The Effects of SSRIs and Antipsychotics on Long COVID Development in a Large Veteran Population
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Cohort 1: Baseline Characteristics
3.2. Cohort 2: Baseline Characteristics
3.3. Association of Use of Antipsychotic Medication with Long COVID
3.4. Association of Use of SSRI Medication with Long COVID
3.5. Race and Ethnic Outcomes
4. Discussion
4.1. Antipsychotic Use Reduces Risk of Long COVID
4.2. SSRIs Did Not Affect Risk of Long COVID
4.3. Antipsychotics and SSRIs in Long COVID
4.4. Race and Ethnic Differences
4.5. Strengths and Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szabo, S.; Zayachkivska, O.; Hussain, A.; Muller, V. What is really ‘Long COVID’? Inflammopharmacology 2023, 31, 551–557. [Google Scholar] [CrossRef] [PubMed]
- Davis, H.E.; McCorkell, L.; Vogel, J.M.; Topol, E.J. Long COVID: Major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 2023, 21, 133–146. [Google Scholar] [PubMed]
- Lui, K.O.; Ma, Z.; Dimmeler, S. SARS-CoV-2 induced vascular endothelial dysfunction: Direct or indirect effects? Cardiovasc. Res. 2024, 120, 34–43. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xiang, M.; Jing, H.; Wang, C.; Novakovic, V.A.; Shi, J. Damage to endothelial barriers and its contribution to long COVID. Angiogenesis 2024, 27, 5–22. [Google Scholar]
- Yang, C.; Zhao, H.; Espín, E.; Tebbutt, S.J. Association of SARS-CoV-2 infection and persistence with long COVID. Lancet Respir. Med. 2023, 11, 504–506. [Google Scholar] [CrossRef]
- Al-Hakeim, H.K.; Al-Rubaye, H.T.; Al-Hadrawi, D.S.; Almulla, A.F.; Maes, M. Long-COVID post-viral chronic fatigue and affective symptoms are associated with oxidative damage, lowered antioxidant defenses and inflammation: A proof of concept and mechanism study. Mol. Psychiatry 2023, 28, 564–578. [Google Scholar]
- Cervia-Hasler, C.; Brüningk, S.C.; Hoch, T.; Fan, B.; Muzio, G.; Thompson, R.C.; Ceglarek, L.; Meledin, R.; Westermann, P.; Emmenegger, M.; et al. Persistent complement dysregulation with signs of thromboinflammation in active Long Covid. Science 2024, 383, eadg7942. [Google Scholar] [CrossRef]
- Greene, C.; Connolly, R.; Brennan, D.; Laffan, A.; O’Keeffe, E.; Zaporojan, L.; O’callaghan, J.; Thomson, B.; Connolly, E.; Argue, R.; et al. Blood–brain barrier disruption and sustained systemic inflammation in individuals with long COVID-associated cognitive impairment. Nat. Neurosci. 2024, 27, 421–432. [Google Scholar] [CrossRef]
- Braga, J.; Lepra, M.; Kish, S.J.; Rusjan, P.M.; Nasser, Z.; Verhoeff, N.; Vasdev, N.; Bagby, M.; Boileau, I.; Husain, M.I.; et al. Neuroinflammation After COVID-19 With Persistent Depressive and Cognitive Symptoms. JAMA Psychiatry 2023, 80, 787–795. [Google Scholar] [CrossRef]
- Klein, R.; Soung, A.; Sissoko, C.; Nordvig, A.; Canoll, P.; Mariani, M.; Jiang, X.; Bricker, T.; Goldman, J.; Rosoklija, G.; et al. COVID-19 Induces Neuroinflammation and Loss of Hippocampal Neurogenesis; Research Square: Durham, NC, USA, 2021. [Google Scholar]
- Kubota, T.; Kuroda, N.; Sone, D. Neuropsychiatric aspects of long COVID: A comprehensive review. Psychiatry Clin. Neurosci. 2023, 77, 84–93. [Google Scholar] [CrossRef]
