Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices
Abstract
:1. Introduction
2. Chips Geometries
2.1. Glass Transfer Standard Chips
2.2. Polymer Transfer Standard Chips
3. Three Different Measurement Protocols
3.1. Protocol 1: Optical Profilometry
3.2. Protocol 2: Optical Microscopy
3.3. Protocol 3: Tiled Digital Imagery
3.4. Evaluation of the Measurement Results
- If || ≤ 1, the protocol’s measurement values are consistent for a certain measurement (test passed).
- If || > 1, the protocol’s measurement values are inconsistent for a certain measurement (test failed).
4. Results
4.1. Glass Chips
- −
- The diameter of Hole 01;
- −
- The diameter of Hole 02;
- −
- The width of the channel;
- −
- The depth of the channel;
- −
- The length of the channel.
4.2. Polymer Chips
5. Discussion
5.1. Comparison of Protocols
5.2. Close-Up on Depth Measurements
5.3. The Influence of Different Materials
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Whitesides, G.M. The origins and the future of microfluidics. Nature 2006, 442, 368–373. [Google Scholar] [CrossRef] [PubMed]
- Sackmann, E.K.; Fulton, A.L.; Beebe, D.J. The present and future role of microfluidics in biomedical research. Nature 2014, 507, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Elvira, K.S.; i Solvas, X.C.; Wootton, R.C.; Demello, A.J. The past, present and potential for microfluidic reactor technology in chemical synthesis. Nat. Chem. 2013, 5, 905–915. [Google Scholar] [CrossRef] [PubMed]
- Berlanda, S.F.; Breitfeld, M.; Dietsche, C.L.; Dittrich, P.S. Recent Advances in Microfluidic Technology for Bioanalysis and Diagnostics. Anal. Chem. 2021, 93, 311–331. [Google Scholar] [CrossRef] [PubMed]
- Convery, N.; Gadegaard, N. 30 years of microfluidics. Micro Nano Eng. 2019, 2, 76–91. [Google Scholar] [CrossRef]
- Rosen, Y.; Gurman, P. MEMS and microfluidics for diagnostics devices. Curr. Pharm. Biotechnol. 2010, 11, 366–375. [Google Scholar] [CrossRef] [PubMed]
- Behera, P.P.; Kumar, N.; Kumari, M.; Kumar, S.; Mondal, P.K.; Arun, R.K. Integrated microfluidic devices for point-of-care detection of bio-analytes and disease. Sens. Diagn. 2023, 2, 1437–1459. [Google Scholar] [CrossRef]
- Huh, D.; Leslie, D.C.; Matthews, B.D.; Fraser, J.P.; Jurek, S.; Hamilton, G.A.; Thorneloe, K.S.; McAlexander, M.A.; Ingber, D.E. A Human Disease Model of Drug Toxicity–Induced Pulmonary Edema in a Lung-on-a-Chip Microdevice. Sci. Transl. Med. 2012, 4, 159ra147. [Google Scholar] [CrossRef] [PubMed]
- Levner, D.; Ewart, L. Integrating Liver-Chip data into pharmaceutical decision-making processes. Expert Opin. Drug Discov. 2023, 18, 1313–1320. [Google Scholar] [CrossRef] [PubMed]
- Quintard, C.; Tubbs, E.; Jonsson, G. A microfluidic platform integrating functional vascularized organoids-on-chip. Nat. Commun. 2024, 15, 1452. [Google Scholar] [CrossRef] [PubMed]
- Middelkamp, H.; Weener, H.; Gensheimer, T.; van der Meer, A.D. Embedded macrophages induce intravascular coagulation in 3D blood vessel-on-chip. Biomed. Devices 2023, 26, 2. [Google Scholar] [CrossRef] [PubMed]
- Yole Intelligence. Status of the Microfluidics Industry 2023 Maturity of Microfluidics Devices Applications; Yole Intelligence: Lyon, France, 2023. [Google Scholar]
- Wang, K.; Man, K.; Liu, J.; Chen, Q.; Zhou, Y.; Yang, Y. Microphysiological Systems: Design, Fabrication, and Applications. ACS Biomater. Sci. Eng. 2020, 6, 3231–3257. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.; Lee, J.B.; Kim, K.; Sung, G.Y. Hydrophobic Sponge Structure-Based Triboelectric Nanogenerator. J. Ind. Eng. Chem. 2022, 115, 279–286. [Google Scholar] [CrossRef]
- Gurkan, U.A.; Wood, D.K.; Carranza, D.; Herbertson, L.H.; Diamond, S.L.; Du, E.; Guha, S.; Di Paola, J.; Hines, P.C.; Papautsky, I.; et al. Next generation microfluidics: Fulfilling the promise of lab-on-a-chip technologies. Lab Chip 2024, 24, 1867–1874. [Google Scholar] [CrossRef] [PubMed]
- van Heeren, H. Trends and Challenges in the Microfluidic Industry. 2021. Available online: https://enablingmnt.com/wp-content/uploads/2021/01/Trends-and-Challenges-in-the-Microfluidic-Industry-Henne-van-Heeren-January-2021.pdf (accessed on 4 December 2024).
