Development of Quercetin Micellar Nanogel: Formulation, Characterization, and In Vitro Cytotoxocity Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Formulation Development
2.3. Optimization
2.4. Micellar Size and PDI Zeta Potential Analysis
2.5. Entrapment Efficiency (%EE)
2.6. Differential Scanning Colorimetry (DSC) and FTIR
2.7. Morphology Study
2.8. In Vitro Cytotoxicity Study
2.9. Formulation of Quercetin Micellar Nanogel
2.10. Characterization of Quercetin Micellar Nanogel
3. Results and Discussion
3.1. Formulation Optimization for Quercetin-Loaded Polymeric Micelles
3.2. Design of Experimental Approach
3.3. Particle Size, Zeta Potential, and Encapsulation Efficiency Analysis
3.4. DSC and FTIR Studies
3.5. Morphology (TEM) Studies
3.6. In Vitro Cytotoxicity Studies
3.7. Evaluation of Quercetin Micellar Nanogel
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CMC | Critical micellar concentration |
PK | Pharmacokinetics |
PLGA | Poly (lactic-co-glycolic acid) |
PF 68 | Pluronic F 68 |
PDI | Polydispersibility Index |
TEM | Transmission electron microscopy |
References
- Mahomoodally, M.F.; Sadeer, N.; Edoo, M.; Venugopala, K.N. The Potential Application of Novel Drug Delivery Systems for Phytopharmaceuticals and Natural Extracts–Current Status and Future Perspectives. Mini-Rev. Med. Chem. 2021, 21, 2731–2746. [Google Scholar] [CrossRef] [PubMed]
- Sindhu, R.K.; Verma, R.; Salgotra, T.; Rahman, H.; Shah, M.; Akter, R.; Murad, W.; Mubin, S.; Bibi, P.; Qusti, S.; et al. Impacting the Remedial Potential of Nano Delivery-Based Flavonoids for Breast Cancer Treatment. Molecules 2021, 26, 5163. [Google Scholar] [CrossRef] [PubMed]
- Krol, W. The dietary flavonolfisetin enhances the apoptosis-inducing potential of TRAIL in prostate cancer cells. Int. J. Oncol. 2011, 39, 771–779. [Google Scholar]
- Kapare, H.S.; Giram, P.S.; Raut, S.S.; Gaikwad, H.K.; Paiva-Santos, A.C. Formulation Development and Evaluation of Indian Propolis Hydrogel for Wound Healing. Gels 2023, 9, 375. [Google Scholar] [CrossRef]
- Joseph, A.; Shanmughan, P.; Balakrishnan, A.; Maliakel, B. Enhanced Bioavailability and Pharmacokinetics of a Natural Self-Emulsifying Reversible Hybrid-Hydrogel System of Quercetin: A Randomized Double-Blinded Comparative Crossover Study. ACS Omega 2022, 7, 46825–46832. [Google Scholar] [CrossRef]
- Singh, S.; Grewal, S.; Sharma, N.; Behl, T.; Gupta, S.; Anwer, K.; Vargas-De-La-Cruz, C.; Mohan, S.; Bungau, S.G.; Bumbu, A. Unveiling the Pharmacological and Nanotechnological Facets of Daidzein: Present State-of-the-Art and Future Perspectives. Molecules 2023, 28, 1765. [Google Scholar] [CrossRef]
- Tang, J.; Xu, N.; Ji, H.; Liu, H.; Wang, Z.; Wu, L. Eudragit nanoparticles containing genistein: Formulation, development, and bioavailability assessment. Int. J. Nanomed. 2011, 6, 2429–2435. [Google Scholar] [CrossRef]
- Tawornchat, P.; Pattarakankul, T.; Palaga, T.; Intasanta, V.; Wanichwecharungruang, S. Polymerized Luteolin Nanoparticles: Synthesis, Structure Elucidation, and Anti-Inflammatory Activity. ACS Omega 2021, 6, 2846–2855. [Google Scholar] [CrossRef]