- Hashimoto, K. Overview of the potential use of fluvoxamine for COVID-19 and long COVID. Discov. Ment. Health 2023, 3, 9. [Google Scholar] [PubMed]
- Zhang, J.; Zhang, N.; Lei, J.; Jing, B.; Li, M.; Tian, H.; Xue, B.; Li, X. Fluoxetine shows neuroprotective effects against LPS-induced neuroinflammation via the Notch signaling pathway. Int. Immunopharmacol. 2022, 113 Pt A, 109417. [Google Scholar] [CrossRef]
- Izumi, Y.; Reiersen, A.M.; Lenze, E.J.; Mennerick, S.J.; Zorumski, C.F. SSRIs differentially modulate the effects of pro-inflammatory stimulation on hippocampal plasticity and memory via sigma 1 receptors and neurosteroids. Transl. Psychiatry 2023, 13, 39. [Google Scholar] [CrossRef]
- Richardson, B.; MacPherson, A.; Bambico, F. Neuroinflammation and neuroprogression in depression: Effects of alternative drug treatments. Brain Behav. Immun. Health 2022, 26, 100554. [Google Scholar]
- Lee, D.H.; Lee, J.Y.; Hong, D.Y.; Lee, E.C.; Park, S.W.; Lee, M.R.; Oh, J.-S. Neuroinflammation in Post-Traumatic Stress Disorder. Biomedicines 2022, 10, 953. [Google Scholar] [CrossRef] [PubMed]
- Fenton, C.; Lee, A. Antidepressants with anti-inflammatory properties may be useful in long COVID depression. Drugs Ther. Perspect. 2023, 39, 65–70. [Google Scholar] [CrossRef]
- Rus, C.P.; de Vries, B.E.K.; de Vries, I.E.J.; Nutma, I.; Kooij, J.J.S. Treatment of 95 post-Covid patients with SSRIs. Sci. Rep. 2023, 13, 18599. [Google Scholar]
- Wong, A.C.; Devason, A.S.; Umana, I.C.; Cox, T.O.; Dohnalová, L.; Litichevskiy, L.; Perla, J.; Lundgren, P.; Etwebi, Z.; Izzo, L.T.; et al. Serotonin reduction in post-acute sequelae of viral infection. Cell 2023, 186, 4851–4867.e20. [Google Scholar] [PubMed]
- Nakhaee, H.; Zangiabadian, M.; Bayati, R.; Rahmanian, M.; Ghaffari Jolfayi, A.; Rakhshanderou, S. The effect of antidepressants on the severity of COVID-19 in hospitalized patients: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0267423. [Google Scholar] [CrossRef]
- Sidky, H.; Hansen, K.A.; Girvin, A.T.; Hotaling, N.; Michael, S.G.; Gersing, K.; Sahner, D.K. Assessing the effect of selective serotonin reuptake inhibitors in the prevention of post-acute sequelae of COVID-19. Comput. Struct. Biotechnol. J. 2024, 24, 115–125. [Google Scholar] [CrossRef]
- Padilla, S.; Ledesma, C.; García-Abellán, J.; García, J.A.; Fernández-González, M.; de la Rica, A.; Galiana, A.; Gutiérrez, F.; Masiá, M. Long COVID across SARS-CoV-2 variants, lineages, and sublineages. iScience 2024, 27, 109536. [Google Scholar] [CrossRef] [PubMed]
- Trinh, N.T.; Jödicke, A.M.; Català, M.; Mercadé-Besora, N.; Hayati, S.; Lupattelli, A.; Prieto-Alhambra, D.; Nordeng, H.M. Effectiveness of COVID-19 vaccines to prevent long COVID: Data from Norway. Lancet Respir. Med. 2024, 12, e33–e34. [Google Scholar] [CrossRef] [PubMed]
- Tang, S.W.; Leonard, B.E.; Helmeste, D.M. Long COVID, neuropsychiatric disorders, psychotropics, present and future. Acta Neuropsychiatr. 2022, 34, 109–126. [Google Scholar] [CrossRef]
