The Importance of Measurement Uncertainty Arising from the Sampling Process in Conformity Assessment: The Case of Fuel Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Evaluation of the Uncertainty Arising from the Sampling Process
2.2. Measurement Uncertainty as a Parameter in Conformity Assessment
2.3. Test Methods
3. Results and Discussion
3.1. Experimental Results
3.2. Evaluation of the Analytical and Sampling Uncertainties
3.3. Use of Analytical and Sampling Uncertainty Information in Compliance Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kottakalam, S.; Alkezbari, A.A.; Rottenkolber, G.; Trapp, C. Optical Investigation of Sparks to Improve Ignition Simulation Models in Spark-Ignition Engines. Energies 2024, 17, 4640. [Google Scholar] [CrossRef]
- Chiavola, O.; Palmieri, F.; Cavallo, D.M. On the Increase in the Renewable Fraction in Diesel Blends using Aviation Fuel in a Common Rail Engine. Energies 2023, 16, 4624. [Google Scholar] [CrossRef]
- Paricaud, P.; Ndjaka, A.; Catoire, L. Prediction of the Flash Points of Multicomponent Systems: Applications to Solvent Blends, Gasoline, Diesel, Biodiesels and Jet Fuels. Fuel 2020, 263, 116534. [Google Scholar] [CrossRef]
- Algunaibet, I.M.; Matar, W. The responsiveness of fuel demand to gasoline price change in passenger transport: A case study of Saudi Arabia. Energy Effic. 2018, 11, 1341–1358. [Google Scholar] [CrossRef]
- Denson, M.D.; Manrique, R.; Olarte, M.; Garcia-Perez, M. Co-hydrotreatment of Bio-oil and Waste Cooking Oil to Produce Transportation Fuels. Energy Fuels 2024, 38, 6982–6991. [Google Scholar] [CrossRef]
- ASTM D93-20; Standard Test Methods for Flash Point by Pensky-Martens Closed Cup Tester. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D56-21a; Standard Test Method for Flash Point by Tag Closed Cup Tester. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7039-15a; Standard Guide for Determination of Measurement Uncertainty in Chemical Analysis. ASTM International: West Conshohocken, PA, USA, 2020.
- ASTM D5453-19a; Standard Test Method for Determination of Total Sulfur in Light Petroleum Products and in Gaseous Fuels by Ultraviolet Fluorescence. ASTM International: West Conshohocken, PA, USA, 2019.
- ASTM D2622-21; Standard Test Method for Sulfur in Petroleum Products by Wavelength Dispersive X-Ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7220-12(2017); Standard Test Method for Sulfur in Automotive, Heating, and Jet Fuels by Monochromatic Energy Dispersive X-Ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2017.
- ASTM D4294-21; Standard Test Method for Sulfur in Petroleum and Petroleum Products by Energy Dispersive X-Ray Fluorescence Spectrometry. ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D1266-18; Standard Test Method for Sulfur in Petroleum Products (Lamp Method). ASTM International: West Conshohocken, PA, USA, 2018.
- ASTM D445-24; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2024.
- ASTM D7945-21; Standard Test Method for Kinematic Viscosity of Transparent and Opaque Liquids (and Calculation of Dynamic Viscosity). ASTM International: West Conshohocken, PA, USA, 2021.
- ASTM D7279-16; Standard Test Method for the Determination of Kinematic Viscosity of Transparent and Opaque Liquids. ASTM International: West Conshohocken, PA, USA, 2016.
- De Oliveira, E.C.; Lourenço, F.R. Risk of false conformity assessment applied to automotive fuel analysis: A multiparameter approach. Chemosphere 2021, 263, 128265. [Google Scholar] [CrossRef] [PubMed]
- De Oliveira, E.C.; Lourenço, F.R. Data reconciliation applied to the conformity assessment of fuel products. Fuel 2021, 300, 120936. [Google Scholar] [CrossRef]
- de Camargo, M.A.C.; Manea, G.K.B.; de Oliveira, E.C. Design of Experiments for Evaluating the Relevance of Change in Test Method for Kinematic Viscosity of Opaque Oils. Metrology 2024, 4, 15–23. [Google Scholar] [CrossRef]
- de Jesus Leite, V.; de Oliveira, E.C.; Aucélio, R.Q. Impact of the Sampling Process on the Measurement Uncertainty, a Case Study: Physicochemical Parameters in Diesel. Accred. Qual. Assur. 2021, 26, 1–9. [Google Scholar] [CrossRef]
- Theodorou, D.; Liapis, N.; Zannikos, F. Estimation of Measurement Uncertainty Arising from Manual Sampling of Fuels. Talanta 2013, 105, 360–365. [Google Scholar] [CrossRef] [PubMed]
- Glavič-Cindro, D.; Hazou, E.; Korun, M. Measurement Uncertainty Arising from Sampling of Environmental Samples. Appl. Radiat. Isot. 2020, 156, 108978. [Google Scholar] [CrossRef]
