Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems
Abstract
:1. Introduction
2. Formation of AM Symbiosis
3. Factors Affecting AM Fungi Association
4. Contribution of AM Fungi in Agroecosystem Sustainability
4.1. Contribution of AM Fungi in Maintaining Soil Health and Nutrient Cycling and Reducing Chemical Fertilizer
4.2. Contribution of AM Fungi in Transferring Resources Within Agroecosystems
4.3. Contribution of AM Fungi to Mitigate Enviornmental Stresses
4.3.1. Plant and AM Fungi Interaction and Abiotic Stress
4.3.2. Plant and AM Fungi Interaction and Biotic Stress
4.4. Contribution of AM Fungi in Maintaining Biodiversity
4.5. Contribution of AM Fungi in Soil Bioremediation
4.6. Contribution of AM Fungi in Pathogen and Weed Suppression
5. Challenges of AM Fungi in Maintaining Soil Health and Sustainable Agroecosystem
6. Ways to Increase the Efficiency of AM Fungi in Maintaining Sustainable Agroecosystems
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fierer, N. Embracing the Unknown: Disentangling the Complexities of the Soil Microbiome. Nat. Rev. Microbiol. 2017, 15, 579–590. [Google Scholar] [CrossRef] [PubMed]
- Berendsen, R.L.; Pieterse, C.M.J.; Bakker, P.A.H.M. The Rhizosphere Microbiome and Plant Health. Trends Plant Sci. 2012, 17, 478–486. [Google Scholar] [CrossRef]
- Burlakoti, S.; Devkota, A.R.; Poudyal, S.; Kaundal, A. Beneficial Plant–Microbe Interactions and Stress Tolerance in Maize. Appl. Microbiol. 2024, 4, 1000–1015. [Google Scholar] [CrossRef]
- Van Der Heijden, M.G.A.; Bardgett, R.D.; Van Straalen, N.M. The Unseen Majority: Soil Microbes as Drivers of Plant Diversity and Productivity in Terrestrial Ecosystems. Ecol. Lett. 2008, 11, 296–310. [Google Scholar] [CrossRef]
- Wagg, C.; Bender, S.F.; Widmer, F.; van der Heijden, M.G.A. Soil Biodiversity and Soil Community Composition Determine Ecosystem Multifunctionality. Proc. Natl. Acad. Sci. USA 2014, 111, 5266–5270. [Google Scholar] [CrossRef]
- Acharya, B.R.; Gill, S.P.; Kaundal, A.; Sandhu, D. Strategies for Combating Plant Salinity Stress: The Potential of Plant Growth-Promoting Microorganisms. Front. Plant Sci. 2024, 15, 1406913. [Google Scholar] [CrossRef]
- Devkota, A.R.; Wilson, T.; Kaundal, A. Soil and Root Microbiome Analysis and Isolation of Plant Growth-Promoting Bacteria from Hybrid Buffaloberry (Shepherdia Utahensis ‘Torrey’) across Three Locations. Front. Microbiol. 2024, 15, 1396064. [Google Scholar] [CrossRef] [PubMed]
- Ganesh, J.; Hewitt, K.; Devkota, A.R.; Wilson, T.; Kaundal, A. IAA-Producing Plant Growth Promoting Rhizobacteria from Ceanothus Velutinus Enhance Cutting Propagation Efficiency and Arabidopsis Biomass. Front. Plant Sci. 2024, 15, 1374877. [Google Scholar] [CrossRef]
- Marten, G.G. Productivity, Stability, Sustainability, Equitability and Autonomy as Properties for Agroecosystem Assessment. Agric. Syst. 1988, 26, 291–316. [Google Scholar] [CrossRef]
- Bellon, M. Farmers’ Knowledge and Sustainable Agroecosystem Management: An Operational Definition and an Example from Chiapas, Mexico. Hum. Organ. 1995, 54, 263–272. [Google Scholar] [CrossRef]
- Brown, B.J.; Hanson, M.E.; Liverman, D.M.; Merideth, R.W. Global Sustainability: Toward Definition. Environ. Manag. 1987, 11, 713–719. [Google Scholar] [CrossRef]
- Douglass, G.K. Agricultural Sustainability in a Changing World; Westview Press: Boulder, CO, USA, 1984. [Google Scholar]
- Brundrett, M. Diversity and Classification of Mycorrhizal Associations. Biol. Rev. 2004, 79, 473–495. [Google Scholar] [CrossRef]
- Begum, N.; Qin, C.; Ahanger, M.A.; Raza, S.; Khan, M.I.; Ashraf, M.; Ahmed, N.; Zhang, L. Role of Arbuscular Mycorrhizal Fungi in Plant Growth Regulation: Implications in Abiotic Stress Tolerance. Front. Plant Sci. 2019, 10, 1068. [Google Scholar] [CrossRef]
