Relationships between ICT Use for Task and Social Functions, Work Characteristics, and Employee Task Proficiency and Job Satisfaction: Does Age Matter?
Abstract
:1. Model of Workplace ICT Use and Work Design
2. Lifespan Theory of Socioemotional Selectivity
3. Work Characteristics as Mediators
4. Method
4.1. Participants and Procedure
4.2. Measures
4.3. Statistical Analyses
5. Results
5.1. Descriptive Statistics, Correlations, and Dimensionality of Study Variables
5.2. Results of Hypothesis Tests
6. Discussion
6.1. Theoretical and Practical Implications
6.2. Limitations and Future Research
7. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lanzolla, G.; Lorenz, A.; Miron-Spektor, E.; Schilling, M.; Solinas, G.; Tucci, C.L. Digital transformation: What is new if anything? Emerging patterns and management research. Acad. Manag. Discov. 2020, 6, 341–350. [Google Scholar] [CrossRef]
- Hu, X.; Barber, L.K.; Park, Y.; Day, A. Defrag and reboot? Consolidating information and communication technology research in I-O psychology. Ind. Organ. Psychol. 2021, 14, 371–396. [Google Scholar] [CrossRef]
- Hertel, G.; Zacher, H. Managing the aging workforce. In The SAGE Handbook of Industrial, Work, and Organizational Psychology; Ones, D., Anderson, N., Sinangil, H., Viswesvaran, C., Eds.; SAGE Publications Ltd: London, UK, 2018; pp. 396–425. ISBN 9781446207239. [Google Scholar]
- Ng, T.W.H.; Feldman, D.C. The relationship of age to ten dimensions of job performance. J. Appl. Psychol. 2008, 93, 392–423. [Google Scholar] [CrossRef]
- Ng, T.W.H.; Feldman, D.C. The relationship of age with job attitudes: A meta-analysis. Pers. Psychol. 2010, 63, 677–718. [Google Scholar] [CrossRef]
- Truxillo, D.M.; Cadiz, D.M.; Rineer, J.R.; Zaniboni, S.; Fraccaroli, F. A lifespan perspective on job design: Fitting the job and the worker to promote job satisfaction, engagement, and performance. Organ. Psychol. Rev. 2012, 2, 340–360. [Google Scholar] [CrossRef]
- Zacher, H.; Froidevaux, A. Life stage, lifespan, and life course perspectives on vocational behavior and development: A theoretical framework, review, and research agenda. J. Vocat. Behav. 2021, 126, 103476. [Google Scholar] [CrossRef]
- Hülür, G.; Macdonald, B. Rethinking social relationships in old age: Digitalization and the social lives of older adults. Am. Psychol. 2020, 75, 554–566. [Google Scholar] [CrossRef]
- De Koning, J.; Gelderblom, A. ICT and older workers: No unwrinkled relationship. Int. J. Manpow. 2006, 27, 467–490. [Google Scholar] [CrossRef]
- Hauk, N.; Hüffmeier, J.; Krumm, S. Ready to be a silver surfer? A meta-analysis on the relationship between chronological age and technology acceptance. Comput. Hum. Behav. 2018, 84, 304–319. [Google Scholar] [CrossRef]
- Kanfer, R.; Ackerman, P.L. Aging, adult development, and work motivation. AMR 2004, 29, 440–458. [Google Scholar] [CrossRef]
- Rudolph, C.W.; Zacher, H. Managing employees across the lifespan. In The Cambridge Handbook of the Changing Nature of Work; Hoffman, B.J., Shoss, M.K., Wegman, L.A., Eds.; Cambridge University Press: Cambrigde, UK, 2020; pp. 425–445. ISBN 9781108417631. [Google Scholar]
- Zacher, H. Successful aging at work. Work Aging Retire. 2015, 1, 4–25. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Parker, S.K. How does the use of information communication technology affect individuals? A work design perspective. Acad. Manag. Ann. 2020, 14, 695–725. [Google Scholar] [CrossRef]
- Carstensen, L.L.; Isaacowitz, D.M.; Charles, S.T. Taking time seriously: A theory of socioemotional selectivity. Am. Psychol. 1999, 54, 165–181. [Google Scholar] [CrossRef] [PubMed]