- Schott AG. D263©. Available online: https://www.schott.com/en-nl/products/d-263-P1000318/technical-details?tab=830fa6759ac84d07a3d53bfbe4535a90 (accessed on 17 April 2024).
- TOPAS Advanced Polymers/Polyplastics, TOPAS© COC Datasheets. Available online: https://topas.com/wp-content/uploads/2023/05/TDS_6015S-04_english-units.pdf (accessed on 4 December 2024).
- Batista, E.; Reyes, D.R. Publishable Summary Establishing Metrology Standards in Microfluidic Devices (20NRM02). 2023. Available online: https://mfmet.eu/wp-content/uploads/2023/11/20NRM02-MFMET-Publishable-Summary-M27.pdf (accessed on 4 December 2024).
- MFMET—Establishing Metrology Standards in Microfluidic Devices. Available online: https://mfmet.eu/ (accessed on 18 April 2024).
- Silverio, V.; Guha, S.; Keiser, A.; Natu, R.; Reyes, D.R.; van Heeren, H.; Verplanck, N.; Herbertson, L.H. Overcoming technological barriers in microfluidics: Leakage testing. Front. Bioeng. Biotechnol. 2022, 10, 958582. [Google Scholar] [CrossRef] [PubMed]
- Copeland, M.; Ogheard, F.; Batista, E.; van Heeren, H. Whitepaper Flow Resistivity Testing. Zenodo. 2023. Available online: https://zenodo.org/records/7919134 (accessed on 4 December 2024).
- ISO 22916:2022; Microfluidic Devices Interoperability Requirements for Dimensions, Connections and Initial Device Classification. International Organization for Standardization: Geneva, Switzerland, 2022.
- microfluidic ChipShop GmbH. Material Data Sheet mcs-COC 13. 2024. Available online: https://www.microfluidic-chipshop.com/microfluidics/materials-in-microfluidics/polymers-in-microfluidics/topas/ (accessed on 4 December 2024).
- Schott AG. TIE-29 Refractive Index and Dispersion. 2016. Available online: https://www.schott.com/shop/medias/tie-29-refractive-index-and-dispersion-eng.pdf?context=bWFzdGVyfHJvb3R8MTg4OTQ2NHxhcHBsaWNhdGlvbi9wZGZ8aDQ3L2hjYS84ODE3NDA5NTg5Mjc4LnBkZnxkMTc5MjMyYjI5YmRlZTAzZmFmYzIxZmVlNTMyMmE5NzBiNWI5OGJhODM3YWRjYmM5NmY1ZTczMjY1ZWM3NDdk (accessed on 4 December 2024).
- Martinez, A.W.; Phillips, S.T.; Carrilho, E.; Thomas, S.W.; Sindi, H.; Whitesides, G.M. Simple telemedicine for developing regions: Camera phones and paper-based microfluidic devices for real-time, off-site diagnosis. Anal. Chem. 2008, 80, 3669–3707. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Li, Y.; Zhou, M. Smartphone-based platforms implementing microfluidic detection with image-based artificial intelligence. Nat. Commun. 2023, 14, 1341. [Google Scholar] [CrossRef] [PubMed]
- Howell, J.; Hammarton, T.C.; Altmann, Y.; Jimenez, M. High-speed particle detection and tracking in microfluidic devices using event-based sensing. Lab Chip 2020, 20, 3024–3035. [Google Scholar] [CrossRef] [PubMed]
- Cox, M.G. The evaluation of key comparison data. Metrologia 2002, 39, 589–595. [Google Scholar] [CrossRef]
- ISO 13528:2022; Statistical Methods for Use in Proficiency Testing by Interlaboratory Comparison. International Organization for Standardization: Geneva, Switzerland, 2022.