- Miransari, M.; Bahrami, H.A.; Rejali, F.; Malakouti, M.J. Effects of Soil Compaction and Arbuscular Mycorrhiza on Corn (Zea mays L.) Nutrient Uptake. Soil Tillage Res. 2009, 103, 282–290. [Google Scholar] [CrossRef]
- Evelin, H.; Kapoor, R.; Giri, B. Arbuscular Mycorrhizal Fungi in Alleviation of Salt Stress: A Review. Ann. Bot. 2009, 104, 1263–1280. [Google Scholar] [CrossRef] [PubMed]
- Mosse, B. Plant Growth Responses to Vesicular-Arbuscular Mycorrhiza. New Phytol. 1973, 72, 127–136. [Google Scholar] [CrossRef]
- Cameron, D.D. Arbuscular Mycorrhizal Fungi as (Agro)Ecosystem Engineers. Plant Soil 2010, 333, 1–5. [Google Scholar] [CrossRef]
- George, E.; Marschner, H.; Jakobsen, I. Role of Arbuscular Mycorrhizal Fungi in Uptake of Phosphorus and Nitrogen From Soil. Crit. Rev. Biotechnol. 1995, 15, 257–270. [Google Scholar] [CrossRef]
- Miransari, M. Arbuscular Mycorrhizal Fungi and Nitrogen Uptake. Arch. Microbiol. 2011, 193, 77–81. [Google Scholar] [CrossRef] [PubMed]
- Fall, A.F.; Nakabonge, G.; Ssekandi, J.; Founoune-Mboup, H.; Badji, A.; Ndiaye, A.; Ndiaye, M.; Kyakuwa, P.; Anyoni, O.G.; Kabaseke, C.; et al. Combined Effects of Indigenous Arbuscular Mycorrhizal Fungi (AMF) and NPK Fertilizer on Growth and Yields of Maize and Soil Nutrient Availability. Sustainability 2023, 15, 2243. [Google Scholar] [CrossRef]
- Smith, S.E.; Smith, F.A.; Jakobsen, I. Mycorrhizal Fungi Can Dominate Phosphate Supply to Plants Irrespective of Growth Responses. Plant Physiol. 2003, 133, 16–20. [Google Scholar] [CrossRef]
- Roth, R.; Paszkowski, U. Plant Carbon Nourishment of Arbuscular Mycorrhizal Fungi. Curr. Opin. Plant Biol. 2017, 39, 50–56. [Google Scholar] [CrossRef] [PubMed]
- Bonfante, P. At the Interface Between Mycorrhizal Fungi and Plants: The Structural Organization of Cell Wall, Plasma Membrane and Cytoskeleton. In Fungal Associations; Springer: Berlin/Heidelberg, Germany, 2001; pp. 45–61. [Google Scholar]
- Bonfante, P.; Anca, I.-A. Plants, Mycorrhizal Fungi, and Bacteria: A Network of Interactions. Annu. Rev. Microbiol. 2009, 63, 363–383. [Google Scholar] [CrossRef]
- Smith, S.E.; Read, D. Mycorrhizal Symbiosis; Elsevier: Amsterdam, The Netherlands, 2008; ISBN 9780123705266. [Google Scholar]
- Schüβler, A.; Schwarzott, D.; Walker, C. A New Fungal Phylum, the Glomeromycota: Phylogeny and Evolution. Mycol. Res. 2001, 105, 1413–1421. [Google Scholar] [CrossRef]
- Schüßler, A.; Walker, C. 7 Evolution of the ‘Plant-Symbiotic’ Fungal Phylum, Glomeromycota. In Evolution of Fungi and Fungal-Like Organisms; Springer: Berlin/Heidelberg, Germany, 2011; pp. 163–185. [Google Scholar]
- Floss, D.S.; Levy, J.G.; Lévesque-Tremblay, V.; Pumplin, N.; Harrison, M.J. DELLA Proteins Regulate Arbuscule Formation in Arbuscular Mycorrhizal Symbiosis. Proc. Natl. Acad. Sci. USA 2013, 110, E5025–E5034. [Google Scholar] [CrossRef]
- Choi, J.; Summers, W.; Paszkowski, U. Mechanisms Underlying Establishment of Arbuscular Mycorrhizal Symbioses. Annu. Rev. Phytopathol. 2018, 56, 135–160. [Google Scholar] [CrossRef]
- Brundrett, M. Mycorrhizas in Natural Ecosystems. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 1991; pp. 171–313. [Google Scholar]
- Newman, E.I.; Harley, J.L.; Harley, E.L. A Check-List of Mycorrhiza in the British Flora. J. Ecol. 1988, 76, 292. [Google Scholar] [CrossRef]
- Akiyama, K.; Matsuzaki, K.; Hayashi, H. Plant Sesquiterpenes Induce Hyphal Branching in Arbuscular Mycorrhizal Fungi. Nature 2005, 435, 824–827. [Google Scholar] [CrossRef] [PubMed]
- Parniske, M. Arbuscular Mycorrhiza: The Mother of Plant Root Endosymbioses. Nat. Rev. Microbiol. 2008, 6, 763–775. [Google Scholar] [CrossRef]
- Bouwmeester, H.J.; Matusova, R.; Zhongkui, S.; Beale, M.H. Secondary Metabolite Signalling in Host–Parasitic Plant Interactions. Curr. Opin. Plant Biol. 2003, 6, 358–364. [Google Scholar] [CrossRef]