- Marcinowicz, P.; Więdłocha, M.; Zborowska, N.; Dębowska, W.; Podwalski, P.; Misiak, B.; Tyburski, E.; Szulc, A. A Meta-Analysis of the Influence of Antipsychotics on Cytokines Levels in First Episode Psychosis. J. Clin. Med. 2021, 10, 2488. [Google Scholar] [CrossRef]
- Nemani, K.; Williams, S.Z.; Olfson, M.; Leckman-Westin, E.; Finnerty, M.; Kammer, J.; Smith, T.E.; Silverman, D.J.; Lindenmayer, J.-P.; Capichioni, G.; et al. Association Between the Use of Psychotropic Medications and the Risk of COVID-19 Infection Among Long-term Inpatients With Serious Mental Illness in a New York State-wide Psychiatric Hospital System. JAMA Netw. Open 2022, 5, e2210743. [Google Scholar] [CrossRef]
- Loucera-Muñecas, C.; Canal-Rivero, M.; Ruiz-Veguilla, M.; Carmona, R.; Bostelmann, G.; Garrido-Torres, N.; Dopazo, J.; Crespo-Facorro, B. Aripiprazole as protector against COVID-19 mortality. Sci. Rep. 2024, 14, 12362. [Google Scholar] [CrossRef]
- Crespo-Facorro, B.; Ruiz-Veguilla, M.; Vázquez-Bourgon, J.; Sánchez-Hidalgo, A.C.; Garrido-Torres, N.; Cisneros, J.M.; Prieto, C.; Sainz, J. Aripiprazole as a Candidate Treatment of COVID-19 Identified Through Genomic Analysis. Front. Pharmacol. 2021, 12, 646701. [Google Scholar]
- Morra, J.A.; Alao, A.O. Role of Quetiapine in Protection of Neurodegeneration After Traumatic Brain Injury. Int. J. Psychiatry Med. 2019, 55, 67–73. [Google Scholar] [CrossRef] [PubMed]
- Terada, K.; Murata, A.; Toki, E.; Goto, S.; Yamakawa, H.; Setoguchi, S.; Watase, D.; Koga, M.; Takata, J.; Matsunaga, K.; et al. Atypical Antipsychotic Drug Ziprasidone Protects Against Rotenone-Induced Neurotoxicity: An in Vitro Study. Molecules 2020, 25, 4206. [Google Scholar] [CrossRef]
- Chen, T.H.; Chang, C.J.; Hung, P.H. Possible Pathogenesis and Prevention of Long COVID: SARS-CoV-2-Induced Mitochondrial Disorder. Int. J. Mol. Sci. 2023, 24, 8034. [Google Scholar] [CrossRef]
- Long, Y.; Wang, Y.; Shen, Y.; Huang, J.; Li, Y.; Wu, R.; Zhao, J. Minocycline and Antipsychotics Inhibit Inflammatory Responses in BV-2 Microglia Activated by LPS via Regulating the MAPKs/JAK-STAT Signaling Pathway. BMC Psychiatry 2023, 23, 514. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-Santacruz, C.; Tyrkalska, S.D.; Candel, S. The Microbiota in Long COVID. Int. J. Mol. Sci. 2024, 25, 1330. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.; Pan, C.; Liu, H.; Dong, C.; Chang, X.; Zhou, W.; Wang, S.; Du, Z. Oxyresveratrol Improves Cognitive Impairments and Episodic-Like Memory Through Modulating Neuroinflammation and PI3K-Akt Signaling Pathway in LPS-Induced Mice. Molecules 2024, 29, 1272. [Google Scholar] [CrossRef] [PubMed]
- Jung, H.; Lee, D.; You, H.; Lee, M.; Kim, H.; Cheong, E.; Um, J.W. LPS Induces Microglial Activation and GABAergic Synaptic Deficits in the Hippocampus Accompanied by Prolonged Cognitive Impairment. Sci. Rep. 2023, 13, 6547. [Google Scholar] [CrossRef]
- Adetunji, B.; Mathews, M.; Williams, A.; Budur, K.; Mathews, M.; Mahmud, J.; Osinowo, T. Use of antipsychotics in the treatment of post-traumatic stress disorder. Psychiatry 2005, 2, 43–47. [Google Scholar]