- Borges, C.; Palma, C.; Bettencourt da Silva, R.J.N. Evaluation of Temporal Trends and Correlations of Physical-Chemical Parameters in Vast Oceanic Areas Robust to Information Uncertainty. Chemosphere 2023, 314, 137597. [Google Scholar] [CrossRef]
- Schissel, C.; Allen, D.T. Impact of the High-Emission Event Duration and Sampling Frequency on the Uncertainty in Emission Estimates. Environ. Sci. Technol. Lett. 2022, 9, 1063–1067. [Google Scholar] [CrossRef]
- Vanem, E.; Gramstad, O.; Bitner-Gregersen, E.M. A simulation study on the uncertainty of environmental contours due to sampling variability for different estimation methods. Appl. Ocean Res. 2019, 91, 101870. [Google Scholar] [CrossRef]
- Saari, E.; Peramaki, P.; Jalonen, J. Measurement Uncertainty in the Determination of Total Petroleum Hydrocarbons (TPH) in Soil by GC-FID. Chemom. Intell. Lab. Syst. 2008, 92, 3–12. [Google Scholar] [CrossRef]
- Pennecchi, F.R.; Kuselman, I.; da Silva, R.J.N.B.; Hibbert, D.B. Risk of a false decision on conformity of an environmental compartment due to measurement uncertainty of concentrations of two or more pollutants. Chemosphere 2018, 202, 165–176. [Google Scholar] [CrossRef]
- Medeiros, K.A.R.; da Costa, L.G.; Manea, G.K.B.; de Moraes Maciel, R.; Caliman, E.; da Silva, M.T.; de Sena, R.C.; de Oliveira, E.C. Determination of Total Sulfur Content in Fuels: A Comprehensive and Metrological Review Focusing on Compliance Assessment. Crit. Rev. Anal. Chem. 2023, 54, 3398–3408. [Google Scholar] [CrossRef]
- Kuselman, I.; Pennecchi, F.; Bettencourt da Silva, R.J.N.; Brynn Hibbert, D. Conformity assessment of multicomponent materials or objects: Risk of false decisions due to measurement uncertainty—A case study of denatured alcohols. Talanta 2017, 164, 189–195. [Google Scholar] [CrossRef]
- De Oliveira, E.C. Use of Measurement Uncertainty in Compliance Assessment with Regulatory Limits. Braz. J. Anal. Chem. 2020, 7, 1–2. [Google Scholar] [CrossRef]
- Separovic, L.; Simabukuro, R.S.; Couto, A.R.; Bertanha, M.L.G.; Dias, F.R.S.; Sano, A.Y.; Caffaro, A.M.; Lourenço, F.R. Measurement Uncertainty and Conformity Assessment Applied to Drug and Medicine Analyses—A Review. Crit. Rev. Anal. Chem. 2023, 53, 123–138. [Google Scholar] [CrossRef] [PubMed]
- Simabukuro, R.; Jeong, N.A.; Lourenço, F.R. Application of Measurement Uncertainty on Conformity Assessment in Pharmaceutical Drug Products. J. AOAC Int. 2021, 104, 585–591. [Google Scholar] [CrossRef] [PubMed]
- Dias, F.R.S.; Lourenço, F.R. Measurement uncertainty evaluation and risk of false conformity assessment for microbial enumeration tests. J. Microbiol. Methods 2021, 189, 106312. [Google Scholar] [CrossRef]
- Carvalheira, L.; Lopes, J.M.; Fernandes de Aguiar, P.; Oliveira, E.C. Compliance assessment when radioactive discharges are close to exemption levels in nuclear medicine facilities. Radiat. Phys. Chem. 2023, 203, 110636. [Google Scholar] [CrossRef]
- Ramsey, M.H.; Ellison, S.L.R. Eurachem/CITAC Guide. In Measurement Uncertainty Arising from Sampling: A Guide to Methods and Approaches, 2nd ed.; Eurachem: London, UK, 2019. [Google Scholar]
- Ramsey, M.H. Sampling as a source of measurement uncertainty: Techniques for quantification and comparison with analytical sources. J. Anal. At. Spectrom. 1998, 13, 97–104. [Google Scholar] [CrossRef]
- Miller, J.N.; Miller, J.C. Statistics and Chemometrics for Analytical Chemistry, 6th ed.; Pearson Education Limited: Harlow, UK, 2018. [Google Scholar]
- Ellison, S.L.R.; Williams, A. (Eds.) EURACHEM/CITAC Guide: Use of Uncertainty Information in Compliance Assessment; Eurachem: Teddington, UK, 2021; Available online: https://www.eurachem.org/index.php/publications/guides (accessed on 20 November 2024).
- ILAC (International Laboratory Accreditation Cooperation). ILAC-G8:09/2019, Guidelines on Decision Rules and Statements of Conformity; International Laboratory Accreditation Cooperation: Berlin, Germany, 2019; Available online: https://ilac.org/publications-and-resources/ilac-guidance-series/ (accessed on 26 December 2024).
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—The Role of Measurement Uncertainty in Conformity Assessment, JCGM 106:2012; BIPM: Paris, France, 2012; Available online: https://www.bipm.org/documents/20126/2071204/JCGM_106_2012_E.pdf/fe9537d2-e7d7-e146-5abb-2649c3450b25?version=1.7&t=1659083025736&download=true (accessed on 26 December 2024).