- Besserer, A.; Puech-Pagès, V.; Kiefer, P.; Gomez-Roldan, V.; Jauneau, A.; Roy, S.; Portais, J.-C.; Roux, C.; Bécard, G.; Séjalon-Delmas, N. Strigolactones Stimulate Arbuscular Mycorrhizal Fungi by Activating Mitochondria. PLoS Biol. 2006, 4, e226. [Google Scholar] [CrossRef] [PubMed]
- Besserer, A.; Bécard, G.; Jauneau, A.; Roux, C.; Séjalon-Delmas, N. GR24, a Synthetic Analog of Strigolactones, Stimulates the Mitosis and Growth of the Arbuscular Mycorrhizal Fungus Gigaspora rosea by Boosting Its Energy Metabolism. Plant Physiol. 2008, 148, 402–413. [Google Scholar] [CrossRef]
- Conn, C.E.; Bythell-Douglas, R.; Neumann, D.; Yoshida, S.; Whittington, B.; Westwood, J.H.; Shirasu, K.; Bond, C.S.; Dyer, K.A.; Nelson, D.C. Convergent Evolution of Strigolactone Perception Enabled Host Detection in Parasitic Plants. Science 2015, 349, 540–543. [Google Scholar] [CrossRef]
- Yoneyama, K.; Awad, A.A.; Xie, X.; Yoneyama, K.; Takeuchi, Y. Strigolactones as Germination Stimulants for Root Parasitic Plants. Plant Cell Physiol. 2010, 51, 1095–1103. [Google Scholar] [CrossRef] [PubMed]
- Samejima, H.; Babiker, A.G.; Mustafa, A.; Sugimoto, Y. Identification of Striga Hermonthica-Resistant Upland Rice Varieties in Sudan and Their Resistance Phenotypes. Front. Plant Sci. 2016, 7, 634. [Google Scholar] [CrossRef] [PubMed]
- Vogel, J.T.; Walter, M.H.; Giavalisco, P.; Lytovchenko, A.; Kohlen, W.; Charnikhova, T.; Simkin, A.J.; Goulet, C.; Strack, D.; Bouwmeester, H.J.; et al. SlCCD7 Controls Strigolactone Biosynthesis, Shoot Branching and Mycorrhiza-Induced Apocarotenoid Formation in Tomato. Plant J. 2009, 61, 300–311. [Google Scholar] [CrossRef]
- Yoneyama, K.; Xie, X.; Kim, H.I.; Kisugi, T.; Nomura, T.; Sekimoto, H.; Yokota, T.; Yoneyama, K. How Do Nitrogen and Phosphorus Deficiencies Affect Strigolactone Production and Exudation? Planta 2012, 235, 1197–1207. [Google Scholar] [CrossRef] [PubMed]
- Jamil, M.; Charnikhova, T.; Cardoso, C.; Jamil, T.; Ueno, K.; Verstappen, F.; Asami, T.; Bouwmeester, H.J. Quantification of the Relationship between Strigolactones and Striga hermonthica Infection in Rice under Varying Levels of Nitrogen and Phosphorus. Weed Res. 2011, 51, 373–385. [Google Scholar] [CrossRef]
- Siqueira, J.O.; Safir, G.R.; Nair, M.G. Stimulation of Vesicular-arbuscular Mycorrhiza Formation and Growth of White Clover by Flavonoid Compounds. New Phytol. 1991, 118, 87–93. [Google Scholar] [CrossRef]
- Cardoso, C.; Charnikhova, T.; Jamil, M.; Delaux, P.-M.; Verstappen, F.; Amini, M.; Lauressergues, D.; Ruyter-Spira, C.; Bouwmeester, H. Differential Activity of Striga Hermonthica Seed Germination Stimulants and Gigaspora Rosea Hyphal Branching Factors in Rice and Their Contribution to Underground Communication. PLoS ONE 2014, 9, e104201. [Google Scholar] [CrossRef] [PubMed]
- Yoneyama, K.; Arakawa, R.; Ishimoto, K.; Kim, H.I.; Kisugi, T.; Xie, X.; Nomura, T.; Kanampiu, F.; Yokota, T.; Ezawa, T.; et al. Difference in Striga-susceptibility Is Reflected in Strigolactone Secretion Profile, but Not in Compatibility and Host Preference in Arbuscular Mycorrhizal Symbiosis in Two Maize Cultivars. New Phytol. 2015, 206, 983–989. [Google Scholar] [CrossRef]
- Moosavi, M.; Khorassani, R.; Tavakkol Afshari, R. Strigolactone (GR24) and Abscisic Acid Induced Drought Tolerance in Wheat by Ameliorating Nutrient Uptake. J. Plant Growth Regul. 2024, 1–16. [Google Scholar] [CrossRef]
- Tsai, S.M.; Phillips, D.A. Flavonoids Released Naturally from Alfalfa Promote Development of Symbiotic Glomus Spores In Vitro. Appl. Environ. Microbiol. 1991, 57, 1485–1488. [Google Scholar] [CrossRef] [PubMed]
- Nagahashi, G.; Douds, D.D.; Ferhatoglu, Y. Functional Categories of Root Exudate Compounds and Their Relevance to AM Fungal Growth. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Dordrecht, The Netherlands, 2010; pp. 33–56. [Google Scholar]
- Javot, H.; Pumplin, N.; Harrison, M.J. Phosphate in the Arbuscular Mycorrhizal Symbiosis: Transport Properties and Regulatory Roles. Plant Cell Environ. 2007, 30, 310–322. [Google Scholar] [CrossRef] [PubMed]