- Finkel, S.E. Linear panel analysis. In Handbook of Longitudinal Research: Design, Measurement, and Analysis; Menard, S., Ed.; Elsevier: Amsterdam, The Netherlands, 2008; pp. 475–507. ISBN 9780080554228. [Google Scholar]
- Parker, S.K.; van den Broeck, A.; Holman, D. Work design influences: A synthesis of multilevel factors that affect the design of jobs. Acad. Manag. Ann. 2017, 11, 267–308. [Google Scholar] [CrossRef]
- Heidemeier, H.; Moser, K. Self-other agreement in job performance ratings: A meta-analytic test of a process model. J. Appl. Psychol. 2009, 94, 353–370. [Google Scholar] [CrossRef] [PubMed]
- Judge, T.A.; Thoresen, C.J.; Bono, J.E.; Patton, G.K. The job satisfaction-job performance relationship: A qualitative and quantitative review. Psychol. Bull. 2001, 127, 376–407. [Google Scholar] [CrossRef] [PubMed]
- Rice, R.E.; Leonardi, P.M. Information and communication technology use in organizations. In The SAGE Handbook of Organizational Communication: Advances in Theory, Research, and Methods, 3rd ed.; Putnam, L.L., Mumby, D.K., Eds.; SAGE Publications: Thousand Oaks, CA, USA, 2013; pp. 425–448. ISBN 9781483309972. [Google Scholar]
- Borman, W.C.; Motowidlo, S.J. Task performance and contextual performance: The meaning for personnel selection research. Hum. Perform. 1997, 10, 99–109. [Google Scholar] [CrossRef]
- Williams, L.J.; Anderson, S.E. Job satisfaction and organizational commitment as predictors of organizational citizenship and in-role behaviors. J. Manag. 1991, 17, 601–617. [Google Scholar] [CrossRef]
- Spector, P.E. Job Satisfaction: Application, Assessment, Causes, and Consequences; SAGE Publications, Inc.: Thousand Oaks, CA, USA, 1997; ISBN 9780761989233. [Google Scholar]
- Locke, E.A. The nature and causes of job satisfaction. In Handbook of Industrial and Organizational Psychology; Dunette, M.D., Ed.; Rand McNally: Chicago, IL, USA, 1976; pp. 1297–1349. [Google Scholar]
- Parker, S.K. Beyond motivation: Job and work design for development, health, ambidexterity, and more. Annu. Rev. Psychol. 2014, 65, 661–691. [Google Scholar] [CrossRef]
- Morgeson, F.P.; Humphrey, S.E. The Work Design Questionnaire (WDQ): Developing and validating a comprehensive measure for assessing job design and the nature of work. J. Appl. Psychol. 2006, 91, 1321–1339. [Google Scholar] [CrossRef] [Green Version]
- Hackman, J.R.; Oldham, G.R. Motivation through the design of work: Test of a theory. Organ. Behav. Hum. Perform. 1976, 16, 250–279. [Google Scholar] [CrossRef]
- Humphrey, S.E.; Nahrgang, J.D.; Morgeson, F.P. Integrating motivational, social, and contextual work design features: A meta-analytic summary and theoretical extension of the work design literature. J. Appl. Psychol. 2007, 92, 1332–1356. [Google Scholar] [CrossRef] [PubMed]
- Beal, D.J.; Cohen, R.R.; Burke, M.J.; McLendon, C.L. Cohesion and performance in groups: A meta-analytic clarification of construct relations. J. Appl. Psychol. 2003, 88, 989–1004. [Google Scholar] [CrossRef]
- Evans, C.R.; Dion, K.L. Group cohesion and performance. Small Group Res. 1991, 22, 175–186. [Google Scholar] [CrossRef]
- Hackman, J.R.; Oldham, G.R. Development of the job diagnostic survey. J. Appl. Psychol. 1975, 60, 159–170. [Google Scholar] [CrossRef]
- Grant, A.M. The significance of task significance: Job performance effects, relational mechanisms, and boundary conditions. J. Appl. Psychol. 2008, 93, 108–124. [Google Scholar] [CrossRef]
- Kooij, D.T.A.M.; Kanfer, R.; Betts, M.; Rudolph, C.W. Future time perspective: A systematic review and meta-analysis. J. Appl. Psychol. 2018, 103, 867–893. [Google Scholar] [CrossRef]
