Effect of Thermal Expansion Mismatch on Thermomechanical Behaviour of Compacted Graphite Iron
Abstract
:1. Introduction
2. Numerical Simulations
2.1. Geometry
2.2. Constitutive Behaviours
2.3. Boundary and Loading Conditions
3. Results and Discussion
3.1. Effect of CTE of Matrix on Damage Distribution
3.2. Effect of CTE of Matrix on Stress Distribution
3.3. Effect of CTE of Graphite on Damage Evolution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dawson, S. Compacted Graphite Iron—A Material Solution for Modern Diesel Engine Cylinder Blocks and Heads. In Proceedings of the 68th WFC—World Foundry Congress, Chennai, India, 7–10 February 2008; pp. 93–99. [Google Scholar]
- Yang, W.; Pang, J.; Wang, L.; Wang, S.; Liu, Y.; Hui, L.; Li, S.; Zhang, Z. Tensile Properties and Damage Mechanisms of Compacted Graphite Iron Based on Microstructural Simulation. Mater. Sci. Eng. A 2021, 814, 141244. [Google Scholar] [CrossRef]
- Dawson, S.; Schroeder, T. Practical Applications for Compacted Graphite Iron. AFS Trans. 2004, 47, 1–9. [Google Scholar]
- Luo, X.; Baxevanakis, K.P.; Silberschmidt, V.V. Microstructure-Based CZE Model for Crack Initiation and Growth in CGI: Effects of Graphite-Particle Morphology and Spacing. Solids 2024, 5, 123–139. [Google Scholar] [CrossRef]
- Dawson, S. Compacted Graphite Iron: Mechanical and Physical Properties for Engine Design. VDI Berichte 1999, 1472, 85–106. [Google Scholar]
- Luo, X.; Baxevanakis, K.P.; Silberschmidt, V.V. Crack Initiation in Compacted Graphite Iron with Random Microstructure: Effect of Volume Fraction and Distribution of Particles. Materials 2024, 17, 3346. [Google Scholar] [CrossRef]
- Akkus, A. An Experimental Study on Comparison of Wear Properties of Cast Irons with Compacted Graphite and Spheroidal Graphite. Trans. Indian Inst. Met. 2019, 72, 2257–2262. [Google Scholar] [CrossRef]
- Sreenivasan, V.S.; Dhanasekaran, S.; Sharma, S.; Prasad, M.S. Sliding Wear Behavior of Compacted Graphite Iron Cylinder Liner Material. SAE Tech. Pap. 2014. [Google Scholar] [CrossRef]
- Mrzygłód, B.; Gumienny, G.; Wilk-Kołodziejczyk, D.; Regulski, K. Application of Selected Artificial Intelligence Methods in a System Predicting the Microstructure of Compacted Graphite Iron. J. Mater. Eng. Perform. 2019, 28, 3894–3904. [Google Scholar] [CrossRef]
- Sirtuli, L.J.; Bello Bermejo, J.M.; Windmark, C.; Norgren, S.; Ståhl, J.-E.; Boing, D. Machining of Compacted Graphite Iron: A Review. J. Mater. Process. Technol. 2024, 332, 118553. [Google Scholar] [CrossRef]
- Berglund, A.; Nicolescu, C.M.; Svensson, H. The Effect of Interlamellar Distance in Pearlite on CGI Machining. Eng. Mater. Sci. 2018; 3, 5. [Google Scholar] [CrossRef]
- Nicoletto, G.; Collini, L.; Konečná, R.; Bujnová, P. Strain Heterogeneity and Damage Localization in Nodular Cast Iron Microstructures. Mater. Sci. Forum 2005, 482, 255–258. [Google Scholar] [CrossRef]
- Di Cocco, V.; Iacoviello, F.; Cavallini, M. Damaging Micromechanisms Characterization of a Ferritic Ductile Cast Iron. Eng. Fract. Mech. 2010, 77, 2016–2023. [Google Scholar] [CrossRef]