- Doidy, J. The Medicago Truncatula Sucrose Transporter Family: Sugar Transport from Plant Source Leaves Towards the Arbuscular Mycorrhizal Fungus. Ph.D. Thesis, Université de Bourgogne, Dijon, France, 2012. [Google Scholar]
- Fellbaum, C.R.; Gachomo, E.W.; Beesetty, Y.; Choudhari, S.; Strahan, G.D.; Pfeffer, P.E.; Kiers, E.T.; Bücking, H. Carbon Availability Triggers Fungal Nitrogen Uptake and Transport in Arbuscular Mycorrhizal Symbiosis. Proc. Natl. Acad. Sci. USA 2012, 109, 2666–2671. [Google Scholar] [CrossRef]
- Brundrett, M.C.; Piché, Y.; Peterson, R.L. A Developmental Study of the Early Stages in Vesicular–Arbuscular Mycorrhiza Formation. Can. J. Bot. 1985, 63, 184–194. [Google Scholar] [CrossRef]
- Zangaro, W.; Nishidate, F.R.; Vandresen, J.; Andrade, G.; Nogueira, M.A. Root Mycorrhizal Colonization and Plant Responsiveness Are Related to Root Plasticity, Soil Fertility and Successional Status of Native Woody Species in Southern Brazil. J. Trop. Ecol. 2007, 23, 53–62. [Google Scholar] [CrossRef]
- Frey-Klett, P.; Garbaye, J.; Tarkka, M. The Mycorrhiza Helper Bacteria Revisited. New Phytol. 2007, 176, 22–36. [Google Scholar] [CrossRef]
- Pozo, M.J.; Azcón-Aguilar, C. Unraveling Mycorrhiza-Induced Resistance. Curr. Opin. Plant Biol. 2007, 10, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Johnson, N.C. Resource Stoichiometry Elucidates the Structure and Function of Arbuscular Mycorrhizas across Scales. New Phytol. 2010, 185, 631–647. [Google Scholar] [CrossRef] [PubMed]
- Barman, J.; Samanta, A.; Saha, B.; Datta, S. Mycorrhiza. Resonance 2016, 21, 1093–1104. [Google Scholar] [CrossRef]
- Munyanziza, E.; Kehri, H.K.; Bagyaraj, D.J. Agricultural Intensification, Soil Biodiversity and Agro-Ecosystem Function in the Tropics: The Role of Mycorrhiza in Crops and Trees. Appl. Soil Ecol. 1997, 6, 77–85. [Google Scholar] [CrossRef]
- Lenoir, I.; Fontaine, J.; Lounès-Hadj Sahraoui, A. Arbuscular Mycorrhizal Fungal Responses to Abiotic Stresses: A Review. Phytochemistry 2016, 123, 4–15. [Google Scholar] [CrossRef] [PubMed]
- Porcel, R.; Aroca, R.; Ruiz-Lozano, J.M. Salinity Stress Alleviation Using Arbuscular Mycorrhizal Fungi. A Review. Agron. Sustain. Dev. 2012, 32, 181–200. [Google Scholar] [CrossRef]
- Kibblewhite, M.G.; Ritz, K.; Swift, M.J. Soil Health in Agricultural Systems. Philos. Trans. R. Soc. B Biol. Sci. 2008, 363, 685–701. [Google Scholar] [CrossRef]
- Menge, J.A. Utilization of Vesicular–Arbuscular Mycorrhizal Fungi in Agriculture. Can. J. Bot. 1983, 61, 1015–1024. [Google Scholar] [CrossRef]
- ud din Khanday, M.; Bhat, R.A.; Haq, S.; Dervash, M.A.; Bhatti, A.A.; Nissa, M.; Mir, M.R. Arbuscular Mycorrhizal Fungi Boon for Plant Nutrition and Soil Health. In Soil Science: Agricultural and Environmental Prospectives; Springer International Publishing: Cham, Switzerland, 2016; pp. 317–332. [Google Scholar]
- Cardoso, I.; Kuyper, T. Mycorrhizas and Tropical Soil Fertility. Agric. Ecosyst. Environ. 2006, 116, 72–84. [Google Scholar] [CrossRef]
- Milleret, R.; Le Bayon, R.-C.; Gobat, J.-M. Root, Mycorrhiza and Earthworm Interactions: Their Effects on Soil Structuring Processes, Plant and Soil Nutrient Concentration and Plant Biomass. Plant Soil 2009, 316, 1–12. [Google Scholar] [CrossRef]
- Astiko, W.; Sastrahidayat, I.R.; Djauhari, S.; Muhibuddin, A. The Role of Indigenous Mycorrhiza in Combination with Cattle Manure in Improving Maize Yield (Zea mays L.) on Sandy Loam of Northern Lombok, Eastern of Indonesia. J. Tanah Trop. (J. Trop. Soils) 2013, 18, 53–58. [Google Scholar] [CrossRef]
- Celik, I.; Ortas, I.; Kilic, S. Effects of Compost, Mycorrhiza, Manure and Fertilizer on Some Physical Properties of a Chromoxerert Soil. Soil Tillage Res. 2004, 78, 59–67. [Google Scholar] [CrossRef]