- Zhai, G.; Guo, C.; Tan, Q.; Liu, W. Preparation and evaluation of quercetin-loaded lecithin-chitosan nanoparticles for topical delivery. Int. J. Nanomed. 2011, 6, 1621–1630. [Google Scholar] [CrossRef]
- Bhattacharya, T.; Soares, G.A.B.E.; Chopra, H.; Rahman, M.M.; Hasan, Z.; Swain, S.S.; Cavalu, S. Applications of Phy-to-Nanotechnology for the Treatment of Neurodegenerative Disorders. Materials 2022, 15, 804. [Google Scholar] [CrossRef]
- Hosseini, A.; Razavi, B.M.; Banach, M.; Hosseinzadeh, H. Quercetin and metabolic syndrome: A review. Phytother. Res. 2021, 35, 5352–5364. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.X.; Ma, J.; Li, X.Y.; Wu, Y.; Shi, H.; Chen, Y.; Lu, G.; Shen, H.M.; Lu, G.D.; Zhou, J. Quercetin induces p53-independent cancer cell death through lysosome activation by the transcription factor EB and Reactive Oxygen Species-dependent ferroptosis. Br. J. Pharmacol. 2021, 178, 1133–1148. [Google Scholar] [CrossRef] [PubMed]
- Vincent, M.; Lehoux, J.; Desmarty, C.; Moine, E.; Legrand, P.; Dorandeu, C.; Simon, L.; Durand, T.; Brabet, P.; Crauste, C.; et al. A novel lipophenol quercetin derivative to prevent macular degeneration: Intravenous and oral formulations for preclinical pharmacological evaluation. Int. J. Pharm. 2023, 651, 123740. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Zhang, Y.; Si, X.; Jin, Y.; Jiang, D.; Dai, Z.; Wu, Z. Quercetin Alleviates Oxidative Damage by Activating Nuclear Factor Erythroid 2-Related Factor 2 Signaling in Porcine Enterocytes. Nutrients 2021, 13, 375. [Google Scholar] [CrossRef]
- Tian, R.; Yang, Z.; Lu, N.; Peng, Y.-Y. Quercetin, but not rutin, attenuated hydrogen peroxide-induced cell damage via heme oxygenase-1 induction in endothelial cells. Arch. Biochem. Biophys. 2019, 676, 108157. [Google Scholar] [CrossRef]
- Dhanaraj, T.; Mohan, M.; Arunakaran, J. Quercetin attenuates metastatic ability of human metastatic ovarian cancer cells via modulating multiple signaling molecules involved in cell survival, proliferation, migration and adhesion. Arch. Biochem. Biophys. 2021, 701, 108795. [Google Scholar] [CrossRef]
- Maruszewska, A.; Tarasiuk, J. Quercetin Triggers Induction of Apoptotic and Lysosomal Death of Sensitive and Multidrug Resistant Leukaemia HL60 Cells. Nutr. Cancer 2021, 73, 484–501. [Google Scholar] [CrossRef]
- Almatroodi, S.A.; Alsahli, M.A.; Almatroudi, A.; Verma, A.K.; Aloliqi, A.; Allemailem, K.S.; Khan, A.A.; Rahmani, A.H. Potential Therapeutic Targets of Quercetin, a Plant Flavonol, and Its Role in the Therapy of Various Types of Cancer through the Modulation of Various Cell Signaling Pathways. Molecules 2021, 26, 1315. [Google Scholar] [CrossRef]
- Wei, X.; Song, M.; Li, W.; Huang, J.; Yang, G.; Wang, Y. Multifunctional nanoplatforms co-delivering combinatorial dual-drug for eliminating cancer multidrug resistance. Theranostics 2021, 11, 6334–6354. [Google Scholar] [CrossRef]
- Lei, C.S.; Hou, Y.C.; Pai, M.H.; Lin, M.T.; Yeh, S.L. Effects of quercetin combined with anticancer drugs on metasta-sis-associated factors of gastric cancer cells: In vitro and in vivo studies. J. Nutr. Biochem. 2018, 51, 105–113. [Google Scholar] [CrossRef]