- Di Cocco, V.; Iacoviello, F.; Rossi, A.; Iacoviello, D. Macro and Microscopical Approach to the Damaging Micromechanisms Analysis in a Ferritic Ductile Cast Iron. Theor. Appl. Fract. Mech. 2014, 69, 26–33. [Google Scholar] [CrossRef]
- Tang, C.; Liu, L.; Yang, Z.; Tao, D.; Li, J.; Guo, Q.; Zhen, J.; He, Y.; He, H. Surface Evolution of Vermicular Cast Iron in Ultra-High Temperature Combustion with Different Single-Pulsing Duration. Eng. Fail. Anal. 2022, 141, 106679. [Google Scholar] [CrossRef]
- Qiu, Y.; Pang, J.; Yang, E.; Li, S.; Zhang, Z. Transition of Tensile Strength and Damaging Mechanisms of Compacted Graphite Iron with Temperature. Mater. Sci. Eng. A 2016, 677, 290–301. [Google Scholar] [CrossRef]
- Qiu, Y.; Pang, J.; Li, S.; Yang, E.; Fu, W.; Liang, M.; Zhang, Z. Influence of Thermal Exposure on Microstructure Evolution and Tensile Fracture Behaviors of Compacted Graphite Iron. Mater. Sci. Eng. A 2016, 664, 75–85. [Google Scholar] [CrossRef]
- Wu, Y.; Li, J.; Yang, Z.; Guo, Y.; Ma, Z.; Liang, M.; Yang, T.; Tao, D. Thermal Conductivity Analysis of Compacted Graphite Cast Iron after a Creep Test. Metall. Mater. Trans. A 2019, 50, 3697–3704. [Google Scholar] [CrossRef]
- Rodriguez, F.J.; Boccardo, A.D.; Dardati, P.M.; Celentano, D.J.; Godoy, L.A. Thermal Expansion of a Spheroidal Graphite Iron: A Micromechanical Approach. Finite Elem. Anal. Des. 2018, 141, 26–36. [Google Scholar] [CrossRef]
- Frishmuth, R.E.; McLaughlin, P. V Failure Analysis of Cast Irons under General Three-Dimensional Stress States. J. Eng. Mater. Technol. 1976, 98, 69–75. [Google Scholar] [CrossRef]
- Josefson, B.L.; Stigh, U.; Hjelm, H.E. A Nonlinear Kinematic Hardening Model for Elastoplastic Deformations in Grey Cast Iron. J. Eng. Mater. Technol. 1995, 117, 145–150. [Google Scholar] [CrossRef]
- Josefson, B.L.; Hjelm, H.E. Modelling Elastoplastic Deformations in Grey Cast Iron. In Low Cycle Fatigue and Elasto-Plastic Behaviour of Materials; Rie, K.-T., Grünling, H.W., König, G., Neumann, P., Nowack, H., Schwalbe, K.-H., Seeger, T., Eds.; Springer: Dordrecht, The Netherlands, 1992; pp. 465–472. ISBN 978-94-011-2860-5. [Google Scholar]
- Hjelm, H.E. Yield Surface for Grey Cast Iron under Biaxial Stress. J. Eng. Mater. Technol. 1994, 116, 148–154. [Google Scholar] [CrossRef]
- Altenbach, H.; Stoychev, G.B.; Tushtev, K.N. On Elastoplastic Deformation of Grey Cast Iron. Int. J. Plast. 2001, 17, 719–736. [Google Scholar] [CrossRef]
- Andriollo, T.; Zhang, Y.; Fæster, S.; Thorborg, J.; Hattel, J. Impact of Micro-Scale Residual Stress on in-Situ Tensile Testing of Ductile Cast Iron: Digital Volume Correlation vs. Model with Fully Resolved Microstructure vs. Periodic Unit Cell. J. Mech. Phys. Solids 2019, 125, 714–735. [Google Scholar] [CrossRef]
- Andriollo, T.; Thorborg, J.; Hattel, J. The Influence of the Graphite Mechanical Properties on the Constitutive Response of a Ferritic Ductile Cast Iron—A Micromechanical FE Analysis. In Proceedings of the XIII International Conference on Computational Plasticity: Fundamentals and applications, Barcelona, Spain, 1–3 September 2015; pp. 632–641. [Google Scholar]