- ISO 14253-1:2017; Geometrical Product Specifications (GPS)—Inspection by Measurement of Workpieces and Measuring Equipment: Part 1: Decision Rules for Verifying Conformity or Nonconformity with Specifications. ISO: Geneva, Switzerland, 2017.
- Massart, D.L.; Vandeginste, B.G.M.; Buydens, L.M.C.; De Jong, S.; Lewi, P.J.; Smeyers-Verbeke, J. Handbook of Chemometrics and Qualimetrics: Part A; Elsevier: Amsterdam, The Netherlands, 1997; ISBN 0-444-89724-0. [Google Scholar]
Source of Variation | Sum of Squares (SS) | Degrees of Freedom (ν) | Mean Square (MS) | F |
---|---|---|---|---|
Between S1S2 (A) | ||||
Between-target (B) | ||||
Interaction (I) | ||||
Within or residual (R) | ||||
Total (T) |
Sample | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 |
---|---|---|---|---|---|---|---|---|
S1A1 | 46.0 | 50.0 | 47.0 | 52.0 | 44.0 | 46.5 | 50.5 | 45.0 |
S1A2 | 41.0 | 41.0 | 44.0 | 42.5 | 46.0 | 51.5 | 46.5 | 42.0 |
S2A1 | 42.0 | 46.5 | 40.5 | 43.5 | 40.0 | 42.5 | 40.5 | 45.0 |
S2A2 | 42.0 | 40.0 | 44.0 | 41.5 | 42.5 | 41.5 | 41.0 | 44.5 |
Sample | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 |
---|---|---|---|---|---|---|---|---|
S1A1 | 38.0 | 37.7 | 43.4 | 41.0 | 41.4 | 46.6 | 37.1 | 43.3 |
S1A2 | 43.3 | 42.8 | 39.9 | 41.8 | 40.0 | 40.8 | 43.2 | 43.8 |
S2A1 | 46.1 | 50.0 | 47.8 | 51.3 | 43.1 | 44.8 | 48.8 | 51.6 |
S2A2 | 46.6 | 43.2 | 38.7 | 45.6 | 45.1 | 47.9 | 39.7 | 45.1 |
Sample | Target 1 | Target 2 | Target 3 | Target 4 | Target 5 | Target 6 | Target 7 | Target 8 |
---|---|---|---|---|---|---|---|---|
S1A1 | 4.483 | 4.373 | 4.605 | 4.297 | 4.430 | 4.572 | 4.412 | 4.528 |
S1A2 | 4.425 | 4.377 | 4.604 | 4.460 | 4.508 | 4.294 | 4.279 | 4.301 |
S2A1 | 4.016 | 3.866 | 4.089 | 4.368 | 4.079 | 4.267 | 4.273 | 4.157 |
S2A2 | 4.139 | 4.036 | 4.148 | 4.194 | 4.110 | 4.020 | 4.252 | 4.117 |
Analytical Uncertainty | Sampling Uncertainty | Measurement Uncertainty | |
---|---|---|---|
Flash point (°C) | 3.2 | 2.3 | 3.9 |
Sulfur mass fraction (mg/kg) | 3.7 | 2.1 | 4.3 |
Kinematic viscosity (mm2/s) | 0.1007 | 0.2234 | 0.2445 |
Mean Value | Acceptance Limit Based on Analytical Uncertainty | Acceptance Limit Based on Analytical Uncertainty Plus Sampling Uncertainty | Specification Limit | |
---|---|---|---|---|
Flash point (°C) | 44.2 | 43.2 | 44.4 | 38 (TL) |
Sulfur mass fraction (mg/kg) | 43.7 | 43.9 | 42.9 | 50 (TU) |
Kinematic viscosity (mm2/s) | 4.284 | 4.335 | 4.099 | 4.5 (TU) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Vásquez, J.D.; de Oliveira, E.C. The Importance of Measurement Uncertainty Arising from the Sampling Process in Conformity Assessment: The Case of Fuel Quality. Metrology 2025, 5, 7. https://doi.org/10.3390/metrology5010007
Hernandez-Vásquez JD, de Oliveira EC. The Importance of Measurement Uncertainty Arising from the Sampling Process in Conformity Assessment: The Case of Fuel Quality. Metrology. 2025; 5(1):7. https://doi.org/10.3390/metrology5010007
Chicago/Turabian StyleHernandez-Vásquez, José Daniel, and Elcio Cruz de Oliveira. 2025. "The Importance of Measurement Uncertainty Arising from the Sampling Process in Conformity Assessment: The Case of Fuel Quality" Metrology 5, no. 1: 7. https://doi.org/10.3390/metrology5010007
APA StyleHernandez-Vásquez, J. D., & de Oliveira, E. C. (2025). The Importance of Measurement Uncertainty Arising from the Sampling Process in Conformity Assessment: The Case of Fuel Quality. Metrology, 5(1), 7. https://doi.org/10.3390/metrology5010007