Modifications in Immune Response Patterns Induced by Kynurenine and One-Residue-Substituted T Cell Epitopes in SARS-CoV-2-Specific Human T Cells
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of PBMCs
2.2. Peptides
2.3. Human T Cell Clones
2.4. Assessment of T Cell Responses
2.5. Cytokine ELISAs
2.6. Statistical Analysis
3. Results
3.1. Kynurenine Increases the Production of IL-8 Induced by Peptide Stimulation
3.2. L176S and M177S Completely Abolish the Cytokine Response of TM45.2 Cells
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Wu, Z.; McGoogan, J.M. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China. JAMA 2020, 323, 1239–1242. [Google Scholar] [CrossRef] [PubMed]
- Guan, W.; Ni, Z.; Hu, Y.; Liang, W.; Ou, C.; He, J.; Liu, L.; Shan, H.; Lei, C.L.; Hui, D.S.C.; et al. Clinical Characteristics of coronavirus disease 2019 in China. N. Engl. J. Med. 2020, 382, 1708–1720. [Google Scholar] [CrossRef] [PubMed]
- Skendros, P.; Mitsios, A.; Chrysanthopoulou, A.; Mastellos, D.C.; Metallidis, S.; Rafailidis, P.; Ntinopoulou, M.; Sertaridou, E.; Tsironidou, V.; Tsigalou, C.; et al. Complement and tissue factor-enriched neutrophil extracellular traps are key drivers in COVID-19 immunothrombosis. J. Clin. Investig. 2020, 130, 6151–6157. [Google Scholar] [CrossRef]
- Reusch, N.; De Domenico, E.; Bonaguro, L.; Schulte-Schrepping, J.; Baßler, K.; Schultze, J.L.; Alschenbrenner, A.C. Neutrophils in COVID-19. Front. Immunol. 2021, 12, 652470. [Google Scholar] [CrossRef] [PubMed]
- Schulte-Schrepping, J.; Reusch, N.; Paclik, D.; Baßler, K.; Schlickeiser, S.; Zhang, B.; Krämer, B.; Krammer, T.; Brumhard, S.; Bonaguro, L.; et al. Severe COVID-19 is marked by a dysregulated myeloid cell compartment. Cell 2020, 182, 1419–1440.e23. [Google Scholar] [CrossRef]
- Middleton, E.A.; He, X.; Denorme, F.; Campbell, R.A.; Ng, D.; Salvatore, S.P.; Mostyka, M.; Baxter-Stoltzfus, A.; Borczuk, A.C.; Loda, M.; et al. Neutrophil extracellular traps contribute to immunothrombosis in COVID-19 acute respiratory distress syndrome. Blood 2020, 136, 1169–1179. [Google Scholar] [CrossRef]
- Oliveira, J.; Queiroz da Silva, L.; Vaz, C.; Jacintho, B.C.; dos Santos, A.P.R.; Mesquita, G.L.T.V.; Leonardi, G.R.; Monica, F.Z.; Mazetto, B.; De Paula, E.V.; et al. Contribution of Neutrophil Extracellular Traps (NETs) and Platelet Activation to COVID-19 Clinical Course and Inhibitory Effect of Anticoagulants and Platelets on NETs Release. Blood 2022, 140, 5536–5537. [Google Scholar] [CrossRef]
- Ackermann, M.; Anders, H.-J.; Bilyy, R.; Bowlin, G.L.; Daniel, C.; De Lorenzo, R.; Egeblad, M.; Henneck, T.; Hidalgo, A.; Hoffmann, M.; et al. Patients with COVID-19: In the dark-NETs of neutrophils. Cell Death Differ. 2021, 28, 3125–3139. [Google Scholar] [CrossRef]
- Veras, F.P.; Pontelli, M.C.; Silva, C.M.; Toller-Kawahisa, J.E.; de Lima, M.; Nascimento, D.C.; Schneider, A.H.; Caetité, D.; Tavares, L.A.; Paiva, I.M.; et al. SARS-CoV-2–triggered neutrophil extracellular traps mediate COVID-19 pathology. J. Exp. Med. 2020, 217, e20201129. [Google Scholar] [CrossRef]