- Jha, M.K.; Mathew, S.J. Pharmacotherapies for Treatment-Resistant Depression: How Antipsychotics Fit in the Rapidly Evolving Therapeutic Landscape. Am. J. Psychiatry 2023, 180, 190–199. [Google Scholar] [CrossRef]
- VanElzakker, M.B.; Bues, H.F.; Brusaferri, L.; Kim, M.; Saadi, D.; Ratai, E.M.; Dougherty, D.D.; Loggia, M.L. Neuroinflammation in post-acute sequelae of COVID-19 (PASC) as assessed by [(11)C]PBR28 PET correlates with vascular disease measures. bioRxiv 2023. [Google Scholar] [CrossRef]
- Kavanagh, E. Long Covid brain fog: A neuroinflammation phenomenon? Oxf. Open Immunol. 2022, 3, iqac007. [Google Scholar] [CrossRef]
- Yuan, Y.; Jiao, B.; Qu, L.; Yang, D.; Liu, R. The development of COVID-19 treatment. Front. Immunol. 2023, 14, 1125246. [Google Scholar] [CrossRef]
- Nichter, B.; Norman, S.; Haller, M.; Pietrzak, R.H. Physical health burden of PTSD, depression, and their comorbidity in the U.S. veteran population: Morbidity, functioning, and disability. J. Psychosom. Res. 2019, 124, 109744. [Google Scholar] [CrossRef]
- Reisman, M. PTSD Treatment for Veterans: What’s Working, What’s New, and What’s Next. Pharm. Ther. 2016, 41, 623–634. [Google Scholar]
- Campbell, D.G.; Bonner, L.M.; Bolkan, C.R.; Lanto, A.B.; Zivin, K.; Waltz, T.J.; Klap, R.; Rubenstein, L.V.; Chaney, E.F. Stigma Predicts Treatment Preferences and Care Engagement Among Veterans Affairs Primary Care Patients with Depression. Ann. Behav. Med. 2016, 50, 533–544. [Google Scholar] [CrossRef] [PubMed]
- Al-Amin, M.M.; Nasir Uddin, M.M.; Mahmud Reza, H. Effects of antipsychotics on the inflammatory response system of patients with schizophrenia in peripheral blood mononuclear cell cultures. Clin. Psychopharmacol. Neurosci. 2013, 11, 144–151. [Google Scholar] [CrossRef] [PubMed]
- Patlola, S.R.; Donohoe, G.; McKernan, D.P. Anti-inflammatory effects of 2nd generation antipsychotics in patients with schizophrenia: A systematic review and meta-analysis. J. Psychiatr. Res. 2023, 160, 126–136. [Google Scholar] [CrossRef] [PubMed]
- Baumeister, D.; Ciufolini, S.; Mondelli, V. Effects of psychotropic drugs on inflammation: Consequence or mediator of therapeutic effects in psychiatric treatment? Psychopharmacology 2016, 233, 1575–1589. [Google Scholar] [CrossRef]
- Smyth, N.; Alwan, N.A.; Band, R.; Chaudhry, A.; Chew-Graham, C.A.; Gopal, D.; Jackson, M.; Kingstone, T.; Wright, A.; Ridge, D. Exploring the Lived Experience of Long Covid in Black and Minority Ethnic Groups in the UK: Protocol for Qualitative Interviews and Art-Based Methods. PLoS ONE 2022, 17, e0275166. [Google Scholar] [CrossRef]
- Medeiros, M.; Edwards, H.; Baquet, C.R. Research in the USA on COVID-19’s Long-Term Effects: Measures Needed to Ensure Black, Indigenous and Latinx Communities Are Not Left Behind. J. Med. Ethics 2022, 49, 87–91. [Google Scholar] [CrossRef]
- Subramanian, A.; Nirantharakumar, K.; Hughes, S.; Myles, P.; Williams, T.; Gokhale, K.; Taverner, T.; Chandan, J.; Brown, K.; Simms-Williams, N.; et al. Assessment of 115 Symptoms for Long COVID (Post-Covid-19 Condition) and Their Risk Factors in Non-Hospitalised Individuals: A Retrospective Matched Cohort Study in UK Primary Care; Research Square: Durham, NC, USA, 2022. [Google Scholar]