- Miller, R.M.; Jastrow, J.D. Mycorrhizal Fungi Influence Soil Structure. In Arbuscular Mycorrhizas: Physiology and Function; Springer: Dordrecht, The Netherlands, 2000; pp. 3–18. [Google Scholar]
- Graf, F.; Frei, M. Soil Aggregate Stability Related to Soil Density, Root Length, and Mycorrhiza Using Site-Specific Alnus Incana and Melanogaster variegatus s.l. Ecol. Eng. 2013, 57, 314–323. [Google Scholar] [CrossRef]
- Liu, Y.; Johnson, N.C.; Mao, L.; Shi, G.; Jiang, S.; Ma, X.; Du, G.; An, L.; Feng, H. Phylogenetic Structure of Arbuscular Mycorrhizal Community Shifts in Response to Increasing Soil Fertility. Soil Biol. Biochem. 2015, 89, 196–205. [Google Scholar] [CrossRef]
- Klironomos, J.N. Variation in Plant Response to Native and Exotic Arbuscular Mycorrhizal Fungi. Ecology 2003, 84, 2292–2301. [Google Scholar] [CrossRef]
- Meng, L.; Zhang, A.; Wang, F.; Han, X.; Wang, D.; Li, S. Arbuscular Mycorrhizal Fungi and Rhizobium Facilitate Nitrogen Uptake and Transfer in Soybean/Maize Intercropping System. Front. Plant Sci. 2015, 6, 339. [Google Scholar] [CrossRef] [PubMed]
- Wahbi, S.; Maghraoui, T.; Hafidi, M.; Sanguin, H.; Oufdou, K.; Prin, Y.; Duponnois, R.; Galiana, A. Enhanced Transfer of Biologically Fixed N from Faba Bean to Intercropped Wheat through Mycorrhizal Symbiosis. Appl. Soil Ecol. 2016, 107, 91–98. [Google Scholar] [CrossRef]
- Saharan, K.; Schütz, L.; Kahmen, A.; Wiemken, A.; Boller, T.; Mathimaran, N. Finger Millet Growth and Nutrient Uptake Is Improved in Intercropping with Pigeon Pea Through “Biofertilization” and “Bioirrigation” Mediated by Arbuscular Mycorrhizal Fungi and Plant Growth Promoting Rhizobacteria. Front. Environ. Sci. 2018, 6, 46. [Google Scholar] [CrossRef]
- Dowarah, B.; Gill, S.S.; Agarwala, N. Arbuscular Mycorrhizal Fungi in Conferring Tolerance to Biotic Stresses in Plants. J. Plant Growth Regul. 2022, 41, 1429–1444. [Google Scholar] [CrossRef]
- Yang, S.; Imran; Ortas, I. Impact of Mycorrhiza on Plant Nutrition and Food Security. J. Plant Nutr. 2023, 46, 3247–3272. [Google Scholar] [CrossRef]
- Jeffries, P.; Gianinazzi, S.; Perotto, S.; Turnau, K.; Barea, J.-M. The Contribution of Arbuscular Mycorrhizal Fungi in Sustainable Maintenance of Plant Health and Soil Fertility. Biol. Fertil. Soils 2003, 37, 1–16. [Google Scholar] [CrossRef]
- Mohammad, M.J.; Hamad, S.R.; Malkawi, H.I. Population of Arbuscular Mycorrhizal Fungi in Semi-Arid Environment of Jordan as Influenced by Biotic and Abiotic Factors. J. Arid. Environ. 2003, 53, 409–417. [Google Scholar] [CrossRef]
- Hajiboland, R.; Aliasgharzadeh, N.; Laiegh, S.F.; Poschenrieder, C. Colonization with Arbuscular Mycorrhizal Fungi Improves Salinity Tolerance of Tomato (Solanum lycopersicum L.) Plants. Plant Soil 2010, 331, 313–327. [Google Scholar] [CrossRef]
- Egamberdieva, D.; Wirth, S.J.; Alqarawi, A.A.; Abd_Allah, E.F.; Hashem, A. Phytohormones and Beneficial Microbes: Essential Components for Plants to Balance Stress and Fitness. Front. Microbiol. 2017, 8, 2104. [Google Scholar] [CrossRef]
- Li, J.; Zhou, L.; Chen, G.; Yao, M.; Liu, Z.; Li, X.; Yang, X.; Yang, Y.; Cai, D.; Tuerxun, Z.; et al. Arbuscular Mycorrhizal Fungi Enhance Drought Resistance and Alter Microbial Communities in Maize Rhizosphere Soil. Environ. Technol. Innov. 2024, 37, 103947. [Google Scholar] [CrossRef]
- Ruiz-Lozano, J.M.; Azcon, R.; Gomez, M. Effects of Arbuscular-Mycorrhizal Glomus Species on Drought Tolerance: Physiological and Nutritional Plant Responses. Appl. Environ. Microbiol. 1995, 61, 456–460. [Google Scholar] [CrossRef] [PubMed]
- Neto, D.; Carvalho, L.M.; Cruz, C.; Martins-Loução, M.A. How Do Mycorrhizas Affect C and N Relationships in Flooded Aster Tripolium Plants? Plant Soil 2006, 279, 51–63. [Google Scholar] [CrossRef]
- Xiang, N.; Liu, Z.; Tian, X.; Wang, D.; Hashem, A.; Abd_Allah, E.F.; Wu, Q.-S.; Zou, Y.-N. Improved Waterlogging Tolerance in Roots of Cucumber Plants after Inoculation with Arbuscular Mycorrhizal Fungi. Horticulturae 2024, 10, 478. [Google Scholar] [CrossRef]