- Andriollo, T.; Thorborg, J.; Tiedje, N.; Hattel, J. A Micro-Mechanical Analysis of Thermo-Elastic Properties and Local Residual Stresses in Ductile Iron Based on a New Anisotropic Model for the Graphite Nodules. Model. Simul. Mater. Sci. Eng. 2016, 24, 55012. [Google Scholar] [CrossRef]
- Cao, M.; Baxevanakis, K.P.; Silberschmidt, V.V. Effect of Graphite Morphology on the Thermomechanical Performance of Compacted Graphite Iron. Metals 2023, 13, 473. [Google Scholar] [CrossRef]
- Cao, M.; Baxevanakis, K.P.; Silberschmidt, V. V High-Temperature Behaviour and Interfacial Damage of CGI: 3D Numerical Modelling. Multiscale Multidiscip. Model. Exp. Des. 2024, 7, 1515–1525. [Google Scholar] [CrossRef]
- Palkanoglou, E.N.; Baxevanakis, K.P.; Silberschmidt, V.V. Interfacial Debonding in Compacted Graphite Iron: Effect of Thermal Loading. Procedia Struct. Integr. 2020, 28, 1286–1294. [Google Scholar] [CrossRef]
- Luo, X.; Huang, X.; Baxevanakis, K.P.; Karamched, P.S.; Silberschmidt, V.V. Interaction of Propagating Crack with Microstructure in CGI: In Situ Tensile Test and Numerical Simulation. Mater. Sci. Eng. A 2024, 918, 147431. [Google Scholar] [CrossRef]
- Palkanoglou, E.N.; Baxevanakis, K.P.; Silberschmidt, V.V. Thermal Debonding in Compacted Graphite Iron: Effect of Interaction of Graphite Inclusions. Procedia Struct. Integr. 2022, 37, 209–216. [Google Scholar] [CrossRef]
- Seldin, E.J. Stress-Strain Properties of Polycrystalline Graphites in Tension and Compression at Room Temperature. Carbon 1966, 4, 177–191. [Google Scholar] [CrossRef]
- Greenstreet, W.L.; Yahr, G.T.; Valachovic, R.S. The Behavior of Graphite under Biaxial Tension. Carbon 1973, 11, 43–57. [Google Scholar] [CrossRef]
- Andriollo, T.; Thorborg, J.; Tiedje, N.S.; Hattel, J. Modeling of Damage in Ductile Cast Iron—The Effect of Including Plasticity in the Graphite Nodules. IOP Conf. Ser. Mater. Sci. Eng. 2015, 84, 12027. [Google Scholar] [CrossRef]
- Palkanoglou, E.N.; Baxevanakis, K.P.; Silberschmidt, V.V. Thermal Debonding of Inclusions in Compacted Graphite Iron: Effect of Matrix Phases. Eng. Fail. Anal. 2022, 139, 106476. [Google Scholar] [CrossRef]
- Palkanoglou, E.N.; Cao, M.; Baxevanakis, K.P.; Silberschmidt, V. V Effect of Graphite-Particle Morphology on Thermomechanical Performance of Compacted Graphite Iron: Numerical Modelling. In Proceedings of the 8th European Congress on Computational Methods in Applied Sciences and Engineering ECCOMAS Congress 2022, Oslo, Norway, 5–9 June 2022. [Google Scholar]
- Bonora, N.; Ruggiero, A. Micromechanical Modeling of Ductile Cast Iron Incorporating Damage. Part I: Ferritic Ductile Cast Iron. Int. J. Solids Struct. 2005, 42, 1401–1424. [Google Scholar] [CrossRef]
- Berisha, B.; Raemy, C.; Becker, C.; Gorji, M.; Hora, P. Multiscale Modeling of Failure Initiation in a Ferritic–Pearlitic Steel. Acta Mater. 2015, 100, 191–201. [Google Scholar] [CrossRef]
- Besson, J. Continuum Models of Ductile Fracture: A Review. Int. J. Damage Mech. 2009, 19, 3–52. [Google Scholar] [CrossRef]
- Collini, L.; Moroni, F.; Pirondi, A. Modeling the Influence of Stress Triaxiality on the Failure Strain of Nodular Cast Iron Microstructures. Procedia Struct. Integr. 2019, 18, 671–687. [Google Scholar] [CrossRef]