- Ricardo, A.C.; Chen, J.; Toth-Manikowski, S.M.; Meza, N.; Joo, M.; Gupta, S.; Lazarous, D.G.; Leaf, D.E.; Lash, J.P. Hispanic Ethnicity and Mortality Among Critically Ill Patients with COVID-19. PLoS ONE 2022, 17, e0268022. [Google Scholar] [CrossRef]
- Bergersen, K.V.; Pham, K.; Li, J.; Ulrich, M.T.; Merrill, P.; He, Y.; Alaama, S.; Qiu, X.; Harahap-Carrillo, I.S.; Ichii, K.; et al. Health Disparities in COVID-19: Immune and Vascular Changes Are Linked to Disease Severity and Persist in a High-Risk Population in Riverside County, California. BMC Public Health 2023, 23, 1584. [Google Scholar] [CrossRef]
Total n = 48,298 (100%) | No Long COVID n = 46,047 (95.3%) | Long COVID n = 2251 (4.7%) | |
---|---|---|---|
Age, mean (years) ± SD (median; IQR) | 56.6 ± 16.4 (58; 43–71) | 56.7 ± 16.5 (58; 43–71) | 56.0 ± 14.4 (57; 44–69) |
Age Groups, n (%) 19–64 | 30,201 (62.5%) | 28,702 (62.3%) | 1499 (66.6%) |
≥65 | 18,097 (37.5%) | 17,345 (37.7%) | 752 (33.4%) |
Male sex, n (%) | 41,508 (85.6%) | 39,603 (86.0%) | 1905 (84.6%) |
Race, n (%) | |||
White | 30,486 (63.1%) | 28,975 (62.9%) | 1511 (67.1%) |
Black | 12,429 (25.7%) | 12,018 (26.1%) | 411 (18.3%) |
Asian | 439 (0.9%) | 496 (1.1%) | 24 (1.1%) |
American Indian or Alaska Natives | 520 (1.1%) | 4274 (0·9%) | 266 (1.0%) |
Native Hawaiian or Other Pacific Islander | 480 (1.0%) | 457 (1.0%) | 23 (1.0%) |
Unknown | 3944 (8.2%) | 3674 (8.0%) | 270 (12.0%) |
Ethnicity, n (%) | |||
Hispanic | 5860 (12.1%) | 5137 (11.2%) | 723 (32.1%) |
Not Hispanic | 41,452 (85.8%) | 39,977 (86.8%) | 1475 (65.5%) |
Unknown | 986 (2.0%) | 933 (2.0%) | 53 (2.4%) |
Smoking, n (%) | |||
Current | 7383 (15.3%) | 7097 (15.4%) | 286 (12.7%) |
Former Smoker | 19,395 (40.2%) | 18,523 (40.2%) | 872 (38.7%) |
Never | 19,201 (39.8%) | 18,214 (39.6%) | 987 (43.8%) |
Unknown | 2319 (4.8%) | 2213 (4.8%) | 106 (4.7%) |
Comorbidity, n (%) | |||
Kidney Disease | 11,325 (23.4%) | 10,857 (23.6%) | 468 (20.8%) |
COPD | 8461 (17.5%) | 8107 (17.6%) | 354 (15.7%) |
Diabetes | 16164 (33.5%) | 15,378 (33.4%) | 786 (34.9%) |
Hypertension | 28,626 (59.3%) | 27,291 (59.3%) | 1335 (59.3%) |
Hyperlipidemia | 27,797 (57.6%) | 26,403 (57.3%) | 1394 (61.9%) |
Use antipsychotics | 3556 (7.4%) | 3453 (7.5%) | 103 (4.6%) |
Use SSRIs | 9039 (18.7%) | 8579 (18.6%) | 460 (20.4%) |
Total n = 121,357 (100%) | No Long COVID n = 113,404 (93.4%) | Long COVID n = 7953 (6.6%) | |
---|---|---|---|
Age, mean (years) ± SD (median; IQR) | 52.9 ± 15.7 (52; 39–66) | 52.6 ± 15.7 (59; 39–66) | 56.2 ± 15.2 (57; 43–69) |
19–64 | 88,373 (72.8%) | 83,094 (73.3%) | 5279 (66.4%) |
≥65 | 32,984 (27.2%) | 30,310 (26.7%) | 2674 (33.6%) |
Male sex, n (%) | 99,127 (81.7%) | 92,700 (81.7%) | 6427 (80.8%) |
Race, n (%) | |||
White | 79,948 (65.9%) | 74,328 (65.5%) | 5620 (70.7%) |
Black | 27,811 (22.9%) | 26,444 (23.3%) | 1367 (17.2%) |
Asian | 1504 (1.1%) | 5439 (1.1%) | 250 (1.0%) |
American Indian or Alaska Natives | 4540 (1.2%) | 1420 (1.3%) | 84 (1.1%) |
Native Hawaiian or Other Pacific Islander | 1248 (1.0%) | 1153 (1.0%) | 95 (1.0%) |
