103_05321 | Multidrug efflux transporter protein | 0.18 | 0.40 | 2.23 |
SFHH103_06013/pdh | Putative pyruvate dehydrogenase E1 component | 3.58 | 2.41 | 0.67 |
pSfHH103d | ||||
psfHH103d_208 | ABC-type transport system, periplasmic component | 17.43 | 39.14 | 2.25 |
psfHH103d_275 | Hypothetical protein | 3.45 | 1.43 | 0.41 |
psfHH103d_274 | Hypothetical protein | 3.36 | 1.24 | 0.37 |
psfHH103d_367 | SyrM LysR family transcriptional regulator | 5.81 | 9.29 | 1.60 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiménez-Guerrero, I.; Acosta-Jurado, S.; Navarro-Gómez, P.; Fuentes-Romero, F.; Alías-Villegas, C.; López-Baena, F.-J.; Vinardell, J.-M. TtsI: Beyond Type III Secretion System Activation in Rhizobia. Appl. Microbiol. 2025, 5, 4. https://doi.org/10.3390/applmicrobiol5010004
Jiménez-Guerrero I, Acosta-Jurado S, Navarro-Gómez P, Fuentes-Romero F, Alías-Villegas C, López-Baena F-J, Vinardell J-M. TtsI: Beyond Type III Secretion System Activation in Rhizobia. Applied Microbiology. 2025; 5(1):4. https://doi.org/10.3390/applmicrobiol5010004
Chicago/Turabian StyleJiménez-Guerrero, Irene, Sebastián Acosta-Jurado, Pilar Navarro-Gómez, Francisco Fuentes-Romero, Cynthia Alías-Villegas, Francisco-Javier López-Baena, and José-María Vinardell. 2025. "TtsI: Beyond Type III Secretion System Activation in Rhizobia" Applied Microbiology 5, no. 1: 4. https://doi.org/10.3390/applmicrobiol5010004
APA StyleJiménez-Guerrero, I., Acosta-Jurado, S., Navarro-Gómez, P., Fuentes-Romero, F., Alías-Villegas, C., López-Baena, F.-J., & Vinardell, J.-M. (2025). TtsI: Beyond Type III Secretion System Activation in Rhizobia. Applied Microbiology, 5(1), 4. https://doi.org/10.3390/applmicrobiol5010004