- Zacher, H.; Frese, M. Remaining time and opportunities at work: Relationships between age, work characteristics, and occupational future time perspective. Psychol. Aging 2009, 24, 487–493. [Google Scholar] [CrossRef]
- Carstensen, L.L. The influence of a sense of time on human development. Science 2006, 312, 1913–1915. [Google Scholar] [CrossRef]
- Hommelhoff, S.; Müller, T.; Scheibe, S. Experimental evidence for the influence of occupational future time perspective on social preferences during lunch breaks. Work Aging Retire. 2018, 4, 367–380. [Google Scholar] [CrossRef] [Green Version]
- Boumans, N.P.G.; Jong, A.H.J.; de Janssen, S.M. Age-differences in work motivation and job satisfaction. The influence of age on the relationships between work characteristics and workers’ outcomes. Int. J. Aging Hum. Dev. 2011, 73, 331–350. [Google Scholar] [CrossRef] [PubMed]
- Lord, R.L. Empirical Evaluation of Classical Behavioral Theories with Respect to the Motivation of Older Knowledge Workers. Ph.D. Dissertation, The University of Alabama, Huntsville, AL, USA, 2004. [Google Scholar]
- Fazi, L.; Zaniboni, S.; Estreder, Y.; Truxillo, D.; Fraccaroli, F. The role of age in the relationship between work social characteristics and job attitudes. J. Workplace Behav. Health 2019, 34, 77–95. [Google Scholar] [CrossRef]
- Raghuram, S.; Hill, N.S.; Gibbs, J.L.; Maruping, L.M. Virtual work: Bridging research clusters. Acad. Manag. Ann. 2019, 13, 308–341. [Google Scholar] [CrossRef]
- Fujimoto, Y.; Ferdous, A.S.; Sekiguchi, T.; Sugianto, L.-F. The effect of mobile technology usage on work engagement and emotional exhaustion in Japan. J. Bus. Res. 2016, 69, 3315–3323. [Google Scholar] [CrossRef]
- Ter Hoeven, C.L.; van Zoonen, W.; Fonner, K.L. The practical paradox of technology: The influence of communication technology use on employee burnout and engagement. Commun. Monogr. 2016, 83, 239–263. [Google Scholar] [CrossRef]
- Van Zoonen, W.; Rice, R.E. Paradoxical implications of personal social media use for work. New Technol. Work. Employ. 2017, 32, 228–246. [Google Scholar] [CrossRef]
- Gajendran, R.S.; Harrison, D.A.; Delaney-Klinger, K. Are telecommuters remotely good citizens? Unpacking telecommuting’s effects on performance via i-deals and job resources. Psychology 2015, 68, 353–393. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Qian, J.; Parker, S.K. Achieving effective remote working during the COVID-19 pandemic: A work design perspective. Appl. Psychol. 2020, 70, 16–59. [Google Scholar] [CrossRef]
- Marler, J.H.; Liang, X. Information technology change, work complexity and service jobs: A contingent perspective. New Technol. Work. Employ. 2012, 27, 133–146. [Google Scholar] [CrossRef]
- Shao, Y.; Fang, Y.; Wang, M.; Chang, C.-H.D.; Wang, L. Making daily decisions to work from home or to work in the office: The impacts of daily work- and COVID-related stressors on next-day work location. J. Appl. Psychol. 2021, 106, 825–838. [Google Scholar] [CrossRef]
- Bader, V.; Kaiser, S. Autonomy and control? How heterogeneous sociomaterial assemblages explain paradoxical rationalities in the digital workplace. Manag. Rev. 2017, 28, 338–358. [Google Scholar] [CrossRef]
- White, J.C.; Ravid, D.M.; Behrend, T.S. Moderating effects of person and job characteristics on digital monitoring outcomes. Curr. Opin. Psychol. 2020, 31, 55–60. [Google Scholar] [CrossRef] [PubMed]
- Ng, T.W.H.; Feldman, D.C. The moderating effects of age in the relationships of job autonomy to work outcomes. Work Aging Retire. 2015, 1, 64–78. [Google Scholar] [CrossRef]
- Grant, A.M.; Parker, S.K. 7 Redesigning Work Design Theories: The Rise of Relational and Proactive Perspectives. Acad. Manag. Ann. 2009, 3, 317–375. [Google Scholar] [CrossRef]