- Jamshidi-Mouselou, M.S.; Hashemi, A.; Jamshidi-Mouselou, M.S.; Farkhondeh, T.; Pourhanifeh, M.H.; Samarghandian, S. Application of Quercetin and its Novel Formulations in the Treatment of Malignancies of Central Nervous System: An Up-dated Review of Current Evidence based on Molecular Mechanisms. Curr. Med. Chem. 2024, 31, 4180–4198. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Ding, H.; Tang, X.; Liang, M.; Li, S.; Zhang, J.; Cao, J. Quercetin induces pro-apoptotic autophagy via SIRT1/AMPK signaling pathway in human lung cancer cell lines A549 and H1299 in vitro. Thorac Cancer 2021, 12, 1415–1422. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; McClements, D.J.; Zhu, Y.; Chen, Y.; Zou, L.; Liu, W.; Cheng, C.; Fu, D.; Liu, C. Enhancement of the solubility, stability and bioaccessibility of quercetin using protein-based excipient emulsions. Food Res. Int. 2018, 114, 30–37. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Yao, J.; Han, C.; Yang, J.; Chaudhry, M.T.; Wang, S.; Liu, H.; Yin, Y. Quercetin, Inflammation and Immunity. Nutrients 2016, 8, 167. [Google Scholar] [CrossRef]
- Ahmad, N.; Ahmad, R.; Ahmad, F.J.; Ahmad, W.; Alam, M.A.; Amir, M.; Ali, A. Poloxamer-chitosan-based Naringenin nanoformulation used in brain targeting for the treatment of cerebral ischemia. Saudi J. Biol. Sci. 2020, 27, 500–517. [Google Scholar] [CrossRef]
- Tran, T.H.; Guo, Y.; Song, D.H.; Bruno, R.S.; Lu, X.L. Quercetin-containing self-nanoemulsifying drug delivery system for improving oral bioavailability. J. Pharm. Sci. 2014, 103, 840–852. [Google Scholar] [CrossRef]
- Rasaie, S. Nano phytosomes of quercetin: A promising formulation for fortification of food products with antioxidants. Pharm. Sci. 2014, 10, 96–101. [Google Scholar]
- Singh, A.; Dutta, P.; Kumar, H.; Kureel, A.K.; Rai, A.K. Synthesis of chitin-glucan-aldehyde-quercetin conjugate and evaluation of anticancer and antioxidant activities. Carbohydr. Polym. 2018, 193, 99–107. [Google Scholar] [CrossRef]
- Zhao, M.-H.; Yuan, L.; Meng, L.-Y.; Qiu, J.-L.; Wang, C.-B. Quercetin-loaded mixed micelles exhibit enhanced cytotoxic efficacy in non-small cell lung cancer in vitro. Exp. Ther. Med. 2017, 14, 5503–5508. [Google Scholar] [CrossRef]
- Ravichandiran, V.; Masilamani, K.; Senthilnathan, B.; Maheshwaran, A.; Wong, T.W.; Roy, P. Quercetin-Decorated Curcumin Liposome Design for Cancer Therapy: In-Vitro and In-Vivo Studies. Curr. Drug Deliv. 2017, 14, 1053–1059. [Google Scholar] [CrossRef]
- Cecerska-Heryć, E.; Wiśniewska, Z.; Serwin, N.; Polikowska, A.; Goszka, M.; Engwert, W.; Michałów, J.; Pękała, M.; Budkowska, M.; Michalczyk, A.; et al. Can Compounds of Natural Origin Be Important in Chemoprevention? Anticancer Properties of Quercetin, Resveratrol, and Curcumin—A Comprehensive Review. Int. J. Mol. Sci. 2024, 25, 4505. [Google Scholar] [CrossRef] [PubMed]