Instrument | Lens | Lighting | Calibration | Uncertainty Linked to Calibration |
---|---|---|---|---|
OGP SmartScope ZIP®250 | ×1 ×2 | Substage LED profile Coaxial LED surface SmartRing™ LED ring light | Annual calibration report by OGP | In plane (XY): ±2 µm + 4 L/1000 Vertically (Z): ±2.5 µm + 5 L/1000 In-image: <1 µm |
Olympus BX53M | ×1.5 ×5 ×15 | Substage tungsten bulb lighting | Test pattern (see Figure 5) | 0.1% |
Leica Wild M3Z | ×2.56 | Overhead LED ring light | Test pattern (see Figure 5) | 2% |
Nikon D5300 | ×1, f/2.8, 105 mm macro lens | Fluorescent tube lighting below sample | Test pattern (see Figure 5) | In-image: 0.45% On tiled images: 0.76% |
Zeiss AxioObserver | ×2.5 | Transmission lighting from quartz halogen bulb | Test pattern (see Figure 5) | 0.15% |
Diameter Hole 01 | Diameter Hole 02 | Width | Depth | Length | |
---|---|---|---|---|---|
Protocol 1 | −1.78 | −4.44 | −1.57 | N/A | 1.48 |
Protocol 2 | 0.33 | 4.14 | 1.65 | N/A | 0.32 |
Protocol 3 | 2.30 | 1.12 | −0.40 | N/A | −1.95 |
Diameter Hole 01 | Diameter Hole 02 | Width | Depth | Length | |
---|---|---|---|---|---|
Protocol 1 | 0.16 | 0.33 | −0.93 | −7.81 | 0.02 |
Protocol 2 | 0.35 | 0.96 | 0.23 | N/A | 0.20 |
Protocol 3 | 0.99 | 0.99 | −0.42 | N/A | −2.04 |
Width | Depth | |||
---|---|---|---|---|
Average Measured | Standard Deviation | Average Measured | Standard Deviation | |
Channel 01 | 503.1 µm | 0.1 µm (0.0%) | 358.0 µm | 1.7 µm (0.5%) |
Leakage Channel 01 | 108.5 µm | 0.1 µm (0.1%) | 123.6 µm | 1.8 µm (1.4%) |
Channel 02 | 508.1 µm | 0.1 µm (0.0%) | 372.9 µm | 2.7 µm (0.7%) |
Width | Depth | |||
---|---|---|---|---|
Average Measured | Standard Deviation | Average Measured | Standard Deviation | |
Channel 01 | 991.3 µm | 0.2 µm (0.0%) | 13.8 µm | 4.6 µm (33.0%) |
Channel 02 | 992.1 µm | 0.2 µm (0.0%) | 17.9 µm | 1.3 µm (7.6%) |
Channel 03 | 992.4 µm | 0.2 µm (0.0%) | 20.2 µm | 3.3 µm (16.3%) |
Leakage channel | 143.0 µm | 0.5 µm (0.3%) | N/A | N/A |
(643.8469 nm) ZIP®250 focus light range. | 1.5209 |
(589.2938 nm) | 1.5230 |
(546.074 nm) | 1.5255 ± 0.0015 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kaal, J.; Feltin, N.; Lelong, M.; Yin, H.; Glidle, A.; Romieu, K.; Batista, E. Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices. Metrology 2025, 5, 4. https://doi.org/10.3390/metrology5010004
Kaal J, Feltin N, Lelong M, Yin H, Glidle A, Romieu K, Batista E. Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices. Metrology. 2025; 5(1):4. https://doi.org/10.3390/metrology5010004
Chicago/Turabian StyleKaal, Joris, Nicolas Feltin, Marc Lelong, Huabing Yin, Andrew Glidle, Kevin Romieu, and Elsa Batista. 2025. "Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices" Metrology 5, no. 1: 4. https://doi.org/10.3390/metrology5010004
APA StyleKaal, J., Feltin, N., Lelong, M., Yin, H., Glidle, A., Romieu, K., & Batista, E. (2025). Comparison of Measurement Protocols for Internal Channels of Transparent Microfluidic Devices. Metrology, 5(1), 4. https://doi.org/10.3390/metrology5010004