- Müller, R.; Antoni, C.H. Individual perceptions of shared mental models of information and communication technology (ICT) and virtual team coordination and performance—The moderating role of flexibility in ICT use. Group Dyn. Theory Res. Pract. 2020, 24, 186–200. [Google Scholar] [CrossRef]
- Farley, S.; Coyne, I.; Axtell, C.; Sprigg, C. Design, development and validation of a workplace cyberbullying measure, the WCM. Work. Stress 2016, 30, 293–317. [Google Scholar] [CrossRef]
- Park, Y.; Fritz, C.; Jex, S.M. Daily Cyber Incivility and Distress: The Moderating Roles of Resources at Work and Home. J. Manag. 2018, 44, 2535–2557. [Google Scholar] [CrossRef]
- Waytz, A.; Gray, K. Does online technology make us more or less sociable? A preliminary review and call for research. Perspect. Psychol. Sci. 2018, 13, 473–491. [Google Scholar] [CrossRef]
- Hislop, D.; Axtell, C.; Collins, A.; Daniels, K.; Glover, J.; Niven, K. Variability in the use of mobile ICTs by homeworkers and its consequences for boundary management and social isolation. Inf. Organ. 2015, 25, 222–232. [Google Scholar] [CrossRef]
- Lal, B.; Dwivedi, Y.K. Homeworkers’ usage of mobile phones; social isolation in the home-workplace. J. Enterp. Inf. Manag. 2009, 22, 257–274. [Google Scholar] [CrossRef]
- Leonardi, P.M. Social Media and the Development of Shared Cognition: The Roles of Network Expansion, Content Integration, and Triggered Recalling. Organ. Sci. 2018, 29, 547–568. [Google Scholar] [CrossRef]
- Doerwald, F.; Zacher, H.; van Yperen, N.W.; Scheibe, S. Generativity at work: A meta-analysis. J. Vocat. Behav. 2021, 125, 103521. [Google Scholar] [CrossRef]
- Demerouti, E. Turn Digitalization and Automation to a Job Resource. Appl. Psychol. 2020, 1–6. [Google Scholar] [CrossRef]
- Destatis. Labor Force Participation. Available online: https://www.destatis.de/EN/Themes/Labour/Labour-Market/Employment/Tables/et-etq-2020.html (accessed on 9 December 2021).
- Destatis. Persons in Employment Are 44 Years on Average. Available online: https://www.destatis.de/EN/Press/2018/11/PE18_448_122.html (accessed on 12 September 2021).
- Destatis. Erwerbstätige nach Geschlecht und Bildungsstand [Employed Persons by Gender and Education Level]. Available online: https://www.destatis.de/DE/Themen/Arbeit/Arbeitsmarkt/Erwerbstaetigkeit/Tabellen/EWT-Corona-Bildung.html (accessed on 9 December 2021).
- Griffin, M.A.; Neal, A.; Parker, S.K. A new model of work role performance: Positive behavior in uncertain and interdependent contexts. Acad. Manag. J. 2007, 50, 327–347. [Google Scholar] [CrossRef]
- Wanous, J.P.; Reichers, A.E.; Hudy, M.J. Overall job satisfaction: How good are single-item measures? J. Appl. Psychol. 1997, 82, 247–252. [Google Scholar] [CrossRef] [PubMed]
- Fisher, G.G.; Matthews, R.A.; Gibbons, A.M. Developing and investigating the use of single-item measures in organizational research. J. Occup. Health Psychol. 2016, 21, 3–23. [Google Scholar] [CrossRef] [PubMed]
- Nübling, M.; Stößel, U.; Hasselhorn, H.-M.; Michaelis, M.; Hofmann, F. Measuring psychological stress and strain at work-Evaluation of the COPSOQ Questionnaire in Germany. Psychosoc. Med. 2006, 3, Doc05. [Google Scholar] [PubMed]
- Stegmann, S.; van Dick, R.; Ullrich, J.; Charalambous, J.; Menzel, B.; Egold, N.; Wu, T.T.-C. The work design questionnaire. Z. Arb.-Und Organ. AO 2010, 54, 1–28. [Google Scholar] [CrossRef]
- Muthén, B.; Muthén, L. Mplus User’s Guide, 8th ed.; Muthén & Muthén: Los Angeles, CA, USA, 2017; Available online: http://www.statmodel.com/html_ug.shtml (accessed on 9 May 2022).