- Przybylski, P.; Lewińska, A.; Rzeszutek, I.; Błoniarz, D.; Moskal, A.; Betlej, G.; Deręgowska, A.; Cybularczyk-Cecotka, M.; Szmatoła, T.; Litwinienko, G.; et al. Mutation Status and Glucose Availability Affect the Response to Mitochondria-Targeted Quercetin Derivative in Breast Cancer Cells. Cancers 2023, 15, 5614. [Google Scholar] [CrossRef] [PubMed]
- Lin, R.; Piao, M.; Song, Y.; Liu, C. Quercetin Suppresses AOM/DSS-Induced Colon Carcinogenesis through Its Anti-Inflammation Effects in Mice. J. Immunol. Res. 2020, 2020, 9242601. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Bai, Y.; Liu, S.; Cui, S.; Xu, P. Thermosensitive Micelles Gel to Deliver Quercetin Locally for Enhanced Antibreast Cancer Efficacy: An In Vitro Evaluation. IET Nanobiotechnology 2023, 2023, 7971492. [Google Scholar] [CrossRef] [PubMed]
- Bose, A.; Burman, D.R.; Sikdar, B.; Patra, P. Nanomicelles: Types, properties and applications in drug delivery. IET Nanobiotechnology 2021, 15, 19–27. [Google Scholar] [CrossRef]
- An, J.Y.; Yang, H.S.; Park, N.R.; Koo, T.-S.; Shin, B.; Lee, E.H.; Cho, S.H. Development of Polymeric Micelles of Oleanolic Acid and Evaluation of Their Clinical Efficacy. Nanoscale Res. Lett. 2020, 15, 133. [Google Scholar] [CrossRef]
- Rijcken, C.; Soga, O.; Hennink, W.; van Nostrum, C. Triggered destabilisation of polymeric micelles and vesicles by changing polymers polarity: An attractive tool for drug delivery. J. Control. Release 2007, 120, 131–148. [Google Scholar] [CrossRef]
- Mehan, N.; Kumar, M.; Bhatt, S.; Shankar, R.; Kumari, B.; Pahwa, R.; Kaushik, D. Self-Assembly Polymeric Nano Micelles for the Futuristic Treatment of Skin Cancer and Phototoxicity: Therapeutic and Clinical Advancement. Crit. Rev. Ther. Drug Carr. Syst. 2022, 39, 79–95. [Google Scholar] [CrossRef]
- Taymouri, S.; Varshosaz, J.; Hassanzadeh, F.; Javanmard, S.H.; Dana, N. Optimisation of processing variables effective on self-assembly of folate targeted Synpronic-based micelles for docetaxel delivery in melanoma cells. IET Nanobiotechnology 2015, 9, 306–313. [Google Scholar] [CrossRef]
- Trinh, H.M.; Joseph, M.; Cholkar, K.; Mitra, R.; Mitra, A.K. Nanomicelles in Diagnosis and Drug Delivery. In Emerging Nanotechnologies for Diagnostics, Drug Delivery and Medical Devices; Elsevier: Amsterdam, The Netherlands, 2017; pp. 45–58. [Google Scholar]
- Munot, N.; Kandekar, U.; Giram, P.S.; Khot, K.; Patil, A.; Cavalu, S. A comparative study of quercetin-loaded nanocochleates and liposomes: Formulation, characterization, assessment of degradation and in vitro anticancer potential. Pharmaceutics 2022, 14, 1601. [Google Scholar] [CrossRef]
- Kapare, H.S.; Lohidasan, S.; Sinnathambi, A.; Mahadik, K. Formulation Development of Folic Acid Conjugated PLGA Nanoparticles for Improved Cytotoxicity of Caffeic Acid Phenethyl Ester. Pharm. Nanotechnol. 2021, 9, 111–119. [Google Scholar] [CrossRef] [PubMed]
- Shitole, A.A.; Sharma, N.; Giram, P.; Khandwekar, A.; Baruah, M.; Garnaik, B.; Koratkar, S. LHRH-conjugated, PEGylated, poly-lactide-co-glycolidenanocapsulesfor targeted delivery of combinational chemotherapeutic drugs Docetaxel and Quercetin for prostate cancer. Mater. Sci. Eng. C Mater. Biol. Appl. 2020, 114, 111035. [Google Scholar] [CrossRef] [PubMed]