- Zuo, Y.; Yalavarthi, S.; Shi, H.; Gockman, K.; Zuo, M.; Madison, J.A.; Blair, C.N.; Weber, A.; Barnes, B.J.; Egeblad, M.; et al. Neutrophil extracellular traps in COVID-19. JCI Insight 2020, 5, e138999. [Google Scholar] [CrossRef]
- Veras, F.P.; Gomes, G.F.; Silva, B.M.S.; Caetité, D.B.; Almeida, C.J.L.R.; Silva, C.M.S.; Schneider, A.H.; Corneo, E.S.; Bonilha, C.S.; Batah, S.S.; et al. Targeting neutrophils extracellular traps (NETs) reduces multiple organ injury in a COVID-19 mouse model. Respir. Res. 2023, 24, 66. [Google Scholar] [CrossRef] [PubMed]
- Gasch, M.; Goroll, T.; Bauer, M.; Hinz, D.; Schütze, N.; Polte, T.; Kesper, D.; Simon, J.C.; Hackermüller, J.; Lehmann, I.; et al. Generation of IL-8 and IL-9 producing CD4+ T cells is affected by Th17 polarizing conditions and AHR ligands. Mediators Inflamm. 2014, 2014, 182549. [Google Scholar] [CrossRef] [PubMed]
- Giovannoni, F.; Li, Z.; Remes-Lenicov, F.; Dávola, M.E.; Elizalde, M.; Paletta, A.; Ashkar, A.A.; Mossman, K.L.; Dugour, A.V.; Figueroa, J.M.; et al. AHR signaling is induced by infection with coronaviruses. Nat. Commun. 2021, 12, 5148. [Google Scholar] [CrossRef]
- Badawy, A. The kynurenine pathway of tryptophan metabolism: A neglected therapeutic target of COVID-19 pathophysiology and immunotherapy. Biosci. Rep. 2023, 43, BSR20230595. [Google Scholar] [CrossRef]
- Bizjak, D.A.; Stangl, M.; Börner, N.; Bösch, F.; Durner, J.; Drunin, G.; Buhl, J.-L.; Abendroth, D. Kynurenine serves as useful biomarker in acute, Long- and Post-COVID-19 diagnostics. Front. Immunol. 2022, 13, 1004545. [Google Scholar] [CrossRef]
- Dehhaghi, M.; Heydari, M.; Panahi, H.K.S.; Lewin, S.R.; Heng, B.; Brew, B.J.; Guillemin, G.J. The roles of the kynurenine pathway in COVID-19 neuropathogenesis. Infection 2024. [Google Scholar] [CrossRef] [PubMed]
- Cihan, M.; Doğan, Ö.; Serdar, C.C.; Yıldırım, A.A.; Kurt, C.; Serdar, M.A. Kynurenine pathway in Coronavirus disease (COVID-19): Potential role in prognosis. J. Clin. Lab. Anal. 2022, 36, e24257. [Google Scholar] [CrossRef]
- Govindaraju, V.; Michoud, M.-C.; Ferraro, P.; Arkinson, J.; Safka, K.; Valderrama-Carvajal, H.; Martin, J.G. The effects of interleukin-8 on airway smooth muscle contraction in cystic fibrosis. Respir. Res. 2008, 9, 76. [Google Scholar] [CrossRef]
- Tokano, M.; Takagi, R.; Kawano, M.; Maesaki, S.; Tarumoto, N.; Matsushita, S. Signaling via dopamine and adenosine receptors modulate viral peptide-specific and T-cell IL-8 response in COVID-19. Immunol. Med. 2022, 45, 162–167. [Google Scholar] [CrossRef]
- Grifoni, A.; Sidney, J.; Vita, R.; Peters, B.; Crotty, S.; Weiskopf, D.; Sette, A. SARS-CoV-2 human T cell epitopes: Adaptive immune response against COVID-19. Cell Host Microbe 2021, 29, 1076–1092. [Google Scholar] [CrossRef]
- Matsushita, S.; Kohsaka, H.; Nishimura, Y. Evidence for self and nonself peptide partial agonists that prolong clonal survival of mature T cells in vitro. J. Immunol. 1997, 158, 5685–5691. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Fujisao, S.; Nishimura, Y. The N-terminal six residues of peptide core sequences suffice for binding to HLA-DR4 (DRB1*0405) and DR9 (DRB1*0901) molecules. Immunol. Lett. 1997, 58, 89–93. [Google Scholar] [CrossRef] [PubMed]