- Hulshof, I.L.; Demerouti, E.; Le Blanc, P.M. Day-level job crafting and service-oriented task performance. Career Dev. Int. 2020, 25, 355–371. [Google Scholar] [CrossRef]
- Karimikia, H.; Singh, H.; Joseph, D. Negative outcomes of ICT use at work: Meta-analytic evidence and the role of job autonomy. Internet Res. 2021, 31, 159–190. [Google Scholar] [CrossRef]
- Rudolph, C.W.; Allan, B.; Clark, M.; Hertel, G.; Hirschi, A.; Kunze, F.; Shockley, K.; Shoss, M.; Sonnentag, S.; Zacher, H. Pandemics: Implications for research and practice in industrial and organizational psychology. Ind. Organ. Psychol. 2021, 14, 1–35. [Google Scholar] [CrossRef]
- Meske, C.; Junglas, I. Investigating the elicitation of employees’ support towards digital workplace transformation. Behav. Inf. Technol. 2021, 40, 1120–1136. [Google Scholar] [CrossRef]
- Umphress, E.E.; Labianca, G.; Brass, D.J.; Kass, E.; Scholten, L. The role of instrumental and expressive social ties in employees’ perceptions of organizational justice. Organ. Sci. 2003, 14, 738–753. [Google Scholar] [CrossRef]
- Senkbeil, M. Development and validation of the ICT motivation scale for young adolescents. Results of the international school assessment study ICILS 2013 in Germany. Learn. Individ. Differ. 2018, 67, 167–176. [Google Scholar] [CrossRef]
- Senkbeil, M.; Ihme, J.M. Motivational factors predicting ICT literacy: First evidence on the structure of an ICT motivation inventory. Comput. Educ. 2017, 108, 145–158. [Google Scholar] [CrossRef]
- Gerpott, F.H.; Lehmann-Willenbrock, N.; Scheibe, S. Is work and aging research a science of questionnaires? Moving the field forward by considering perceived versus actual behaviors. Work Aging Retire. 2020, 6, 65–70. [Google Scholar] [CrossRef]
M | SD | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | ||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Age (T1) | 44.04 | 11.91 | - | |||||||||||
2 | T ICT Use (T1) | 3.65 | 1.37 | −0.04 | - | ||||||||||
3 | C ICT Use (T1) | 3.64 | 1.33 | −0.05 * | 0.77 ** | - | |||||||||
4 | Job Autonomy (T1) | 2.93 | 1.06 | 0.03 | 0.25 ** | 0.26 ** | (0.85) | ||||||||
5 | Team Cohesion (T1) | 3.60 | 1.01 | 0.06 ** | 0.21 ** | 0.20 ** | 0.14 ** | (0.92) | |||||||
6 | Task Significance (T1) | 3.42 | 0.97 | 0.06 ** | 0.17 ** | 0.18 ** | 0.26 ** | 0.27 ** | (0.85) | ||||||
7 | Job Autonomy (T2) | 2.94 | 1.09 | 0.03 | 0.19 ** | 0.20 ** | 0.68 ** | 0.09 ** | 0.19 ** | (0.86) | |||||
8 | Team Cohesion (T2) | 3.61 | 0.99 | 0.09 ** | 0.18 ** | 0.17 ** | 0.17 ** | 0.68 ** | 0.26 ** | 0.16 ** | (0.92) | ||||
9 | Task Significance (T2) | 3.26 | 1.03 | 0.03 | 0.11 ** | 0.12 ** | 0.16 ** | 0.23 ** | 0.67 ** | 0.18 ** | 0.31 ** | (0.90) | |||
10 | Task Proficiency (T2) | 4.26 | 0.75 | 0.23 ** | 0.10 ** | 0.12 ** | 0.06* | 0.31 ** | 0.21 ** | 0.07 ** | 0.35 ** | 0.23 ** | (0.91) | ||