- Patil, P.H.; Wankhede, P.R.; Mahajan, H.S.; Zawar, L.R. Aripiprazole-Loaded Polymeric Micelles: Fabrication, Optimization and Evaluation using Response Surface Method. Recent Pat. Drug Deliv. Formul. 2018, 12, 53–64. [Google Scholar] [CrossRef] [PubMed]
- Tilawat, M.; Bonde, S. Curcumin and quercetin loaded nanocochleates gel formulation for localized application in breast cancer therapy. Heliyon 2023, 9, e22892. [Google Scholar] [CrossRef] [PubMed]
- Noor, N.S.; Kaus, N.H.M.; Szewczuk, M.R.; Hamid, S.B.S. Formulation, Characterization and Cytotoxicity Effects of Novel Thymoquinone-PLGA-PF68 Nanoparticles. Int. J. Mol. Sci. 2021, 22, 9420. [Google Scholar] [CrossRef]
- Khaliq, N.U.; Lee, J.; Kim, S.; Sung, D.; Kim, H. Pluronic F-68 and F-127 Based Nanomedicines for Advancing Combination Cancer Therapy. Pharmaceutics 2023, 15, 2102. [Google Scholar] [CrossRef]
- Foroozandeh, P.; Aziz, A.A. Insight into Cellular Uptake and Intracellular Trafficking of Nanoparticles. Nanoscale Res. Lett. 2018, 13, 339. [Google Scholar] [CrossRef]
Batches | Coded Levels | Actual Levels | Response | ||||
---|---|---|---|---|---|---|---|
X1 | X2 | X1 (mg) | X2 (rpm) | Micellar Size (nm) | Entrapment Efficiency (%) | Surface Charge Value (mV) | |
F1 | 0 | 1 | 150 | 100 | 216.13 ± 1.9 | 73.20 ± 0.8 | −13.9 ± 0.019 |
F2 | 0 | 0 | 150 | 75 | 180.26 ± 2.4 | 78.40 ± 1.1 | −13.5 ± 0.024 |
F3 | 1 | 0 | 200 | 75 | 157.30 ± 2.1 | 76.22 ± 1.2 | −14.2 ± 0.041 |
F4 | −1 | −1 | 100 | 50 | 224.30 ± 2.2 | 73.20 ± 0.8 | −13.7 ± 0.014 |
F5 | −1 | 1 | 100 | 100 | 209.10 ± 2.1 | 72.25 ± 1.1 | −13.5 ± 0.018 |
F6 | 0 | −1 | 150 | 50 | 218.30 ± 2.4 | 78.40 ± 1.2 | −13.9 ± 0.022 |
F7 | 1 | −1 | 200 | 50 | 229.80 ± 2.1 | 78.33 ± 1.2 | −14.4 ± 0.028 |
F8 | −1 | 0 | 100 | 75 | 159.50 ± 2.3 | 74.53 ± 0.9 | −13.2 ± 0.020 |
F9 | 1 | 1 | 200 | 100 | 195.15 ± 1.8 | 72.30 ± 0.9 | −13.9 ± 0.025 |
Drug Concentration (µg/mL) | ||
---|---|---|
MCF 7 | TGI | GI50 |
Formulation | 79.29 ± 1.11 * | <10 |
Quercetin | 96.73 ± 1.89 ** | 29 ± 0.41 |
Adriamycin (standard) | 60.21 ± 0.91 | <10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kapare, H.S.; Kanadje, S.; Giram, P.; Patil, A.; Bhole, R.P. Development of Quercetin Micellar Nanogel: Formulation, Characterization, and In Vitro Cytotoxocity Study. Micro 2025, 5, 6. https://doi.org/10.3390/micro5010006
Kapare HS, Kanadje S, Giram P, Patil A, Bhole RP. Development of Quercetin Micellar Nanogel: Formulation, Characterization, and In Vitro Cytotoxocity Study. Micro. 2025; 5(1):6. https://doi.org/10.3390/micro5010006
Chicago/Turabian StyleKapare, Harshad S., Sunil Kanadje, Prabhanjan Giram, Aditi Patil, and Ritesh P. Bhole. 2025. "Development of Quercetin Micellar Nanogel: Formulation, Characterization, and In Vitro Cytotoxocity Study" Micro 5, no. 1: 6. https://doi.org/10.3390/micro5010006
APA StyleKapare, H. S., Kanadje, S., Giram, P., Patil, A., & Bhole, R. P. (2025). Development of Quercetin Micellar Nanogel: Formulation, Characterization, and In Vitro Cytotoxocity Study. Micro, 5(1), 6. https://doi.org/10.3390/micro5010006