The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty
Abstract
:1. Introduction
Notation
2. Overview
2.1. GUM Method
2.2. The Uncertain-Number Methodology
2.3. Traceability Chains and Uncertainty
2.4. A Simple Example
3. Aspects of GTC Design
3.1. Simultaneous Calculation of Value and Uncertainty
3.2. Unique Identifiers
3.3. Node Classes
3.4. Propagating Uncertainty
3.5. Intermediate Results
3.6. Storage and Retrieval of Uncertain Numbers
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BIPM | International Bureau of Weights and Measures; |
GUM | Guide to the Expression of uncertainty in measurement; |
IEC | International Electrotechnical Commission; |
IFCC | International Federation of Clinical Chemistry and Laboratory Medicine; |
ILAC | International Laboratory Accreditation Cooperation; |
ISO | International Organisation for Standardisation; |
IUPAC | International Union of Pure and Applied Chemistry; |
IUPAP | International Union of Pure and Applied Physics; |
JSON | JavaScript Object Notation; |
NIST | National Institute of Standards and Technology; |
NMI | National Metrology Institute; |
OIML | International Organization of Legal Metrology; |
SI | International System of Units (Système International); |
UUID | Universally Unique Identifier. |
Appendix A. Additional Details
Appendix A.1. Ensembles
Appendix A.2. Complex Quantities
Appendix A.3. Uncertain Number Objects and References
Appendix A.4. Testing and Validation
Appendix A.5. Similar Software
References
- Hackel, S.; Härtig, F.; Hornig, J.; Wiedenhöfer, T. The Digital Calibration Certificate. PTB-Mitteilungen 2017, 127, 75–81. [Google Scholar] [CrossRef]
- Thiel, F. Digital transformation of legal metrology—The European Metrology Cloud. OIML Bull. 2018, 59, 10–21. [Google Scholar]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement JCGM 100:2008 (GUM 1995 with Minor Corrections), 1st ed.; BIPM Joint Committee for Guides in Metrology: Paris, France, 2008. [Google Scholar]
- Hall, B.D. Computing with Uncertain Numbers. Metrologia 2006, 43, L56–L61. [Google Scholar] [CrossRef]
- Hall, B.D.; Borbely, J.S. GUM Tree Calculator and v1.3.6. Available online: https://github.com/MSLNZ/GTC; https://doi.org/10.5281/zenodo.5459479 (accessed on 13 November 2021).
- Hall, B.D.; Koo, A. Digital Representation of Measurement Uncertainty: A Case Study Linking an RMO Key Comparison with a CIPM Key Comparison. Metrology 2021, 1, 166–181. [Google Scholar] [CrossRef]
- Molloy, E.; Saunders, P.; Koo, A. Effects of rotation errors on goniometric measurements. Metrologia 2021, in press. [Google Scholar] [CrossRef]
- Walpole, R.E.; Myers, R.H.; Myers, S.L.; Ye, K. Probability & Statistics for Engineers and Scientists, 8th ed.; Pearson Education: Upper Saddle River, NJ, USA, 2007; p. 07458. [Google Scholar]
- Willink, R. A generalization of the Welch–Satterthwaite formula for use with correlated uncertainty components. Metrologia 2007, 44, 340. [Google Scholar] [CrossRef]
- Hall, B.D.; White, D.R. Digital representation of measurement uncertainty for metrological traceability. In Advanced Mathematical and Computational Techniques in Metrology XII; Pavese, F., Forbes, A.B., Chunovkina, A.G., Zhang, N.F., Eds.; Series on Advances in Mathematics for Applied Sciences; World Scientific: Singapore, 2021; Volume 90, pp. 262–272. [Google Scholar]
- Rall, L.B.; Corliss, G.F. An Introduction to Automatic Differentiation. In Computational Differentiation: Techniques Applications, and Tools; Berz, M., Bischof, C.H., Griewankpp, A., Eds.; Siam Proceedings in Applied Mathematics Series; SIAM: Philadelphia, PA, USA, 1996; Volume 89, pp. 1–17. [Google Scholar]
- Klump, J.; Huber, R. 20 Years of Persistent Identifiers—Which Systems are Here to Stay? Data Sci. J. 2017, 16, 9. [Google Scholar] [CrossRef]
- Hackel, S.; Härtig, F.; Hornig, J.; Wiedenhöfer, T. Metrologie für die Digitalisierung von Wirtschaft und Gesellschaft. 2017. Available online: https://oar.ptb.de/files/download/5a9808d94c91840d190b3891 (accessed on 13 November 2021).