11 | Job Satisfaction (T2) | 3.49 | 0.99 | 0.08 ** | 0.09 ** | 0.10 ** | 0.27 ** | 0.32 ** | 0.23 ** | 0.31 ** | 0.39 ** | 0.25 ** | 0.29 ** | - | |
12 | Task Proficiency (T3) | 4.23 | 0.75 | 0.25 ** | 0.10 ** | 0.11 ** | 0.05 | 0.33 ** | 0.19 ** | 0.02 | 0.35 ** | 0.20 ** | 0.66 ** | 0.30 ** | (0.91) |
13 | Job Satisfaction (T3) | 3.51 | 0.99 | 0.07 ** | 0.11 ** | 0.12 ** | 0.27 ** | 0.32 ** | 0.22 ** | 0.29 ** | 0.37 ** | 0.24 ** | 0.30 ** | 0.62 ** | 0.32 ** |
Effects on the Mediators at T2 | Effects on the Outcomes at T3 | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Job Autonomy | Team Cohesion | Task Significance | Task Proficiency | Job Satisfaction | ||||||
M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | M1 | M2 | |
γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | γ (SE) | |
Predictors | ||||||||||
T1 ICT-T (X) | 0.01 (0.03) | 0.01 (0.03) | 0.03 (0.03) | 0.02 (0.03) | −0.01 (0.03) | −0.01 (0.03) | 0.01 (0.03) | 0.01 (0.03) | 0.02 (0.03) | 0.01 (0.03) |
T1 ICT-S (X2) | 0.02 (0.03) | 0.02 (0.03) | 0.02 (0.03) | 0.02 (0.03) | 0.01 (0.03) | 0.01 (0.03) | 0.03 (0.03) | 0.03 (0.03) | 0.01 (0.04) | 0.01 (0.04) |
T1 Age (W) | 0.01 (0.01) | 0.01 (0.02) | 0.06 (0.02) ** | 0.06 (0.02) ** | −0.01 (0.02) | −0.01 (0.02) | 0.11 (0.02) ** | 0.11 (0.02) ** | −0.00 (0.02) | −0.00 (0.02) |
Mediators | ||||||||||
T2 JA (M1) | −0.05 (0.02) * | −0.06 (0.02) ** | 0.09 (0.02) ** | 0.09 (0.02) ** | ||||||
T2 TC (M2) | 0.11 (0.02) ** | 0.12 (0.03) ** | 0.14 (0.03) ** | 0.15 (0.03) ** | ||||||
T2 TS (M3) | 0.03 (0.02) | 0.03 (0.02) | 0.03 (0.02) | 0.03 (0.02) | ||||||
Interactions | ||||||||||
X*W | −0.01 (0.03) | 0.01 (0.03) | −0.01 (0.03) | |||||||
X2*W | −0.02 (0.03) | 0.02 (0.03) | 0.04 (0.03) | |||||||
M1*W | 0.03 (0.02) | 0.00 (0.02) | ||||||||
M2*W | −0.04 (0.02) | −0.03 (0.02) | ||||||||
M3*W | −0.05 (0.02)* | −0.03 (0.02) | ||||||||
Baselines | ||||||||||
T1 JA | 0.68 (0.02) ** | 0.68 (0.02) ** | ||||||||
T1 TC | 0.66 (0.02) ** | 0.66 (0.02) ** | ||||||||
T1 TS | 0.66 (0.02) ** | 0.66 (0.02) ** | ||||||||
T2 TP | 0.58 (0.03) ** | 0.57 (0.03) ** | ||||||||
T2 JS | 0.53 (0.03) ** | 0.52 (0.03) ** | ||||||||
R2 | 0.47 ** | 0.47 ** | 0.46 ** | 0.46 ** | 0.44 ** | 0.44 ** | 0.45 ** | 0.45 ** | 0.40 ** | 0.41 |
Indirect Effects of ICT-T on Task Proficiency and Job Satisfaction (through M1, M2, M3) | ||||||
---|---|---|---|---|---|---|
Task Proficiency | Job Satisfaction | |||||
Mediator | γ | 95% CI | γ | 95% CI | ||
Job Autonomy (M1) | 0.000 | −0.002, | 0.001 | 0.001 | −0.003, | 0.004 |
Team Cohesion (M2) | 0.002 | −0.002, | 0.006 | 0.002 | −0.004, | 0.009 |
Task Significance (M3) | 0.000 | −0.002, | 0.001 | 0.000 | −0.003, | 0.001 |
Total effects of ICT-T on Task Proficiency and Job Satisfaction | ||||||
Task Proficiency | Job Satisfaction | |||||
γ | 95% CI | γ | 95% CI | |||