- Stern, L.J.; Brown, J.H.; Jardetzky, T.S.; Gorga, J.C.; Urban, R.G.; Strominger, J.L.; Wiley, D.C. Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide. Nature 1994, 368, 215–221. [Google Scholar] [CrossRef] [PubMed]
- Matsushita, S.; Takahashi, K.; Motoki, M.; Komoriya, K.; Ikagawa, S.; Nishimura, Y. Allele specificity of structural requirement for peptides bound to HLA-DRB1*0405 and -DRB1*0406 complexes: Implication for the HLA-associated susceptibility to methimazole-induced insulin autoimmune syndrome. J. Exp. Med. 1994, 180, 873–883. [Google Scholar] [CrossRef] [PubMed]
- Cervenka, I.; Agudelo, L.Z.; Ruas, L.R. Kynurenines: Tryptophan’s metabolites in exercise, inflammation, and mental health. Science 2017, 357, eaaf9794. [Google Scholar] [CrossRef]
- Mándi, Y.; Vécsei, L. The kynurenine system and immunoregulation. J. Neural Transm. 2012, 119, 197–209. [Google Scholar] [CrossRef]
- Krčmová, L.K.; Matoušová, K.; Javorská, L.; Šmahel, P.; Skála, M.; Koblížek, V.; Škop, J.; Turoňová, D.; Gančarčíková, M.; Melichar, B. Neopterin and kynurenine in serum and urine as prognostic biomarkers in hospitalized patients with delta and omicron variant SARS-CoV-2 infection. Clin. Chem. Lab. Med. 2023, 61, 2053–2064. [Google Scholar] [CrossRef]
- Chen, Y.Z.; Matsushita, S.; Nishimura, Y. Response of a human T cell clone to a large panel of altered peptide ligands carrying single residue substitutions in an antigenic peptide: Characterization and frequencies of TCR agonism and TCR antagonism with or without partial activation. J. Immunol. 1996, 157, 3783–3790. [Google Scholar] [CrossRef]
- Yokomizo, H.; Matsushita, S.; Fujisao, S.; Murakami, S.; Fujita, H.; Shirouzu, M.; Yokoyama, S.; Ogawa, M.; Nishimura, Y. Augmentation of immune response by an analog of the antigenic peptide in a human T-cell clone recognizing mutated Rasderived peptides. Hum. Immunol. 1997, 52, 22–32. [Google Scholar] [CrossRef]
Peptide | Amino Acid Sequence |
---|---|
Wild type (position: p176-190) | LMDLEGKQGNFKNLR |
L176S | SMDLEGKQGNFKNLR |
M177S | LSDLEGKQGNFKNLR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokano, M.; Takagi, R.; Matsushita, S. Modifications in Immune Response Patterns Induced by Kynurenine and One-Residue-Substituted T Cell Epitopes in SARS-CoV-2-Specific Human T Cells. COVID 2024, 4, 1676-1683. https://doi.org/10.3390/covid4100116
Tokano M, Takagi R, Matsushita S. Modifications in Immune Response Patterns Induced by Kynurenine and One-Residue-Substituted T Cell Epitopes in SARS-CoV-2-Specific Human T Cells. COVID. 2024; 4(10):1676-1683. https://doi.org/10.3390/covid4100116
Chicago/Turabian StyleTokano, Mieko, Rie Takagi, and Sho Matsushita. 2024. "Modifications in Immune Response Patterns Induced by Kynurenine and One-Residue-Substituted T Cell Epitopes in SARS-CoV-2-Specific Human T Cells" COVID 4, no. 10: 1676-1683. https://doi.org/10.3390/covid4100116
APA StyleTokano, M., Takagi, R., & Matsushita, S. (2024). Modifications in Immune Response Patterns Induced by Kynurenine and One-Residue-Substituted T Cell Epitopes in SARS-CoV-2-Specific Human T Cells. COVID, 4(10), 1676-1683. https://doi.org/10.3390/covid4100116