- Maya, M.A.; Matsubara, Y. Influence of Arbuscular Mycorrhiza on the Growth and Antioxidative Activity in Cyclamen under Heat Stress. Mycorrhiza 2013, 23, 381–390. [Google Scholar] [CrossRef] [PubMed]
- Zhu, X.-C.; Song, F.-B.; Xu, H.-W. Arbuscular Mycorrhizae Improves Low Temperature Stress in Maize via Alterations in Host Water Status and Photosynthesis. Plant Soil 2010, 331, 129–137. [Google Scholar] [CrossRef]
- Chen, S.; Jin, W.; Liu, A.; Zhang, S.; Liu, D.; Wang, F.; Lin, X.; He, C. Arbuscular Mycorrhizal Fungi (AMF) Increase Growth and Secondary Metabolism in Cucumber Subjected to Low Temperature Stress. Sci. Hortic. 2013, 160, 222–229. [Google Scholar] [CrossRef]
- Zhang, X.H.; Liu, Y.H.; Liu, B.W.; Liu, Q.; Wen, S.Y.; Ao, B.; Lin, Z.Q.; Zheng, Y.L.; Yang, W.Z.; Chu, X.T.; et al. Arbuscular Mycorrhiza Fungus Improved Growth, Antioxidant Defense, and Endogenous Hormones in Tall Fescue under Low-Light Stress. S. Afr. J. Bot. 2019, 127, 43–50. [Google Scholar] [CrossRef]
- Fougnies, L.; Renciot, S.; Muller, F.; Plenchette, C.; Prin, Y.; de Faria, S.M.; Bouvet, J.M.; Sylla, S.N.; Dreyfus, B.; Bâ, A.M. Arbuscular Mycorrhizal Colonization and Nodulation Improve Flooding Tolerance in Pterocarpus officinalis Jacq. Seedlings. Mycorrhiza 2007, 17, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Fitter, A.H.; Garbaye, J. Interactions between Mycorrhizal Fungi and Other Soil Organisms. Plant Soil 1994, 159, 123–132. [Google Scholar] [CrossRef]
- Priyadharsini, P.; Muthukumar, T. Interactions Between Arbuscular Mycorrhizal Fungi and Potassium-Solubilizing Microorganisms on Agricultural Productivity. In Potassium Solubilizing Microorganisms for Sustainable Agriculture; Springer: New Delhi, India, 2016; pp. 111–125. [Google Scholar]
- Vos, C.; Claerhout, S.; Mkandawire, R.; Panis, B.; De Waele, D.; Elsen, A. Arbuscular Mycorrhizal Fungi Reduce Root-Knot Nematode Penetration through Altered Root Exudation of Their Host. Plant Soil 2012, 354, 335–345. [Google Scholar] [CrossRef]
- Amora-Lazcano, E.; Vázquez, M.M.; Azcón, R. Response of Nitrogen-Transforming Microorganisms to Arbuscular Mycorrhizal Fungi. Biol. Fertil. Soils 1998, 27, 65–70. [Google Scholar] [CrossRef]
- Filion, M.; St-Arnaud, M.; Fortin, J.A. Direct Interaction between the Arbuscular Mycorrhizal Fungus Glomus intraradices and Different Rhizosphere Microorganisms. New Phytol. 1999, 141, 525–533. [Google Scholar] [CrossRef]
- Andrade, G.; Mihara, K.L.; Linderman, R.G.; Bethlenfalvay, G.J. Bacteria from Rhizosphere and Hyphosphere Soils of Different Arbuscular-Mycorrhizal Fungi. Plant Soil 1997, 192, 71–79. [Google Scholar] [CrossRef]
- Hildebrandt, U.; Janetta, K.; Bothe, H. Towards Growth of Arbuscular Mycorrhizal Fungi Independent of a Plant Host. Appl. Environ. Microbiol. 2002, 68, 1919–1924. [Google Scholar] [CrossRef] [PubMed]
- Toro, M.; Azcón, R.; Barea, J.M. The Use of Isotopic Dilution Techniques to Evaluate the Interactive Effects of Rhizobium Genotype, Mycorrhizal Fungi, Phosphate-solubilizing Rhizobacteria and Rock Phosphate on Nitrogen and Phosphorus Acquisition by Medicago sativa. New Phytol. 1998, 138, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Mayo, K.; Davis, R.E.; Motta, J. Stimulation of Germination of Spores of Glomus versiforme by Spore-Associated Bacteria. Mycologia 1986, 78, 426–431. [Google Scholar] [CrossRef]
- Medina, A.; Azcón, R. Effectiveness of the Application of Arbuscular Mycorrhiza Fungi and Organic Amendments to Improve Soil Quality and Plant Performance Under Stress Conditions. J. Soil Sci. Plant Nutr. 2010, 10, 354–372. [Google Scholar] [CrossRef]
- Janoušková, M.; Pavlíková, D.; Vosátka, M. Potential Contribution of Arbuscular Mycorrhiza to Cadmium Immobilisation in Soil. Chemosphere 2006, 65, 1959–1965. [Google Scholar] [CrossRef] [PubMed]