- Hooputra, H.; Gese, H.; Dell, H.; Werner, H. A Comprehensive Failure Model for Crashworthiness Simulation of Aluminium Extrusions. Int. J. Crashworthiness 2004, 9, 449–464. [Google Scholar] [CrossRef]
- Zhan, Y.; Kaddouri, W.; Kanit, T.; Jiang, Q.; Liu, L.; Imad, A. From Unit Inclusion Cell to Large Representative Volume Element: Comparison of Effective Elastic Properties. Eur. J. Mech.—A/Solids 2022, 92, 104490. [Google Scholar] [CrossRef]
- Collini, L.; Pirondi, A. Microstructure-Based RVE Modeling of the Failure Behavior and LCF Resistance of Ductile Cast Iron. Procedia Struct. Integr. 2019, 24, 324–336. [Google Scholar] [CrossRef]
- Norman, V.; Calmunger, M. On the Micro—And Macroscopic Elastoplastic Deformation Behaviour of Cast Iron When Subjected to Cyclic Loading. Int. J. Plast. 2019, 115, 200–215. [Google Scholar] [CrossRef]
- Kaya, A.C.; Zaslansky, P.; Fleck, C. Modeling of Complex Gray Cast Iron Open-Cell Foams Revealing Insights on Failure and Deformation on Different Hierarchical Length-Scales. Adv. Eng. Mater. 2022, 24, 2100677. [Google Scholar] [CrossRef]
- Drago, A.; Pindera, M.J. Micro-Macromechanical Analysis of Heterogeneous Materials: Macroscopically Homogeneous vs Periodic Microstructures. Compos. Sci. Technol. 2007, 67, 1243–1263. [Google Scholar] [CrossRef]
- Babkin, V.G.; Kukartsev, V.A.; Cherepanov, A.I.; Arkhipov, G.V.; Savina, A.N. Effect of Cast Iron Structure and Properties on Contact Quality with an Aluminum Electrolyzer Carbon Anode. Metallurgist 2017, 61, 318–324. [Google Scholar] [CrossRef]
- Yue, W.; Jianping, L.; Hua, C.; Zhijun, M.; Zhong, Y.; Yongchun, G.; Minxian, L. Creep Deformation and Damage Mechanism of Compact Graphite Cast Iron with Different Pearlite Contents. J. Mater. Res. Technol. 2023, 23, 5031–5039. [Google Scholar] [CrossRef]
- Zhang, M.X.; Pang, J.C.; Meng, L.J.; Li, S.X.; Liu, Q.Y.; Jiang, A.L.; Zhang, Z.F. Study on Thermal Fatigue Behaviors of Two Kinds of Vermicular Graphite Cast Irons. Mater. Sci. Eng. A 2021, 814, 141212. [Google Scholar] [CrossRef]
- Terčelj, M.; Burja, J.; Kugler, G.; Mrvar, P. Thermal Fatigue Degradation Progress in SiMo Ductile Cast Iron under Oxidation Conditions. Eng. Fail. Anal. 2024, 156, 107823. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, M.; Baxevanakis, K.P.; Silberschmidt, V.V. Effect of Thermal Expansion Mismatch on Thermomechanical Behaviour of Compacted Graphite Iron. Micro 2024, 4, 670-681. https://doi.org/10.3390/micro4040041
Cao M, Baxevanakis KP, Silberschmidt VV. Effect of Thermal Expansion Mismatch on Thermomechanical Behaviour of Compacted Graphite Iron. Micro. 2024; 4(4):670-681. https://doi.org/10.3390/micro4040041
Chicago/Turabian StyleCao, Minghua, Konstantinos P. Baxevanakis, and Vadim V. Silberschmidt. 2024. "Effect of Thermal Expansion Mismatch on Thermomechanical Behaviour of Compacted Graphite Iron" Micro 4, no. 4: 670-681. https://doi.org/10.3390/micro4040041
APA StyleCao, M., Baxevanakis, K. P., & Silberschmidt, V. V. (2024). Effect of Thermal Expansion Mismatch on Thermomechanical Behaviour of Compacted Graphite Iron. Micro, 4(4), 670-681. https://doi.org/10.3390/micro4040041