Unknown | 9602 (7.9%) | 8898 (7.8%) | 704 (8.9%) |
Ethnicity, n (%) | |||
Hispanic | 13,006 (10.7%) | 11,539 (10.2%) | 1467 (18.4%) |
Not Hispanic | 101,925 (84.0%) | 95,817 (84.5%) | 6108 (76.8%) |
Unknown | 6426 (5.3%) | 6048 (5.3%) | 378 (4.8%) |
Smoking, n (%) | |||
Current | 23,012 (19.0%) | 21,859 (19.3%) | 1153 (14.5%) |
Former Smoker | 44,635 (36.8%) | 41,528 (36.6%) | 3107 (39.1%) |
Never | 48,205 (39.7%) | 44,819 (39.5%) | 3386 (42.6%) |
Unknown | 5505 (4.5%) | 5198 (4.6%) | 307 (3.9%) |
Comorbidity, n (%) | |||
Kidney Disease | 21,017 (17.3%) | 19,242 (17.0%) | 1775 (22.3%) |
COPD | 15,271 (12.6%) | 13,932 (12.3%) | 1339 (16.8%) |
Diabetes | 30,562 (29.3%) | 28,085 (29.0%) | 2477 (34.0%) |
Hypertension | 60,564 (49.9%) | 56,025 (49.4%) | 4539 (57.1%) |
Hyperlipidemia | 63,379 (52.2%) | 58,666 (51.7%) | 4713 (59.3%) |
Use antipsychotics | 8198 (6.8%) | 7704 (6.8%) | 494 (6.2%) |
Use SSRIs | 21,110 (17.4%) | 19,574 (17.3%) | 1536 (19.3%) |
# of Users for All | aOR for All (95% CI) | # of Users for Age ≥ 65 | aHR for Age ≥ 65 (95% CI) | # of Users for Age < 65 | aHR for Age < 65 (95% CI) | |
---|---|---|---|---|---|---|
Cohort 1 | 3345 (7.3%) | 0.62 (0.50–0.76) | 1286 (8.1%) | 0.66 (0.47–0.90) | 2059 (6.9%) | 0.57 (0.44–0.74) |
Cohort 2 | 8198 (6.8%) | 0.92 (0.83–1.01) | 2292 (6.9%) | 0.95 (0.80–1.11) | 5906 (6.7%) | 0.89 (0.79–0.99) |
# of Users for All | aOR for All (95% CI) | # of Users for Age ≥ 65 | aHR for Age ≥ 65 (95% CI) | # of Users for Age < 65 | aHR for Age < 65 (95% CI) | |
---|---|---|---|---|---|---|
Cohort 1 | 8687 (19.0%) | 1.09 (0.98–1.21) | 3307 (20.7%) | 1.06 (0.88–1.26) | 5380 (18.0%) | 1.11 (0.97–1.27) |
Cohort 2 | 21110 (17.4%) | 1.10 (1.03–1.16) | 6477 (19.6%) | 1.16 (1.05–1.78) | 14,633 (16.6%) | 1.06 (0.98–1.14) |
Cohort 1 # on Antipsychotics | Cohort 1 aOR (95% CI) | Cohort 2 # on Antipsychotics | Cohort 2 aOR (95% CI) | |
---|---|---|---|---|
Black | 941 (7.9%) | 0.66 (0.42–1.00) | 2147 (7.7%) | 1.05 (0.86–1.28) |
White | 2098 (7.3%) | 0.58 (0.45–0.75) | 5276 (6.6%) | 0.91 (0.81–1.02) |
Hispanic | 324 (5.7%) | 0.53 (0.34–0.79) | 773 (5.9%) | 0.66 (0.50–0.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bradley, J.; Tang, F.; Tosi, D.; Resendes, N.; Hammel, I.S. The Effects of SSRIs and Antipsychotics on Long COVID Development in a Large Veteran Population. COVID 2024, 4, 1694-1703. https://doi.org/10.3390/covid4110118
Bradley J, Tang F, Tosi D, Resendes N, Hammel IS. The Effects of SSRIs and Antipsychotics on Long COVID Development in a Large Veteran Population. COVID. 2024; 4(11):1694-1703. https://doi.org/10.3390/covid4110118
Chicago/Turabian StyleBradley, Jerry, Fei Tang, Dominique Tosi, Natasha Resendes, and Iriana S. Hammel. 2024. "The Effects of SSRIs and Antipsychotics on Long COVID Development in a Large Veteran Population" COVID 4, no. 11: 1694-1703. https://doi.org/10.3390/covid4110118
APA StyleBradley, J., Tang, F., Tosi, D., Resendes, N., & Hammel, I. S. (2024). The Effects of SSRIs and Antipsychotics on Long COVID Development in a Large Veteran Population. COVID, 4(11), 1694-1703. https://doi.org/10.3390/covid4110118