Total | 0.007 | −0.022, | 0.039 | 0.011 | −0.037, | 0.059 |
Total indirect | 0.001 | −0.003, | 0.006 | 0.003 | −0.005, | 0.011 |
Conditional total effect at three levels of Age | ||||||
−1 SD (−12.03) | 0.007 | −0.023, | 0.039 | 0.012 | −0.038, | 0.060 |
M (0.00) | 0.007 | −0.022, | 0.039 | 0.011 | −0.037, | 0.059 |
+1 SD (12.03) | 0.008 | −0.022, | 0.040 | 0.011 | −0.038, | 0.059 |
Indirect effects of ICT-S on Task Proficiency and Job Satisfaction (through M1, M2, M3) | ||||||
Task Proficiency | Job Satisfaction | |||||
Mediator | γ | 95% CI | γ | 95% CI | ||
Job Autonomy (M1) | −0.001 | −0.003, | 0.001 | 0.001 | −0.002, | 0.005 |
Team Cohesion (M2) | 0.001 | −0.002, | 0.006 | 0.002 | −0.004, | 0.009 |
Task Significance (M3) | 0.000 | −0.001, | 0.002 | 0.000 | −0.001, | 0.002 |
Total effects of ICT-S on Task Proficiency and Job Satisfaction | ||||||
Task Proficiency | Job Satisfaction | |||||
γ | 95% CI | γ | 95% CI | |||
Total | 0.018 | −0.017, | 0.052 | 0.013 | −0.039, | 0.065 |
Total indirect | 0.001 | −0.004, | 0.006 | 0.003 | −0.004, | 0.012 |
Conditional total effect at three levels of Age | ||||||
−1 SD (−12.03) | 0.014 | −0.022, | 0.049 | 0.011 | −0.043, | 0.064 |
M (0.00) | 0.018 | −0.017, | 0.052 | 0.013 | −0.039, | 0.065 |
+1 SD (12.03) | 0.019 | −0.016, | 0.053 | 0.012 | −0.041, | 0.064 |
Task Proficiency (Y) | |||||||
---|---|---|---|---|---|---|---|
ICT for Task Functions (X) | ICT for Social Functions (X2) | ||||||
Mediator | Age | γ | 95% CI | γ | 95% CI | ||
Task Significance (M3) | −1 SD (−12.03) | 0.000 | −0.004, | 0.004 | −0.002 | −0.008, | 0.001 |
M (0.00) | 0.000 | −0.002, | 0.001 | 0.000 | −0.001, | 0.002 | |
+1 SD (12.03) | 0.000 | −0.001, | 0.003 | 0.000 | −0.003, | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dietz, C.; Bauermann, P.; Zacher, H. Relationships between ICT Use for Task and Social Functions, Work Characteristics, and Employee Task Proficiency and Job Satisfaction: Does Age Matter? Merits 2022, 2, 224-240. https://doi.org/10.3390/merits2030016
Dietz C, Bauermann P, Zacher H. Relationships between ICT Use for Task and Social Functions, Work Characteristics, and Employee Task Proficiency and Job Satisfaction: Does Age Matter? Merits. 2022; 2(3):224-240. https://doi.org/10.3390/merits2030016
Chicago/Turabian StyleDietz, Carolin, Pauline Bauermann, and Hannes Zacher. 2022. "Relationships between ICT Use for Task and Social Functions, Work Characteristics, and Employee Task Proficiency and Job Satisfaction: Does Age Matter?" Merits 2, no. 3: 224-240. https://doi.org/10.3390/merits2030016
APA StyleDietz, C., Bauermann, P., & Zacher, H. (2022). Relationships between ICT Use for Task and Social Functions, Work Characteristics, and Employee Task Proficiency and Job Satisfaction: Does Age Matter? Merits, 2(3), 224-240. https://doi.org/10.3390/merits2030016