- Chibuike, G.U. Use of Mycorrhiza in Soil Remediation: A Review. Sci. Res. Essays 2013, 8, 679–1687. [Google Scholar] [CrossRef]
- Miransari, M.; Bahrami, H.A.; Rejali, F.; Malakouti, M.J. Using Arbuscular Mycorrhiza to Alleviate the Stress of Soil Compaction on Wheat (Triticum aestivum L.) Growth. Soil Biol. Biochem. 2008, 40, 1197–1206. [Google Scholar] [CrossRef]
- Rinaudo, V.; Bàrberi, P.; Giovannetti, M.; van der Heijden, M.G.A. Mycorrhizal Fungi Suppress Aggressive Agricultural Weeds. Plant Soil 2010, 333, 7–20. [Google Scholar] [CrossRef]
- Menéndez, A.; Scervino, J.; Godeas, A. Arbuscular Mycorrhizal Populations Associated with Natural and Cultivated Vegetation on a Site of Buenos Aires Province, Argentina. Biol. Fertil. Soils 2001, 33, 373–381. [Google Scholar] [CrossRef]
- Verbruggen, E.; Toby Kiers, E. Evolutionary Ecology of Mycorrhizal Functional Diversity in Agricultural Systems. Evol. Appl. 2010, 3, 547–560. [Google Scholar] [CrossRef]
- Kabir, Z. Tillage or No-Tillage: Impact on Mycorrhizae. Can. J. Plant Sci. 2005, 85, 23–29. [Google Scholar] [CrossRef]
- Jansa, J.; Mozafar, A.; Anken, T.; Ruh, R.; Sanders, I.; Frossard, E. Diversity and Structure of AMF Communities as Affected by Tillage in a Temperate Soil. Mycorrhiza 2002, 12, 225–234. [Google Scholar] [CrossRef]
- Gianinazzi, S.; Gollotte, A.; Binet, M.-N.; van Tuinen, D.; Redecker, D.; Wipf, D. Agroecology: The Key Role of Arbuscular Mycorrhizas in Ecosystem Services. Mycorrhiza 2010, 20, 519–530. [Google Scholar] [CrossRef] [PubMed]
- Helander, M.; Saloniemi, I.; Omacini, M.; Druille, M.; Salminen, J.-P.; Saikkonen, K. Glyphosate Decreases Mycorrhizal Colonization and Affects Plant-Soil Feedback. Sci. Total Environ. 2018, 642, 285–291. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, G.; Zhang, F.; Sun, Z.; Geng, G.; Li, T. Effects of Continuous Tomato Monoculture on Soil Microbial Properties and Enzyme Activities in a Solar Greenhouse. Sustainability 2017, 9, 317. [Google Scholar] [CrossRef]
- Jiang, S.; An, X.; Shao, Y.; Kang, Y.; Chen, T.; Mei, X.; Dong, C.; Xu, Y.; Shen, Q. Responses of Arbuscular Mycorrhizal Fungi Occurrence to Organic Fertilizer: A Meta-Analysis of Field Studies. Plant Soil 2021, 469, 89–105. [Google Scholar] [CrossRef]
- Freidenreich, A. Comparison of Synthetic Versus Organic Herbicides/Insecticides on Arbuscular Mycorrhizal Fungi in Abelmoschus esculentus. MS Thesis, Florida International University, Miami, FL, USA, 2016. [Google Scholar]
- Arihara, J.; Karasawa, T. Effect of Previous Crops on Arbuscular Mycorrhizal Formation and Growth of Succeeding Maize. Soil Sci. Plant Nutr. 2000, 46, 43–51. [Google Scholar] [CrossRef]
- Plenchette, C.; Clermont-Dauphin, C.; Meynard, J.M.; Fortin, J.A. Managing Arbuscular Mycorrhizal Fungi in Cropping Systems. Can. J. Plant Sci. 2005, 85, 31–40. [Google Scholar] [CrossRef]
- Rowe, H.I.; Brown, C.S.; Claassen, V.P. Comparisons of Mycorrhizal Responsiveness with Field Soil and Commercial Inoculum for Six Native Montane Species and Bromus tectorum. Restor. Ecol. 2007, 15, 44–52. [Google Scholar] [CrossRef]
- Oliveira, R.S.; Vosátka, M.; Dodd, J.C.; Castro, P.M.L. Studies on the Diversity of Arbuscular Mycorrhizal Fungi and the Efficacy of Two Native Isolates in a Highly Alkaline Anthropogenic Sediment. Mycorrhiza 2005, 16, 23–31. [Google Scholar] [CrossRef] [PubMed]
- Berruti, A.; Lumini, E.; Balestrini, R.; Bianciotto, V. Arbuscular Mycorrhizal Fungi as Natural Biofertilizers: Let’s Benefit from Past Successes. Front. Microbiol. 2016, 6, 1559. [Google Scholar] [CrossRef] [PubMed]
- Hussain, H.A.; Qingwen, Z.; Hussain, S.; Hongbo, L.; Waqqas, A.; Li, Z. Effects of Arbuscular Mycorrhizal Fungi on Maize Growth, Root Colonization, and Root Exudates Varied with Inoculum and Application Method. J. Soil Sci. Plant Nutr. 2021, 21, 1577–1590. [Google Scholar] [CrossRef]
Compound | Plant Species | AM Fungi Species | References |