- Hall, B.D. An Opportunity to Enhance the Value of Metrological Traceability in Digital Systems, 2nd ed.; Workshop on Metrology for Industry 4.0 and IoT (MetroInd4.0 IoT); IEEE: Naples, Italy, 2019; pp. 16–21. [Google Scholar]
- Hall, B.D.; White, D.R. An Introduction to Measurement Uncertainty; Measurement Standards Laboratory of New Zealand: New Zealand, 2020. [Google Scholar] [CrossRef]
- Hall, B.D. Object-oriented software for evaluating measurement uncertainty. Meas. Sci. Technol. 2013, 24, 055004. [Google Scholar] [CrossRef]
- BIPM; IEC; ILAC; IFCC; ISO; IUPAC; IUPAP; OIML. Guide to the Expression of Uncertainty in Measurement—Part 6: Developing and Using Measurement Models JCGM GUM-6:2020, 1st ed.; BIPM Joint Committee for Guides in Metrology: Paris, France, 2020. [Google Scholar]
- Hall, B.D.; Borbely, J.S. GTC Documentation. Available online: https://gtc.readthedocs.io/en/stable/ (accessed on 13 November 2021).
- Hall, B.D. Evaluating the measurement uncertainty of complex quantities: A selective review. Metrologia 2015, 53, S25–S31. [Google Scholar] [CrossRef]
- Willink, R.; Hall, B.D. A classical method for uncertainty analysis with multidimensional data. Metrologia 2002, 39, 361–369. [Google Scholar] [CrossRef]
- Lafarge, T.; Possolo, A. The NIST Uncertainty Machine. Ncsli Meas. J. Meas. Sci. 2015, 10, 20–27. [Google Scholar] [CrossRef]
- Zeier, M.; Wollensack, M.; Hoffmann, J. METAS UncLib—A measurement uncertainty calculator for advanced problems. Metrologia 2012, 49, 809–815. [Google Scholar] [CrossRef] [Green Version]
- Wollensack, M.; Hoffmann, J.; Ruefenacht, J.; Zeier, M. VNA Tools II: S-parameter uncertainty calculation. In Proceedings of the 79th ARFTG Microwave Measurement Conference Digest, Montreal, QC, Canada, 22–22 June 2012. [Google Scholar] [CrossRef]
- Lebigot, E.O. Uncertainties: A Python Package for Calculations with Uncertainties. Available online: http://pythonhosted.org/uncertainties (accessed on 13 November 2021).
- Bevington, P.R.; Robinson, D.K. Data Reduction and Error Analysis; McGraw-Hill: New York, NY, USA, 2003. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hall, B.D. The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty. Metrology 2022, 2, 128-149. https://doi.org/10.3390/metrology2010009
Hall BD. The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty. Metrology. 2022; 2(1):128-149. https://doi.org/10.3390/metrology2010009
Chicago/Turabian StyleHall, Blair D. 2022. "The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty" Metrology 2, no. 1: 128-149. https://doi.org/10.3390/metrology2010009
APA StyleHall, B. D. (2022). The GUM Tree Calculator: A Python Package for Measurement Modelling and Data Processing with Automatic Evaluation of Uncertainty. Metrology, 2(1), 128-149. https://doi.org/10.3390/metrology2010009