---|---|---|---|
Strigolactones | Lotus japonicus | Gigaspora margarita | Akiyama et al. [33] |
Strigolactones | Sorghum bicolor | G. rosea | Besserer et al. [36] |
Flavonoids | White clover (Trifolium repens) | Glomus intraradix | Siqueira et al. [44] |
Orobanchol | Rice (Oryza sativa) | G. rosea | Cardoso et al. [45] |
5-dexoystrigol, Sorgonol | Maize (Zea mays L.) | Glomeraceae, Gigasporaceae | Yoneyama et al. [46] |
Strigolactone (GR24) | Wheat (Triticum aestivum L.) | G. mossae, G. intraradices, G. etunicatum | Moosavi et al. [47] |
Flavonoids | Alfalfa (Medicago sativa L.) | G. etunicatum, G. macrocarpum | Tsai et al. [48] |
1-hydroxy fatty acid, 2-hydroxytetradecanoic acid | Carrot (Daucus carota) | G. gigantea | Nagahasi et al. [49] |
Abiotic Stresses | AM Fungi | References |
---|---|---|
Salinity/salt stress | Glomus intraradices, G. versiform, G. Etunicatum | Evelin et al. [16]; Hajiboland et al. [80]; Porcel et al. [61] |
Drought | G. deserticola, G. fasciculatum, G. mosseae, G. etunicatum, G. intraradices | Evelin et al. [16]; Ruiz-Lozano et al. [83] |
High or low soil P levels | G. intraradices, Gigaspora rosea Nicol. & Schenck | Mosse [17]; Cardosso and Kuyper [65] |
Acidity | G. mosseae | Mosse [17]; Mohammed et al. [79] |
Metal toxicity | Gigaspora margarita, Rhizophagus irregularis, G. mosseae, G. monosporum | Begum et al. [14]; Lenoir et al. [60] |
Extreme temperatures | G. fasciculatum, R. irregularis, R. intraradices | Begum et al. [14] |
Cold stress | G. etunicatum, F. mosseae | Zhu et al. [87]; Chen et al. [88] |
Low light stress | G. mosseae | Zhang et al. [89] |
Waterlogging/flooding stress | G. intraradices, G. geosporum | Fougnies et al. [90]; Neto et al. [84]; Xiang et al. [85] |
Biotic Stresses/Organisms | Mycorrhizal Fungi | Type of Association | References |
---|---|---|---|
Bacteria | |||
Rhizobacteria | AM fungi | AM fungi enrich the bacterial flora | Andrade et al. [96] |
Paenibacillus validus | G. intraradices | Forms new spores, supports growth of fungus | Hildebrandt et al. [97] |
Bacillus subtilis | G. intraradices | Increases root colonization, P solubilization | Toro et al. [98] |
Enterobacter species | G. intraradices | Increases root colonization, P solubilization | Toro et al. [98] |
Pseudonomas species | G. versiforme | Spore formation | Mayo et al. [99] |
Corynebacterium species | G. versiforme | Spore formation | Mayo et al. [99] |
Ammonifying and denitrifying bacteria | AM fungi | Presence of mycorrhizal hyphae reduces the number of ammonifying and denitrifying bacteria | Amora-Lazcano et al. [94] |
P. chlororaphis | G. intraradices | Growth of bacteria stimulated | Filion et al. [95] |
Fungi | |||
T. harzianum | G. intraradices | Conidial germination stimulation in presence of AM fungal extract | Filion et al. [95] |
F. oxysporum f. sp. Chrysanthemi | G. intraradices | Conidial germination reduced by AM fungal extract | Filion et al. [95] |
Nematode | |||
M. incognita | AM fungi | Mycorrhizal hyphae decrease nematode penetration | Vos et al. [93] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhary, A.; Poudyal, S.; Kaundal, A. Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems. Appl. Microbiol. 2025, 5, 6. https://doi.org/10.3390/applmicrobiol5010006
Chaudhary A, Poudyal S, Kaundal A. Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems. Applied Microbiology. 2025; 5(1):6. https://doi.org/10.3390/applmicrobiol5010006
Chicago/Turabian StyleChaudhary, Anju, Shital Poudyal, and Amita Kaundal. 2025. "Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems" Applied Microbiology 5, no. 1: 6. https://doi.org/10.3390/applmicrobiol5010006
APA StyleChaudhary, A., Poudyal, S., & Kaundal, A. (2025). Role of Arbuscular Mycorrhizal Fungi in Maintaining Sustainable Agroecosystems. Applied Microbiology, 5(1), 6. https://doi.org/10.3390/applmicrobiol5010006